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Abstract. In order to improve the adaptive range of airflow velocity, an airflow piezoelectric 
generator based on multi-harmonic excitation is proposed. The flow field characteristics are 
obtained by CFD method, the acoustic vibration characteristics and variation with velocity of the 
excitation frequency are studied. The result shows that periodic compression and expansion of air 
are presented and a standing wave is formed inside the resonator, which can provide stable 
excitation source. The excitation frequencies are distributed on the acoustic modes of the resonator 
and captured. With different velocity segment, the excitation frequencies are different, and 
frequency conversion is presented from the first-order to the third-order and from the third-order 
to the first-order. The conclusions verify the feasibility of the multi-harmonic excitation energy 
exchange scheme, which is helpful to improve the flow velocity adaptive range of the 
airflow-induced vibration piezoelectric generator. 
Keywords: piezoelectric generator, environment airflow, standing wave, excitation source, 
multi-harmonic. 

1. Introduction 

Wireless sensor node network has been widely used in aerospace, military construction, 
transportation, agriculture and other fields [1], but the power supply is a new problem. Because of 
the disadvantages of short life, low power density and replaced regularly, the traditional battery 
power supply is limited [2]. The energy of ambient airflow can be captured and converted into 
electricity by the airflow piezoelectric generator [3], which will be an effective way to supply.  

The airflow piezoelectric generators had been studied by many scholars. The airflow 
piezoelectric generator with the transducer diameter of 34 mm is designed by Lei Jun-ming [4], 
the resonance characteristic, the output performance of the generator are studied by experiment. 
A MEMS air-driven fluidic resonance piezoelectric generator for fuze is proposed by Xu Wei [5], 
the vibration displacement and the output voltage of the generator are studied. A disk-type 
piezoelectric transducer is placed in the resonant tube and a baffle is arranged in the proper 
position of the main pipe wall by Hernandez [6], and the maximum output power of 0.55 mW can 
be generated. A resonant tube with a piezoelectric transducer at the bottom is placed behind the 
blunt body by D-A Wang [7] based on vortex-induced vibration, the maximum output power of 
0.2 W can be generated. Based on the system of jet-resonator, the scheme of a small airflow 
piezoelectric generator is presented by Chen Huejuan [8-11], and the characteristic of excitation, 
structure parameters and output are studied. A new type of vortex induced piezoelectric wind 
generator is presented by KAN Junwu [12], and the output performance are studied by theory and 
experiment. Based on the vortex induced vibration, a piezoelectric wind energy collector with 
resonant cavity is proposed by Shu Chang [13], which can greatly improve the energy collection 
efficiency. Based on the principle that resonant acoustic can amplify the excitation energy, two 
symmetrically distributed Helmholtz resonators are added behind the blunt body by Wen Sheng 
[14], and the open circuit voltage with a peak-to-peak value of 6.0 V can be generated. However, 
the idea of piezoelectric energy exchange with single harmonic excitation is adopted by the above 
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literatures. When the excitation frequency deviates from the natural frequency of the piezoelectric 
transducer, the output power can decrease sharply, and the range of the airflow velocity is limited 
to a certain extent.  

Besides, when the single natural frequency of piezoelectric transducer cannot meet the demand 
for energy supply, the wideband frequency of piezoelectric transducer can capture more energy 
undoubtedly. But it is at the cost of increasing the size and difficulty of the structure. Wang Lei 
has combined three piezoelectric cantilevers of different sizes to increase the number of modes 
and widen the frequency range [15]. Combining the energy conversion mechanism of piezoelectric 
and electromagnetic, bistable [16] and three stable [17] vibration energy harvesting device are 
proposed to increase frequency bandwidth. By adding the resonator, Chen Bing has presented a 
composite energy harvester based on broadband and multi-mode, which can achieve a wide 
frequency range and multi-mode vibration energy harvesting [18].  

The environment airflow is always time-varying and random, how to make the energy transfer 
system work continuously and efficiently are the key problem of the energy harvesting by flow 
induced vibration. In fact, the frequencies of the sound vibration (the excitation frequencies) are 
different within different ranges of the airflow velocity, even modal transformation can be 
presented. The difference depends on the excitation frequency variation with airflow velocity. 
Masataka has analyzed the acoustic mechanism of the air-reed instrument [19], the pressure 
frequencies are locked on the fundamental or 2nd harmonic resonant frequency of the pipe 
depending on the jet velocity. The mean flow induced acoustic oscillation effects has been studied 
by Sun Daming [20], the oscillation frequencies are disturbed on four different acoustic modes 
with the mean flow velocity increasing.  

In order to improve the environmental airflow adaptability, combined with the multi-modes of 
fluid-induced vibration, it is an important research direction to make full use of the cooperative 
energy exchange of multiple piezoelectric vibrators. Therefore, based on the literature [8], a 
scheme for airflow piezoelectric generator with multi-harmonic excitation is proposed. Aiming at 
the excitation characteristic, the flow field characteristic is obtained by CFD method, and the 
characteristic of acoustic vibration and the relationship between the excitation frequency and the 
airflow velocity are studied to verify the feasibility of the scheme. 

2. Operational principle of the airflow piezoelectric generator 

Fig. 1 is the schematic diagram of the airflow piezoelectric generator based on multi-harmonic 
excitation. It is composed of two parts: the airflow excitation system and the energy exchange 
system. The airflow excitation system is based on the fluid dynamic sound source structure, 
including the nozzle and the resonator. The energy exchange system includes the piezoelectric 
transducer and the energy storage and control circuit. The piezoelectric transducers are mounted 
vertically on the inner wall of the cavity in the form of cantilever beam and forms two array 
distribution with the different natural frequency 𝑓 , 𝑓 . The energy storage and control circuit is 
integrated at the bottom.  

The jet, formed by the airflow through the nozzle, impacts the tip and is separated to form 
vortex shedding and produce edge sound [10]. The sound wave travels inside the resonator and 
reflects back at the bottom, which can drive the air inside the resonator oscillating into harmonic 
state and forming a standing wave resonance. Finally, a stable sound source is generated and the 
frequency is locked to the acoustic modal frequency of the resonator.  

Under the influence of standing wave resonance, the air inside the resonator will undergo 
periodic expansion and compression. The cantilever type piezoelectric transducers are driven to 
vibrate left and right to generate voltage, and energy storage and power supply are realized through 
the energy storage and control circuit. When the natural frequency of the piezoelectric transducer 
is the same as the excitation frequency, the system is in the resonant state, and the output power 
is the largest.  

On the condition of the natural frequency of one piezoelectric transducer array is consistent 
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with the first-order acoustic mode frequency of the resonator, while the natural frequency of the 
other piezoelectric transducer array is consistent with the second-order acoustic mode frequency 
of the resonator. No matter the excitation frequency is in the first or third order of the acoustic 
mode frequency of the resonator, an array of piezoelectric transducer can be guaranteed to be in 
resonant state. It can realize piezoelectric energy conversion by multi-harmonic excitation and 
greatly improve the adaptive range of the airflow velocity. 

 
Fig. 1. Schematic of airflow piezoelectric generator based on multi-harmonic excitation 

When a standing wave is formed inside the resonator, the longitudinal particle velocity 𝑢 𝑥, 𝑡  
and acoustic pressure 𝑝 𝑥, 𝑡  at the 𝑛-th resonant mode are represented as sinusoidal functions: 

𝑝 𝑥, 𝑡 = 𝑝 sin𝜋 2𝑛 − 1 𝑥2𝐿 exp 𝑖2𝜋𝑓 𝑡 , (1)𝑢 𝑥, 𝑡 = 𝑢 cos𝜋 2𝑛 − 1 𝑥2𝐿 exp 𝑖2𝜋𝑓 𝑡 , (2)

where 𝐿 is the resonator length, 𝑥 is the longitudinal distance measured from the tube open inlet, 𝑓  is the natural resonant frequency, and 𝑛 is the mode number. The maximum magnitude of 
particle velocity 𝑢  occurs at the resonator open inlet while the acoustic pressure reaches the 
maximum magnitude 𝑝  at the closed end.  

3. Calculation model and method 

3.1. Numerical calculation model 

Governing equations of flow can be described by Navier-Stokes equations as following: 𝜕 𝜌𝑢𝜕𝑡 + 𝜕 𝜌𝑢𝑢𝜕𝑥 + 𝜕 𝜌𝑢𝑣𝜕𝑦 + 𝜕 𝜌𝑢𝑤𝜕𝑧 = 𝜕𝜕𝑥 𝜇 𝜕𝑢𝜕𝑥 + 𝜕𝜕𝑦 𝜇 𝜕𝑢𝜕𝑦 + 𝜕𝜕𝑧 𝜇 𝜕𝑢𝜕𝑧 − 𝜕𝑝𝜕𝑥 + 𝑆 , (3)𝜕 𝜌𝑣𝜕𝑡 + 𝜕 𝜌𝑣𝑢𝜕𝑥 + 𝜕 𝜌𝑣𝑣𝜕𝑦 + 𝜕 𝜌𝑣𝑤𝜕𝑧 = 𝜕𝜕𝑥 𝜇 𝜕𝑣𝜕𝑥 + 𝜕𝜕𝑦 𝜇 𝜕𝑣𝜕𝑦 + 𝜕𝜕𝑧 𝜇 𝜕𝑣𝜕𝑧 − 𝜕𝑝𝜕𝑦 + 𝑆 , (4)𝜕 𝜌𝑤𝜕𝑡 + 𝜕 𝜌𝑤𝑢𝜕𝑥 + 𝜕 𝜌𝑤𝑣𝜕𝑦 + 𝜕 𝜌𝑤𝑤𝜕𝑧= 𝜕𝜕𝑥 𝜇 𝜕𝑤𝜕𝑥 + 𝜕𝜕𝑦 𝜇 𝜕𝑤𝜕𝑦 + 𝜕𝜕𝑧 𝜇 𝜕𝑤𝜕𝑧 − 𝜕𝑝𝜕𝑧 + 𝑆 , (5)

where, 𝜇  is dynamic viscosity of air; 𝑝  is the pressure of a fluid element; 𝑆 , 𝑆 , 𝑆  are the 
generalized source terms of the momentum conservation equation.  

In this paper, the turbulence model of SST 𝑘 -𝜔  is adopted to solve the Navier-Stokes  
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equations, because it can effectively predict the occurrence and separation of turbulence under 
adverse pressure gradient [9]. The tensor form of the SST 𝑘-𝜔 turbulence model in Cartesian 
coordinate system can be as following [21]: 𝜕𝑝𝜕𝑡 + 𝜕𝜕𝑥 (𝜌𝑢 ) = 0, (6)𝜌 𝑑𝑢𝑑𝑡 = 𝜕𝑝𝜕𝑥 + 𝜕𝜕𝑥 𝜇 𝜕𝑢𝜕𝑥 + 𝜕𝑢𝜕𝑥 − 23 𝛿 𝜕𝑢𝜕𝑥 + 𝜕𝜕𝑥 −𝜌𝑢 𝑢 , (7)

where −𝜌𝑢 𝑢  is the Reynolds Stress: 

−𝜌𝑢 𝑢 = 𝜇 𝜕𝑢𝜕𝑥 + 𝜕𝑢𝜕𝑥 − 23 𝜌𝑘 + 𝜇 𝜕𝑢𝜕𝑥 𝛿 . (8)

The SST 𝑘-𝜔 turbulence model includes two equations of 𝑘 and 𝜔, the basic forms are as 
following. 

Turbulent kinetic energy equation 𝑘: 𝜕𝑘𝜕𝑡 + 𝑢 𝜕𝑘𝜕𝑥 = 𝜕𝜕𝑥 𝜇 + 𝜇𝜎 𝜕𝑘𝜕𝑥 + 𝐺 − 𝛽 𝑘𝑤. (9)

Specific dissipation equation 𝜔: 𝜕𝜔𝜕t + 𝑢 𝜕𝜔𝜕𝑥 = 𝜕𝜕𝑥 𝜇 + 𝜇𝜎 𝜕𝜔𝜕𝑥 + 𝐺 − 𝛽 + 𝐷 . (10)

𝐺 = −𝑢′ 𝑢′ , 𝐺 = 𝛼 𝐺 , the value of 𝛼  determines the Reynolds number. 𝜇 = , 𝛽′ = 0.09, 𝛽′′ = 0.075, 𝜎 = 𝜎 = 2. 𝛼 = ∗ , 𝑅 = 2.95.  

3.2. Calculation grid and solution setup  

During simulation, in order to clearly capture the phenomena of vortex shedding and standing 
wave inside the resonator, the resonator length is chosen longer with 60 mm to ensure full 
development of the flow field. Modeling is simplified with considering the external flow field and 
ignoring the effect of piezoelectric on the flow field. The specific size shows in Fig. 2, point A is 
located (65 mm, 0) at the closed end of the resonator and point B is located (50 mm, 0).  

 
Fig. 2. Calculation grid of the flow field 
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The geometric model used in the numerical calculation is imported into the pre-processing 
software GAMBIT to divide the mesh. All calculation areas are divided by structural grid and the 
unit type is quadrilateral. After grid independence verification, the total number of grids is 
determined to be 145584, and the minimum cell area is 0.01 mm2. 

Boundary conditions corresponding to the model are set as shown in table 1. The fluid is set 
to ideal gas. Initial temperature of 300 K and initial pressure of 101.325 kPa are set. The above 
governing equations and turbulence model are discretized by Finite Volume Method with Second 
Order Upwind method and solved by FLUENT 6.3 [9]. After verifying the independence of the 
step, the time step is set by 1e-5 seconds for high resolution. The relationship between inlet 
pressure and velocity is shown in Table 2.  

Table 1. Boundary conditions 
Name Inlet Outlet Axial Others 

Boundary condition Pressure inlet Pressure outlet Symmetry Wall 

Table 2. Relationship between inlet pressure and velocity 
Pressure (kPa) 0.2 0.98 2.2 3.9 6 9 12.5 16.8 21.7 27.5 
Velocity (m/s) 20 40 60 80 100 120 140 160 180 200 

4. Results 

4.1. The response of acoustic vibration 

The response of acoustic vibration in the resonator is predicted by the above numerical method, 
and the pressure curve at the bottom of the resonator and the volumetric flow rate curve at different 
sections of the resonator are obtained. Fig. 3(a) shows the pressure curve with airflow velocity of 
40 m/s. It can be seen that the curve is in the process of starting oscillation before 0.015 s. After 
0.015 s, the curve gradually tends to stable oscillation and finally approximates a sinusoidal 
waveform. Fig. 3(b) shows the frequency spectrum of the curve by Fast Fourier Transform. The 
frequency is relatively single, which means a pure tone. 

 
a) Pressure variation with time 

 
b) FFT 

Fig. 3. Pressure at the end of the resonator with velocity of 40 m/s 

 
Fig. 4. The relationship between grids and calculation results 
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Fig. 4 shows the relationship between grids and calculation results with the velocity of 40 m/s. 
With the increase of the number of grids, the relative variation error of the peak-peak amplitude 
and frequency of the pressure curve are both within 5 %, which indicates that the referenced 
number of grids have little effect on the results. It can be considered that the 145584 grids have 
reached grid independent. 

With the velocity of 40 m/s, the curves of the volume flow rate at different sections of the 
resonator under stable oscillation are shown in Fig. 5. It can be seen that the curves present 
periodic changes, which are similar to sinusoidal waveforms. The repeated compression and 
expansion of the air inside the resonator are presented by periodic rise and fall of the curve. 
Besides, with closer to the end of the resonator, the volume flow rate becomes smaller and smaller 
until it is zero at the end. 

 
a) Length of 10 mm 

 
b) Length of 30 mm 

 
c) Length of 40 mm 

Fig. 5. Volume flow rate at different sections of the resonator 

4.2. Standing wave characteristic 

Fig. 6 shows a cycle of the pressure and the axial velocity at point B with velocity of 60 m/s. 𝑇 is the period time of the curve. Apparently, the curve of pressure and axial velocity are both 
similar to sinusoidal wave, and the phase difference is about 90 degree. The phase difference of 
90 degree indicates the existence of a standing wave sound field inside the resonator. The property 
of the standing wave are represented by the amplitude of sound pressure and axial velocity 
distributed along the central axis of the resonator, as shown in Fig. 9 and Fig. 10, respectively. 
The pressure anti-node and the axial velocity node appear at the closed end of the resonator. 
Meanwhile, the open end of the resonator is the pressure node, where the pressure is superimposed.  

As shown in Fig. 7, the pressure distributed along the axial can be expressed by: 𝑝(𝑥) = 𝑝(𝐿) ⋅ sin(𝑘𝑥), (11)

where 𝑘 = 2𝜋/𝜆, where 𝑘 is a wave number, 𝑝(𝐿) is the amplitude of the pressure at the closed 
end of the resonator.  

Similarly, as shown in Fig. 8, the axial velocity can be expressed by: 𝑢(𝑥) = 𝑢(0) ⋅ cos(𝑘𝑥), (12)
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where 𝑘 = 2𝜋/𝜆, where 𝑘 is a wave number, 𝑢(0) is the amplitude of the axial velocity at the 
open end of the resonator. 

 
Fig. 6. A cycle of pressure and axial velocity 

 
Fig. 7. Pressure distributed on the axis  

of the resonator 

 
Fig. 8. Velocity distributed on the axis  

of the resonator 
 

 
a) 𝑡 = 0 

 
b) 𝑡 = 0.25𝑇 

 
c) 𝑡 = 0.5𝑇 

 
d) 𝑡 = 0.75𝑇 

Fig. 9. Periodic velocity contours 

Fig. 9 shows a cycle of velocity contours. It can be seen that vortex shedding is presented near 
the resonator tip, which can produce edge tone and cause the change of airflow velocity and 
pressure at the mouth of the cavity, which can determine the compression and expansion of air 
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inside the resonator. As shown in Fig. 9(a), when the jet (high speed area) is in the internal flow 
field, the pressure at the mouth of the resonator is lower than that of the external field because of 
the entrapment effect. Air is entered into the resonator from the external field, which can result air 
compressed and pressure increased. The process of air compression can be shown from Fig. 10(a) 
to Fig. 10(b). Apparently, as shown in Fig. 9(c), when the jet (high speed area) is in the external 
flow field, the pressure at the mouth of the resonator is higher than that of the external field because 
of the entrapment effect. Air is ejected from the internal field, which can result air expanded and 
pressure decreased inside the resonator. The process of air expansion can be shown from Fig. 10(c) 
to Fig. 10(d). Repeatedly, a standing wave is formed inside the resonator, which can provide a 
stable excitation source. 

 
a) 𝑡 = 0 

 
b) 𝑡 = 0.25𝑇 

 
c) 𝑡 = 0.5𝑇 

 
d) 𝑡 = 0.75𝑇 

Fig. 10. Periodic pressure contours 

4.3. Frequency characteristic 

Fig. 11 represents the excitation frequency variation with velocity. Theoretically, the 
first-order frequency of the acoustic mode of the resonator is 1417 Hz and the third-order is 
4150 Hz [22], respectively. The excitation frequencies are distributed near the acoustic modes of 
the resonator, which indicates that there are captured. With different velocity segment, the 
excitation frequency is different, and there will be presented frequency conversion from the 
first-order to the third-order and from the third-order to the first-order.  

 
Fig. 11. Excitation frequency variation with velocity 
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Specifically, within the velocity range of 20 to 60 m/s, the excitation frequency is distributed 
on the first-order. Within the range of 70 to 90 m/s, it begins transition from the first order to the 
third order. The pressure curve and frequency spectrum at point A with velocity of 80 m/s can be 
shown in Fig. 12. Within the range of 100 to 140 m/s, it is fully distributed on the third-order 
frequency. The pressure curve and frequency spectrum at point A with velocity of 120 m/s can be 
shown in Fig. 13. Within the range of 150 to 170 m/s, it begins transition from the third order to 
the first order. Within the range of 180 to 200 m/s, it is distributed on the first-order again.  

 
a) Pressure variation with time 

 
b) FFT 

Fig. 12. Pressure at point A with velocity of 80 m/s 

 
a) Pressure variation with time 

 
b) FFT 

Fig. 13. Pressure at point A with velocity of 120 m/s 

5. Conclusions 

In this paper, the characteristics of multi-harmonic excitation of the piezoelectric generator are 
simulated and analyzed. The results are as follow: 

1) The pressure and the volume flowrate inside the resonator finally approximate a stable 
sinusoidal waveform after a short oscillation. The maximum magnitude of volume flow rate 
occurs at the open end of the resonator while the pressure reaches the maximum magnitude at the 
closed end.  

2) The phase difference between the curve of pressure and axial velocity is about 90 degree, 
which indicates the existence of a standing wave sound field formed inside the resonator. The 
repeated compression and expansion of air inside the resonator can provide a stable excitation 
source.  

3) The excitation frequencies of the generator are captured by the acoustic modes of the 
resonator. With different velocity segment, the frequencies are presented conversion between the 
first order and the third order. The multi-harmonic excitation energy exchange scheme can 
improve the adaptive range of the airflow velocity.  
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