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Abstract. An important problem for engineering practical applications is investigated: namely 
dynamics of the system by taking into account dissipative forces and with an aim that those steady 
state vibrations should be stable and single valued. This is achieved by choosing suitable 
parameters of the investigated system. Forced vibrations of vibro impact system with zero 
tightening with harmonic resonant excitation are investigated. Results for various typical 
parameters of the analysed system are presented. Dependence of characteristics of motion in 
steady state regime from the main parameters of the investigated system is investigated. The 
obtained results are useful in the process of design of vibro impact systems for use in technologies 
and machines of corresponding type. 
Keywords: vibro impact system, zero tightening, useful frequencies, optimal parameters. 

1. Introduction 

An important problem for engineering practical applications is investigated: namely dynamics 
of the system by taking into account dissipative forces and with an aim that those steady state 
vibrations should be stable and single valued. This is achieved by choosing suitable parameters of 
the system. 

Forced vibrations of vibro impact system with zero tightening with harmonic resonant 
excitation are investigated. By using analytical – graphical methods characteristics of motions of 
the system are determined. Results of investigation for various typical parameters of the analysed 
system are presented and enable to determine suitable regimes for engineering practical 
applications. 

Resonances and velocity jumps in nonlinear road-vehicle dynamics are investigated in [1]. 
Dynamics of two vibro-impact systems with energy sinks are analysed in [2]. Global asymptotic 
stabilisation of periodic nonlinear systems is described in [3]. Chatter in mechanical systems with 
impacts is analysed in [4]. Optimal control of periodic orbits of mechanical systems with impacts 
is investigated in [5]. The energy transfer mechanism of a single-sided vibro-impact nonlinear 
energy sink is described in [6]. Dynamics of particle impact with a wall is analysed in [7]. 
Frequencies of the planar flexible multibody system with clearances are investigated in [8]. Forced 
response of low-frequency pendulum mechanism is analysed in [9]. Nonlinear vibrations of a 
piecewise-linear system are investigated in [10]. The dynamics of a nonlinear energy harvester 
with multiple resonant zones are analysed in [11]. Sommerfeld effect in an oscillator with a 
reciprocating mass is investigated in [12]. Isolated resonances with nonlinear damping are 
analysed in [13]. A separate case of the vibro impact mechanism is investigated in [14]. 

The main objective of this paper is to present a model of a forced nonlinear vibro-impact 
system with zero tightening with harmonic resonant excitation. Such models can be useful in 
designing special types of nonlinear vibro-impact systems exhibiting stable and single valued 
regimes of motion. First, the model of the investigated system is described. Then results for 
various parameters of the investigated system are presented as well as dependence of 
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characteristics of motion in steady state regime from the main parameters of the investigated 
system. The obtained results are useful in the process of optimal design of vibro impact 
mechanisms and their use in various engineering systems. 

2. Model of the system 

The investigated system is described by the following equation: 𝑚𝑥ሷ + 𝐻𝑥ሶ + 𝐶𝑥 = 𝐹sin𝜔𝑡,     𝑥 < 0, (1)

where 𝑥 denotes the displacement, 𝑚 is the mass of the system, 𝐻 is the coefficient of viscous 
friction, 𝐶  is the coefficient of stiffness, 𝐹  is the amplitude of the exciting force, 𝜔  is the 
frequency of excitation, 𝑡  is the time variable and the upper dot denotes differentiation with 
respect to the time. Also: 𝑥ሶ ା = −𝑅𝑥ሶ ି,     𝑥 = 0, (2)

where 𝑅 is the coefficient of restitution and the superscript minus indicates the value before the 
impact, the superscript plus indicates the value after the impact. Such a vibro-impact system is not 
allowed to travel into the positive values of 𝑥 and is reverted back to the negative half-line after 
the impact.  

The following notations are introduced: 

𝜏 = 𝑝𝑡,      ᇱ = 𝑑𝑑𝜏 ,     ሶ = 𝑑𝑑𝑡 ,      𝑝 = ඨ𝐶𝑚 ,       𝑥ሶ = 𝑝𝑥ᇱ,      2ℎ = 𝐻√𝑚𝐶 ,      𝑓 = 𝐹𝐶 ,     𝜈 = 𝜔𝑝 . (3)

By substituting Eq. (3) into Eq. (1) it is obtained: 𝑥′′ + 2ℎ𝑥′ + 𝑥 = 𝑓sin𝜈𝜏. (4)

By substituting Eq. (3) into Eq. (2) it is obtained: 𝑥′ା = −𝑅𝑥′ି. (5)

3. Eigenvibrations with impacts 

In this case it is assumed that: ℎ = 𝑓 = 0,      𝑅 = 1. (6)

Then the system is described by the following equations: 𝑥′′ + 𝑥 = 0, (7)𝑥′ା = −𝑥′ି. (8)

Spectrum of this nonlinear system is infinite and consisting from linear components. In this 
paper it is shown that steady state forced vibrations are located in the vicinities of those 
eigenfrequencies and they are single valued. 

4. Forced steady state vibrations 

Further dynamics of the system for typical parameters and taking into account the processes 
of steady state motions is investigated. 
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Case 1. In this case dynamics of the system for low frequency of excitation is investigated. 
The following notation is introduced: 𝑓̅ = 𝑓sin𝜈𝜏. (9)

The following quantities are investigated in steady state periodic regimes of motion: 𝑓̅ሺ𝜏ሻ,    𝑥ሺ𝜏ሻ,     𝑥ᇱሺ𝜏ሻ,    𝑥′ሺ𝑥ሻ. (10)

Graphical relationships are presented in Fig. 1. 

 
a) Harmonic function of excitation 

 
b) Displacement in periodic regime 

 
c) Velocity in periodic regime 

 

 
d) Representation in the phase plane: velocity  
as function of displacement in periodic regime 

Fig. 1. Forced steady state vibrations in periodic regime for ℎ = 0.1, 𝑓 = –0.5, 𝜈 = 0.5, 𝑅 = 0.7 

In Fig. 1 variation of the exciting force as function of time, variation of displacement as 
function of time, variation of velocity as function of time and dynamics of the investigated system 
in the phase plane for small value of frequency of excitation are presented. The results show that 
for small value of frequency of excitation multiple decaying impacts are observed. 

When 𝜈 < 1 in steady state regime in one period of the function of excitation several impacts 
take place and with the decrease of frequency of excitation regimes of motion with the higher 
number of impacts take place. Regimes with decaying impacts are seen. Thus, cyclic motion takes 
place. 

Case 2. In this case dynamics of the system for various values of coefficient of restitution is 
investigated. 

Graphical relationships are presented in Fig. 2 and Fig. 3. 
In Fig. 2 variation of the exciting force as function of time, variation of displacement as 

function of time, variation of velocity as function of time and dynamics of the investigated system 
in the phase plane for small value of coefficient of restitution are presented. 

In Fig. 3 variation of the exciting force as function of time, variation of displacement as 
function of time, variation of velocity as function of time and dynamics of the investigated system 
in the phase plane for large value of coefficient of restitution are presented. 

From mutual comparison of corresponding drawings of Fig. 2 and Fig. 3 the influence of the 
value of coefficient of restitution 𝑅 to the dynamic behavior of the investigated system is observed. 
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From 𝑥 = 𝑥ሺ𝜏ሻ, 𝑥′ = 𝑥′ሺ𝜏ሻ, 𝑥′ = 𝑥′ሺ𝑥ሻ as functions of their arguments at the values of parameters ℎ = 0, 𝑓 = –0.5, 𝜈 = 1 depending on the value of 𝑅 indicate that the quality of behavior of the 
system does not change, while the quantities change essentially. 

 
a) Harmonic function of excitation 

 
b) Displacement in periodic regime 

 
c) Velocity in periodic regime 

 

 
d) Representation in the phase plane: velocity  
as function of displacement in periodic regime 

Fig. 2. Forced steady state vibrations in periodic regime for ℎ =0, 𝑓 = –0.5, 𝜈 = 1, 𝑅 = 0.3 

 
a) Harmonic function of excitation 

 
b) Displacement in periodic regime 

 
c) Velocity in periodic regime 

 

 
d) Representation in the phase plane: velocity as 

function of displacement in periodic regime 
Fig. 3. Forced steady state vibrations in periodic regime for ℎ = 0, 𝑓 = –0.5, 𝜈 = 1, 𝑅 = 0.9 

Characteristics of steady state motion as functions of coefficient of restitution are presented in 
Fig. 4. 

From Fig. 4 the inter impact interval as function of coefficient of restitution, velocity before 
impact as function of coefficient of restitution, minimum displacement in the inter impact interval 
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as function of coefficient of restitution are seen. The presented drawings show the influence of the 
value of the coefficient of restitution to the main characteristics of dynamic behavior of the 
investigated system. The intervals 𝑇ఛଵ, 𝑇ఛଶ, where 𝑇ఛଵ + 𝑇ఛଶ = 2𝜋, and the quantities 𝑥′ିఛଵ, 𝑥′ିఛଶ, 𝑥௠ఛଵ, 𝑥௠ఛଶ at ℎ = 0, 𝑓 = –0.5, 𝜈 = 1 substantially depend from 𝑅. 

 
a) First inter impact interval 

 
b) Second inter impact interval 

 
c) Velocity before first impact 

 
d) Velocity before second impact 

 
e) Minimum displacement in the first  

inter impact interval 

 
f) Minimum displacement in the second  

inter impact interval 
Fig. 4. Characteristics of steady state motion as functions of coefficient  

of restitution in periodic regime for ℎ =0, 𝑓 = –0.5, 𝜈 = 1 

Case 3. In this case dynamics of the system for various values of coefficient of viscous 
damping is investigated. 

Graphical relationships are presented in Fig. 5 and Fig. 6. 
In Fig. 5 variation of the exciting force as function of time, variation of displacement as 

function of time, variation of velocity as function of time and dynamics of the investigated system 
in the phase plane for small value of coefficient of viscous damping are presented. 

In Fig. 6 variation of the exciting force as function of time, variation of displacement as 
function of time, variation of velocity as function of time and dynamics of the investigated system 
in the phase plane for large value of coefficient of viscous damping are presented. 

From mutual comparison of corresponding drawings of Fig. 5 and Fig. 6 the influence of the 
value of coefficient of viscous damping ℎ to the dynamic behavior of the investigated system is 
observed. From 𝑥 = 𝑥ሺ𝜏ሻ, 𝑥′ = 𝑥′ሺ𝜏ሻ, 𝑥′ = 𝑥′ሺ𝑥ሻ as functions of their arguments at the values of 
parameters 𝑓 = –0.5, 𝜈 = 1, 𝑅 = 0.7 depending on the value of ℎ indicate that the quality of 
behavior of the system does not change, while the quantities change essentially. 
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a) Harmonic function of excitation 

 
b) Displacement in periodic regime 

 
c) Velocity in periodic regime 

 

 
d) Representation in the phase plane: velocity  
as function of displacement in periodic regime 

Fig. 5. Forced steady state vibrations in periodic regime for ℎ = 0.1, 𝑓 = –0.5, 𝜈 = 1, 𝑅 = 0.7 

 
a) Harmonic function of excitation 

 
b) Displacement in periodic regime 

 
c) Velocity in periodic regime 

 

 
d) Representation in the phase plane: velocity  
as function of displacement in periodic regime 

Fig. 6. Forced steady state vibrations in periodic regime for ℎ = 0.3, 𝑓 = –0.5, 𝜈 = 1, 𝑅 = 0.7 

Characteristics of steady state motion as functions of coefficient of damping are presented in 
Fig. 7. 

From Fig. 7 the inter impact interval as function of coefficient of viscous damping, velocity 
before impact as function of coefficient of viscous damping, minimum displacement in the inter 
impact interval as function of coefficient of viscous damping are seen. The presented drawings 
show the influence of the value of the coefficient of viscous damping to the main characteristics 
of dynamic behavior of the investigated system. The intervals 𝑇ఛଵ, 𝑇ఛଶ, where 𝑇ఛଵ + 𝑇ఛଶ = 2𝜋, and 
the quantities 𝑥′ିఛଵ, 𝑥′ିఛଶ, 𝑥௠ఛଵ, 𝑥௠ఛଶ at 𝑓 = –0.5, 𝜈 = 1, 𝑅 = 0.7 substantially depend from ℎ. 
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a) First inter impact interval 

 
b) Second inter impact interval 

 
c) Velocity before first impact 

 
d) Velocity before second impact 

 
e) Minimum displacement in the first  

inter impact interval 

 
f) Minimum displacement in the second  

inter impact interval 
Fig. 7. Characteristics of steady state motion as functions of coefficient of damping  

in periodic regime for 𝑓 = –0.5, 𝜈 = 1, 𝑅 = 0.7 

Case 4. In this case dynamics of the system for various values of frequency of excitation is 
investigated. 

Graphical relationships are presented in Fig. 8, Fig. 9, Fig. 10, Fig. 11 and Fig. 12. 

 
a) Harmonic function of excitation 

 
b) Displacement in periodic regime 

 
c) Velocity in periodic regime 

 

 
d) Representation in the phase plane: velocity  
as function of displacement in periodic regime 

Fig. 8. Forced steady state vibrations in periodic regime for ℎ = 0.1, 𝑓 = –0.5, 𝜈 = 1.0485, 𝑅 = 0.7 
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In Fig. 8 variation of the exciting force as function of time, variation of displacement as 
function of time, variation of velocity as function of time and dynamics of the investigated system 
in the phase plane for the value of frequency of excitation near to the lower border of the optimal 
zone of operation of the vibro impact system are presented. The results show that there are two 
different inter impact intervals. 

 
a) Harmonic function of excitation 

 
b) Displacement in periodic regime 

 
c) Velocity in periodic regime 

 

 
d) Representation in the phase plane: velocity  
as function of displacement in periodic regime 

Fig. 9. Forced steady state vibrations in periodic regime for ℎ = 0.1, 𝑓 = –0.5, 𝜈 = 1.049, 𝑅 = 0.7 

 
a) Harmonic function of excitation 

 
b) Displacement in periodic regime 

 
c) Velocity in periodic regime 

 

 
d) Representation in the phase plane: velocity  
as function of displacement in periodic regime 

Fig. 10. Forced steady state vibrations in periodic regime for ℎ = 0.1, 𝑓 = –0.5, 𝜈 = 2, 𝑅 = 0.7 

In Fig. 9 variation of the exciting force as function of time, variation of displacement as 
function of time, variation of velocity as function of time and dynamics of the investigated system 
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in the phase plane for the value of frequency of excitation near to the lower border in the optimal 
zone of operation of the vibro impact system are presented. The results show that inter impact 
intervals are of the same type. 

In Fig. 10 variation of the exciting force as function of time, variation of displacement as 
function of time, variation of velocity as function of time and dynamics of the investigated system 
in the phase plane for the value of frequency of excitation which is approximately optimal for 
operation of the vibro impact system are presented. The results show that absolute value of 
minimum displacement of the investigated system is large. 

 
a) Harmonic function of excitation 

 
b) Displacement in periodic regime 

 
c) Velocity in periodic regime 

 

 
d) Representation in the phase plane: velocity  
as function of displacement in periodic regime 

Fig. 11. Forced steady state vibrations in periodic regime for ℎ = 0.1, 𝑓 = –0.5, 𝜈 = 2.665, 𝑅 = 0.7 

 
a) Harmonic function of excitation 

 
b) Displacement in periodic regime 

 
c) Velocity in periodic regime 

 

 
d) Representation in the phase plane: velocity  
as function of displacement in periodic regime 

Fig. 12. Forced steady state vibrations in periodic regime for ℎ = 0.1, 𝑓 = –0.5, 𝜈 = 2.67, 𝑅 = 0.7 
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In Fig. 11 variation of the exciting force as function of time, variation of displacement as 
function of time, variation of velocity as function of time and dynamics of the investigated system 
in the phase plane for the value of frequency of excitation near to the upper border in the optimal 
zone of operation of the vibro impact system are presented. The results show that inter impact 
intervals are of the same type. 

In Fig. 12 variation of the exciting force as function of time, variation of displacement as 
function of time, variation of velocity as function of time and dynamics of the investigated system 
in the phase plane for the value of frequency of excitation near to the upper border of the optimal 
zone of operation of the vibro impact system are presented. The results show that there are two 
different inter impact intervals. 

From 𝑥 = 𝑥ሺ𝜏ሻ , 𝑥′ = 𝑥′ሺ𝜏ሻ , 𝑥′ = 𝑥′ሺ𝑥ሻ  as functions of their arguments at the values of 
parameters ℎ = 0.1, 𝑓 = –0.5, 𝑅 = 0.7 depending on the value of 𝜈 indicate that the quality of 
behavior of the system, as well as the quantities, change essentially. 

Characteristics of steady state motion as functions of frequency of excitation are presented in 
Fig. 13 and Fig. 14. 

 
a) Minimum and maximum  

inter impact intervals 

 
b) Minimum and maximum velocities  

before impact 

 
c) Minimum and maximum minimum displacements 

Fig. 13. Characteristics of steady state motion as functions of frequency  
of excitation in periodic regime for ℎ = 0.1, 𝑓 = –0.2, 𝑅 = 0.7 

From Fig. 13 the minimum and maximum inter impact intervals as function of frequency of 
excitation, minimum and maximum velocities before impact as function of frequency of  
excitation, minimum and maximum minimum displacements in the inter impact intervals as 
function of frequency of excitation for small in absolute value amplitude of excitation are seen. 
The intervals 𝑇ఛ௠ and the quantities 𝑥′ି௠, 𝑥௠ at ℎ = 0.1, 𝑓 = –0.2, 𝑅 = 0.7 substantially depend 
from 𝜈. 

From Fig. 14 the minimum and maximum inter impact intervals as function of frequency of 
excitation, minimum and maximum velocities before impact as function of frequency of  
excitation, minimum and maximum minimum displacements in the inter impact intervals as 
function of frequency of excitation for large in absolute value amplitude of excitation are seen. 
The intervals 𝑇ఛ௠ and the quantities 𝑥′ି௠, 𝑥௠ at ℎ = 0.1, 𝑓 = –1.6, 𝑅 = 0.7 substantially depend 
from 𝜈. 

The comparison of corresponding drawings from both previous figures shows the influence of 
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the value of amplitude of excitation to the main characteristics of dynamic behavior of the 
investigated system. It can be noted that minimum and maximum inter impact intervals look the 
same for both values of amplitude of excitation. Optimal region of operation of the vibro impact 
system is also observed from those graphical representations. 

 
a) Minimum and maximum inter impact intervals 

 
b) Minimum and maximum velocities before impact 

 
c) Minimum and maximum minimum displacements 

Fig. 14. Characteristics of steady state motion as functions of frequency  
of excitation in periodic regime for ℎ = 0.1, 𝑓 = –1.6, 𝑅 = 0.7 

5. Conclusions 

Forced vibrations of vibro impact system with zero tightening with harmonic resonant 
excitation are investigated. Results for various typical parameters of the analysed system are 
presented. Also, dependence of characteristics of motion in steady state regime from the main 
parameters of the investigated system is investigated. 

It is determined that optimal regimes are located at definite values of 𝜈 = 𝜔 𝑝⁄ , where 𝜔 is the 
frequency of the exciting force and 𝑝 is the partial eigenfrequency of the vibrating mass attached 
to the immovable foundation. Optimal regimes are in the zones about 𝜈 = 2, 4, 6, while higher 
values of 𝜈 are not useful in engineering applications. Further by changing the parameters of the 
system in those zones it is possible to determine the influence of the parameters to the size of 
separate zones. 

Regimes of motion 𝜈 = 1; ଵଶ ; ଵସ ; ଵ଺ ; …  are regimes with impacts having the character of 
decaying type. This is useful in some types of technological processes. 

The obtained results can be exploited in the design of nonlinear dynamical systems with 
impacts. A noteworthy fact is that such nonlinear vibro-impact systems do posses single-valued 
and stable regimes of motion. Such a property can be useful in the design of elements of various 
machines, including manipulators and robots which are based on vibro impact systems. 
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