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Abstract. A mathematical model was created in this article, which consists of a thermoelastic, 
unified, and isotropic rigid sphere subjected to thermal diffusion. Thermal and chemical potential 
shocks of a diffusive substance have loaded the sphere's bounding structure. The governing 
equations were established in the form of a theory of generalized thermoelastic diffusion with 
mechanical damage taken into account. The temperature increment, concentration, pressure, 
displacement, stress, and chemical potential numerical effects have been expressed in figures with 
different values of the mechanical damage parameter, thermal relaxation time, and diffusional 
relaxation time. All the studied functions are significantly affected by the mechanical damage 
parameter, radial distance, time, thermal, and diffusional relaxation times. In the Lord-Shulman 
model, heat, diffusion, and mechanical waves spread at finite speeds on the thermoelastic solid 
sphere. 
Keywords: thermoelasticity, spherical medium, damage, diffusion, concentration, chemical 
potential. 
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𝜂 = 𝜌 𝐶 𝐾⁄  The thermal viscosity 𝜆, 𝜇 Lamé’s constants 𝜌 Density 𝜎  Components of the stress tensor 𝜏  Thermal and mechanical relaxation times 𝜏  Diffusion relaxation time 

1. Introduction 

One of the key problems of thermodynamics is simulating thermoelasticity. Authors and 
researchers obtained such mathematical model systems for the dissemination of science and heat 
in thermomechanical wave solids. While experimental research at a constant rate of propagation 
of mechanical and thermal waves is one measure of consistency in a model of success, all these 
simulations are not stable or compatible with material behaviors, as experimental research with a 
constant rate of propagations on mechanical and thermal waves is a measure of consistency in a 
model of success. Thermomechanical mechanisms of transformation cannot be limited by an 
elastic matter to a single work. The Lord and Shulman are the two most common formats. In this 
case, the conventional Fourier heat driving model was revised based on the second phenomenon 
and a non-Fourier theory that focused on one period of relaxation [1]. General thermoelasticity 
was formulated for the specific case of an isotropic body, and Lord and Shulman developed the 
concept of special thermoelasticity with a relaxation time scale [1]. This theory was extended by 
Sherief and Dhaliwal [2]. Previously, Biot's model has offered unlimited speed to the thermal 
waves as well as classical heat-conduction law modifications, which explains heat conductivity 
using the Fourier's law of heat conduction formula [3]. Youssef solved numerous thermoelastic 
phenomena for Lord-Shulman and his associates, particularly in the sense of spherical  
media [4-7]. 

Diffusion can be defined as the random moving of a group of particles from higher 
concentration regions to lower concentration regions. The concentration can be calculated using 
Fick's law [8-11]. Sherief et al. derived the governing equations for generalized thermo-diffusion 
in thermoelastic solids. They obtained a variational theorem for the governing equations and 
proved the uniqueness of these equations solutions under suitable conditions [8]. Sherief and Heba 
solve the first problem based on the generalized thermoelastic diffusion theory [9]. Aouadi solved 
a problem for an infinite elastic body contains a spherical cavity using the generalized 
thermoelastic diffusion model [10]. Hussein solved the problem of the spherical region in the 
context of the theory of generalized thermoelastic diffusion in a two-dimensions [12]. Sharma et 
al. studied the free vibration analysis of a nonlocal thermoelastic hollow cylinder with diffusion 
[13]. El-Karamany and Ezzat solved a problem of thermoelastic diffusion with memory-dependent 
derivatives [14]. Abbas and Marin applied the generalized thermoelastic theory with mass 
diffusion to a two-dimensional problem for a half-space [15]. El-Naggar et al. studied the effect 
of the magnetic field, rotation, thermal field, and the initial stress and also voids on the reflection 
of P-wave with one relaxation time. The formulation is applied to generalization, the 
Lord-Shulman theory with one relaxation time [16]. Marin et al. extended the domain of the 
influence theorem to cover the generalized thermoelasticity of anisotropic bodies with voids in the 
context of Lord-Shulman and Green-Lindsay theories [17]. 

The damage amount could be obtained by the area fraction [18]: 

𝐷 = 𝑑𝐴𝑑𝐴 ,     0 ≤ 𝐷 ≤ 1, (1)

where the undamaged material is given by 𝐷 = 0, while the totally damaged material (fracture) is 
given by 𝐷 = 1. The nature values of the mechanical damage for any materials are 𝐷 = 0.2...0.5. 
In the isotropic damage case, the actual stresses components are given by [18]: 
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𝜎 = 1 − 𝐷 𝜎 , (2)

where 𝜎  are the stress components for the undamaged material.  
A lot of work has been done under this concept of mechanical damage [19-28]. 
Almost all authors who considered spherical medium in their applications assumed that the 

body with a spherical cavity avoids the problem of singularity in the center of the sphere. Thibault 
et al. used the theory of L’Hospital to address the case of singularity in the thermoelastic rigid 
sphere as in [29].  

This paper aims to introduce a mathematical model of a thermoelastic, unified, and isotropic 
solid sphere subjected to thermal diffusion. A diffusive substance’s thermal and chemical potential 
shocks will be loaded into the sphere's bounding structure. The governing equations will be 
developed as part of a generalized thermoelastic diffusion theory that included mechanical 
disruption. 

2. Materials and methods 

The control equations of a standard isotropic thermoelastic material with general thermal 
diffusion based on the model of Lord-Shulman, and the mechanical damage variable without the 
body forces and heat sources are determined by the application of the Sherief et al. model  
[1, 8-10, 30]. 

The equation of motion: 𝜎 , = 𝜌𝑢 , (3)

where 𝜎  are the components of the stress tensor, 𝜌 is the density, and 𝑢  are the displacement 
components. 

The heat conduction equations: 

𝐾𝑇, = 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 𝜌𝑐 𝑇 + 𝑇 𝛽 𝑒 + 𝑐 𝑇 𝐶 , (4)

where 𝐾  is the thermal conductivity, 𝑇  is the absolute temperature, 𝑇  is the reference  
temperature, 𝑒  are the strain components, 𝑡 is the time, 𝑐  is the specific heat at constant strain, 𝛽 = 3𝜆 + 2𝜇 𝛼 , 𝛼  is the coefficient of linear thermal expansion, 𝜆 , 𝜇 are Lamé’s constants, 𝑐  is the measure of thermo-diffusion effects, and 𝜏  is the thermal and mechanical relaxation 
times. 

The equation of mass diffusion: 

𝐵𝑏𝐶, = 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 𝐶 + 𝐵𝛽 𝑒 , + 𝐵𝑐 𝑇, , (5)

where 𝐶  is the concentration of the diffusive material, 𝐵  is the diffusion coefficient, 𝑏  is the 
measure of diffusive effects, 𝛽 = 3𝜆 + 2𝜇 𝛼 , 𝛼  is the coefficient of linear diffusion 
expansion, and 𝜏  is the diffusion relaxation time. 

The constitutive relations: 𝜎 = 1 − 𝐷 2𝜇𝑒 + 𝛿 𝜆𝑒 − 𝛿 𝛽 𝑇 − 𝑇 − 𝛿 𝛽 𝐶 , (6)𝑃 = −𝛽 𝑒 + 𝑏𝐶 − 𝑐 𝑇 − 𝑇 , (7)

where 𝑃 is the chemical potential. 
The strain-displacement relations: 
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𝑒 = 12 𝑢 , + 𝑢 , . (8)

Let us assume a perfect thermoelastic, conducting, isotropic, and spherical medium occupies 
the space which is defined by Ω = 𝑟,𝜓,𝜙 :  0 ≤ 𝑟 ≤ 𝑎,   0 ≤ 𝜓 ≤ 2𝜋,    0 ≤ 𝜙 < 2𝜋 . The 
spherical coordinate system 𝑟,𝜓,𝜙  will be applied to denote the radial coordinate, the 
co-latitude, and longitude of a spherical coordinate system, respectively, and initially quiescent 
where 𝑟 is the sphere's radius as in Fig. 1.  

The condition of symmetry is satisfied If there are no latitudinal and longitudinal variations. 
Therefore, all the state-functions will depend on radial distance 𝑟 and time 𝑡. 

 
Fig. 1. The thermoelastic solid sphere is subjected to thermal diffusion 

Due to the spherical symmetry, the components of displacements take the forms: 𝑢 = 𝑢 𝑟, 𝑡 ,   𝑢 = 0,   𝑢 = 0, (9)

and the strain components are: 

𝑒 = 𝜕𝑢𝜕𝑟 ,   𝑒 = 𝑒 = 𝑢𝑟 ,    𝑒 = 𝑒 = 𝑒 = 0, (10)

where 𝑒 defines the volumetric dilatation and takes the form: 

𝑒 = 𝑒 + 𝑒 + 𝑒 = 𝜕𝑢𝜕𝑟 + 2𝑢𝑟 = 1𝑟 𝜕 𝑟 𝑢𝜕𝑟 . (11)

The equations of motion under the mechanical damage and thermal diffusion considerations 
takes the form [1, 8-10]: 

𝜆 + 2𝜇 1 − 𝐷 𝜕𝑒𝜕𝑟 − 𝛽 1 − 𝐷 𝜕𝑇𝜕𝑟 − 𝛽 1 − 𝐷 𝜕𝐶𝜕𝑟 = 𝜌𝑢. (12)

The constitutive equations with mechanical damage parameter [1, 8-10]: 

𝜎 = 2 1 − 𝐷 𝜇 𝜕𝑢𝜕𝑟 + 𝜆 1 − 𝐷 𝑒 − 𝛽 1 − 𝐷 𝑇 − 𝑇 − 𝛽 1 − 𝐷 𝐶, (13)𝜎 = 2𝜇 1 − 𝐷 𝑢𝑟 + 𝜆 1 − 𝐷 𝑒 − 𝛽 1 − 𝐷 𝑇 − 𝑇 − 𝛽 1 − 𝐷 𝐶, (14)𝜎 = 2𝜇 1 − 𝐷 𝑢𝑟 + 𝜆 1 − 𝐷 𝑒 − 𝛽 1 − 𝐷 𝑇 − 𝑇 − 𝛽 1 − 𝐷 𝐶, (15)𝜎 =   𝜎 = 𝜎 = 0. (16)
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The equation of heat conduction based on the Lord-Shulman theory takes the following form 
[1, 8-10]: 

𝐾∇ 𝑇 = 𝜕𝜕 𝑡 + 𝜏 𝜕 𝜕 𝑡  𝜌𝑐 𝑇 + 𝛽 𝑇 𝑒 + 𝑐 𝑇 𝐶 . (17)

The mass diffusion equations take the forms [1, 8-10]: 

𝐵𝑏∇ 𝐶 = 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 𝐶 + 𝐵𝛽 ∇ 𝑒 + 𝐵𝑐 ∇ 𝑇, (18)

and: 𝑃 = −𝛽 𝑒 + 𝑏𝐶 − 𝑐 𝑇 − 𝑇 , (19)

where ∇ = 𝑟 . 
We assume that 𝜃 = 𝑇 − 𝑇 gives the temperature increment. Hence, the Eqs. (12)-(15), 

(17)-(19) take the following forms: 

𝜆 + 2𝜇 1 − 𝐷 𝜕𝑒𝜕𝑟 − 𝛽 1 − 𝐷 𝜕𝜃𝜕𝑟 − 𝛽 1 − 𝐷 𝜕𝐶𝜕𝑟 = 𝜌𝑢, (20)𝐾∇ 𝜃 = 𝜕𝜕 𝑡 + 𝜏 𝜕 𝜕 𝑡  𝜌𝑐 𝜃 + 𝛽 𝑇 𝑒 + 𝑐 𝑇 𝐶 , (21)𝜎 = 2 1 − 𝐷 𝜇 𝜕𝑢𝜕𝑟 + 𝜆 1 − 𝐷 𝑒 − 𝛽 1 − 𝐷 𝜃 − 𝛽 1 − 𝐷 𝐶, (22)𝜎 = 2𝜇 1 − 𝐷 𝑢𝑟 + 𝜆 1 − 𝐷 𝑒 − 𝛽 1 − 𝐷 𝜃 − 𝛽 1 − 𝐷 𝐶, (23)𝜎 = 2𝜇 1 − 𝐷 𝑢𝑟 + 𝜆 1 − 𝐷 𝑒 − 𝛽 1 − 𝐷 𝜃 − 𝛽 1 − 𝐷 𝐶, (24)𝐵𝑏∇ 𝐶 = 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 𝐶 + 𝐵𝛽 ∇ 𝑒 + 𝐵𝑐 ∇ 𝜃, (25)𝑃 = −𝛽 𝑒 + 𝑏𝐶 − 𝑐 𝜃. (26)

The Eq. (20) could be changed to be in the form: 𝜆 + 2𝜇 1 − 𝐷 ∇ 𝑒 − 𝛽 1 − 𝐷 ∇ 𝜃 − 𝛽 1 − 𝐷 ∇ 𝐶 = 𝜌𝑒. (27)

The following non-dimensional variables will be applied for convenience [10, 31]: 

𝑟′,𝑢′,𝑎′ = 𝑐 𝜂 𝑟,𝑢,𝑎 , 𝑡′, 𝜏′ , 𝜏′ = 𝑐 𝜂 𝑡, 𝜏 , 𝜏 ,   𝜃′ = 𝛽 𝜃𝜆 + 2𝜇,   𝜎′ = 𝜎𝜆 + 2𝜇 , 𝐶 = 𝛽 𝐶𝜆 + 2𝜇 , 𝑃 = 𝑃𝛽 . (28)

Then, we obtain: 1 − 𝐷 ∇ 𝑒 − 1 − 𝐷 ∇ 𝜃 − 1 − 𝐷 ∇ 𝐶 = 𝑒, (29)∇ 𝜃 = 𝜕𝜕 𝑡 + 𝜏 𝜕 𝜕 𝑡  𝜃 + 𝜀 𝑒 + 𝜀 𝐶 , (30)𝛼 ∇ 𝐶 = 𝛼 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 𝐶 + ∇ 𝑒 + 𝛼 ∇ 𝜃, (31)
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𝑃 = 𝛼 𝐶 − 𝑒 − 𝛼 𝜃, (32)𝜎 = 1 − 𝐷 𝑒 − 4𝛽 1 − 𝐷 𝑢𝑟 −  1 − 𝐷 𝜃 − 1 − 𝐷 𝐶, (33)𝜎 = 2𝛽 1 − 𝐷  𝑢𝑟 + 1 − 2𝛽 1 − 𝐷 𝑒 − 1 − 𝐷 𝜃 − 1 − 𝐷 𝐶, (34)𝜎 = 2𝛽 1 − 𝐷  𝑢𝑟 + 1 − 2𝛽 1 − 𝐷 𝑒 − 1 − 𝐷 𝜃 − 1 − 𝐷 𝐶, (35)

where: 

𝑐 = 𝜆 + 2𝜇𝜌 ,     𝜂 = 𝜌𝑐𝐾 ,     𝛽 = 𝜆 + 2𝜇𝜇 ,      𝜀 = 𝛽 𝑇𝑐 𝜌 𝑐 , 𝜀 = 𝑐 𝑇𝐾𝜂 𝛽𝛽 ,      𝛼 = 𝜌𝑐 𝑐𝛽 𝛽 ,      𝛼 = 𝜌𝑐𝛽 𝐵𝜂 ,     𝛼 = 𝑏𝜌𝑐𝛽 . 
For more simple use, the primes have been suppressed. 
The following Laplace operator ∇ = 𝑟  has a singular point at 𝑟 = 0. Because the 

symmetry conditions prevail, the singularity problem is solved by using L’Hospital’s rule as 
follows [29]: 

∇ 𝑒,𝜃,𝐶 = lim→ 1𝑟 𝜕𝜕𝑟 𝑟 𝜕 𝑒,𝜃,𝐶𝜕𝑟  = lim→ 𝜕 𝑒,𝜃,𝐶𝜕𝑟 + 2𝑟 𝜕 𝑒,𝜃,𝐶𝜕𝑟         = 𝜕 𝑒,𝜃,𝐶𝜕𝑟 + 2𝜕 𝑒,𝜃,𝐶𝜕𝑟 . 
Then, we get: 

∇ 𝑒 𝑟, 𝑡 ,𝜃 𝑟, 𝑡 ,𝐶 𝑟, 𝑡 = 3 𝜕𝜕𝑟  𝑒 𝑟, 𝑡 ,𝜃 𝑟, 𝑡 ,𝐶 𝑟, 𝑡 , (36)

which satisfy the boundary conditions:  𝜕𝜕𝑟 𝑒 𝑟, 𝑡 ,𝜃 𝑟, 𝑡 ,𝐶 𝑟, 𝑡 = 0. (37)

By using the Eq. (36) in Eqs. (29)-(31), we get: 

3 1 − 𝐷  𝜕 𝑒𝜕𝑟 − 3 1 − 𝐷 𝜕 𝜃𝜕𝑟 − 3 1 − 𝐷 𝜕 𝐶𝜕𝑟   = 𝑒, (38)3𝜕 𝜃𝜕𝑟 = 𝜕𝜕 𝑡 + 𝜏 𝜕 𝜕 𝑡  𝜃 + 𝜀 𝑒 + 𝜀 𝐶 , (39)3𝛼 𝜕 𝐶𝜕𝑟 = 𝛼 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 𝐶 + 3𝜕 𝑒𝜕𝑟 + 3𝛼 𝜕 𝜃𝜕𝑟 . (40)

The Laplace transform which is defined as follows will be used: 

ℓ 𝑓 𝑟, 𝑡 = 𝑓̅ 𝑟, 𝑠 = 𝑓 𝑟, 𝑡  𝑒 𝑑𝑡, (41)

where the initial conditions have been considered as follows: 
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𝜃 𝑟, 0 = 𝐶 𝑟, 0 = 𝑒 𝑟, 0 = 𝜕𝜃 𝑟, 𝑡𝜕𝑡 = 𝜕𝐶 𝑟, 𝑡𝜕𝑡 = 𝜕𝑒 𝑟, 𝑡𝜕𝑡 = 0. (42)

Hence, the Eqs. (29)-(35) take the following forms: 𝜕 �̅�𝜕𝑟 − 𝜕 �̅�𝜕𝑟 − 𝜕 �̅�𝜕𝑟  = 𝛼 �̅�, (43)𝜕 �̅�𝜕𝑟 =  𝛼 �̅� + 𝜀 𝛼 �̅� + 𝜀 𝛼 �̅�, (44)𝛼 𝜕 �̅�𝜕𝑟 = 𝛼 𝛼 �̅� + 𝜕 �̅�𝜕𝑟 + 𝛼 𝜕 �̅�𝜕𝑟 , (45)𝑃 = 𝛼 �̅� − �̅� − 𝛼 �̅�, (46)𝜎 = 1 − 𝐷 �̅� − 4𝛽 1 − 𝐷 𝑢𝑟 −  1 − 𝐷 �̅� − 1 − 𝐷 �̅�, (47)𝜎 = 2𝛽 1 − 𝐷  𝑢𝑟 + 1 − 2𝛽 1 − 𝐷 �̅� − 1 − 𝐷 �̅� − 1 − 𝐷 �̅�, (48)𝜎 = 2𝛽 1 − 𝐷  𝑢𝑟 + 1 − 2𝛽 1 − 𝐷 �̅� − 1 − 𝐷 �̅� − 1 − 𝐷 �̅�, (49)�̅� = 1𝑟 𝜕 𝑟 𝑢𝜕𝑟 , (50)

where 𝛼 = , 𝛼 = , and 𝛼 = . 
By making internal eliminations between Eqs. (43)-(45), we get: 𝑑𝑑𝑟 − 𝐿 𝑑𝑑𝑟 + 𝑀 𝑑𝑑𝑟 − 𝑁 �̅� 𝑟, 𝑠 , �̅� 𝑟, 𝑠 , �̅� 𝑟, 𝑠 = 0, (51)

where: 𝐿 = 1𝛼 − 1 𝛼 𝜀 + 𝛼 𝜀 + 𝛼 𝜀 + 𝛼 + 𝜀 − 1 𝛼 + 𝛼 𝛼 + 𝛼 𝛼 , 𝑀 = 1𝛼 − 1 𝛼 𝛼 𝜀 + 𝛼 𝛼 𝜀 + 𝛼 𝛼 + 𝛼 𝛼 𝛼 + 𝛼 𝛼 𝛼 , 𝑁 = 𝛼 𝛼 𝛼 𝛼𝛼 − 1 . 
Thus, according to the boundary conditions Eqs. (37), the general solutions can be written in 

the forms: 

𝜃 𝑟, 𝑠 =  𝐴 cosh 𝑘 𝑟 , (52)

�̅� 𝑟, 𝑠 = 𝐸 cosh 𝑘 𝑟 , (53)

�̅� 𝑟, 𝑠 = 𝐶 cosh 𝑘 𝑟 , (54)

where ±𝑘 , 𝑖 = 1,2,3 are the roots or the solution of the characteristic equation: 
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𝑘 − 𝐿𝑘 + 𝑀 𝑘 − 𝑁 = 0, (55)

and the constants 𝐴 ,𝐸 ,𝐶  must satisfy the relations Eqs. (43)-(45), thus, we have: 𝜀 𝛼  𝐸 + 𝜀 𝛼 𝐶 = 𝑘 − 𝛼 𝐴 ,     𝛼 𝑘 − 𝛼 𝛼 𝐶 − 𝑘 𝐸  = 𝛼 𝑘 𝐴 , 
which gives: 

𝐸 = 𝑓𝐴 ,   𝑓 = 𝛼 𝑘 − 𝛼 𝜀 + 𝛼 𝛼 + 𝛼 𝛼 𝑘 + 𝛼 𝛼 𝛼𝛼 𝛼 𝜀 + 𝛼 𝑘 − 𝛼 𝛼 𝜀 ,   𝑖 = 1,2,3 
𝐵 = 𝑔 𝐴 ,   𝑔 = 𝑘 + 𝛼 𝛼 𝜀 − 1 𝑘𝛼 𝛼 𝜀 + 𝛼 𝑘 − 𝛼 𝛼 𝜀 ,   𝑖 = 1,2,3. 

Then, we have: 

�̅� 𝑟, 𝑠 = 𝑓𝐴 cosh 𝑘 𝑟 , (56)

�̅� 𝑟, 𝑠 = 𝑔 𝐴 cosh 𝑘 𝑟 . (57)

To get the constants 𝐴 , 𝐴 , and 𝐴 , we must use the given boundary conditions at the position 𝑟 = 𝑎. So, we consider that 𝑟 = 𝑎 the sphere is thermally loaded by heat and chemical potential 
shocks as follows [9, 10]: 𝜃 𝑎, 𝑡 = 𝜃 𝐻 𝑡 , (58)𝑃 𝑎, 𝑡 = 𝑃 𝐻 𝑡 , (59)

where 𝐻 𝑡  denotes the Heaviside unit step function and 𝜑 , 𝑃  are constants.  
Zero volumetric deformation at the position 𝑟 = 𝑎 has been considered as the mechanical 

boundary as follows: 𝑒 𝑎, 𝑡 = 0. (60)

This condition means that the surface of the sphere is connected to a rigid foundation which 
can prevent any displacement. 

By applying Laplace transform on the Eqs. (58)-(60), we get: 

�̅� 𝑎, 𝑠 = 𝜃𝑠 , (61)𝑃 𝑎, 𝑠 = 𝑃𝑠 , (62)�̅� 𝑎, 𝑠 = 0. (63)

Substitute from Eqs. (61)-(63) into the Eqs. (46). Hence, we obtain: �̅� 𝑎, 𝑠 = 𝐶𝑠 , (64)

where 𝐶 = . 
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Substitute from the boundary conditions Eqs. (61), (63) and (64) into the Eqs. (52), (56) and 
(57), the following system has been obtained: 

𝐴 cosh 𝑘 𝑎 = 𝜃𝑠 , (65)

𝑓𝐴 cosh 𝑘 𝑎 = 0, (66)

𝑔 𝐴 cosh 𝑘 𝑎 = 𝐶𝑠 . (67)

We obtain the constants 𝐴 , 𝑖 = 1,2,3 by solving the above system as follows: 

𝐴 = 𝑔 𝜃 − 𝐶 𝑓 − 𝑔 𝜃 − 𝐶 𝑓𝑔 − 𝑔 𝑓 + 𝑔 − 𝑔 𝑓 + 𝑔 − 𝑔 𝑓 𝑠cosh 𝑘 𝑎 , 𝐴 = 𝑔 𝜃 − 𝐶 𝑓 − 𝑔 𝜃 − 𝐶 𝑓𝑔 − 𝑔 𝑓 + 𝑔 − 𝑔 𝑓 + 𝑔 − 𝑔 𝑓 𝑠cosh 𝑘 𝑎 , 𝐴 = 𝑔 𝜃 − 𝐶 𝑓 − 𝑔 𝜃 − 𝐶 𝑓𝑔 − 𝑔 𝑓 + 𝑔 − 𝑔 𝑓 + 𝑔 − 𝑔 𝑓 𝑠cosh 𝑘 𝑎 . 
To find the displacement, the Eqs. (50), and (56) will be used as follows [29]: 

𝑢 𝑟, 𝑠 = 𝑟 �̅� 𝑟, 𝑠  𝜕𝑟𝑟 . (68)

The singularity problem in the relation Eqs. (68) can be solved by using L’Hospital’s rule as 
follows: 

𝑢 𝑟, 𝑠 = lim→ 𝑟 �̅� 𝑟, 𝑠  𝜕𝑟𝑟 = lim→ 𝑟 �̅� 𝑟, 𝑠2𝑟 = 𝑟�̅� 𝑟, 𝑠2 . (69)

Hence, we have: 

𝑢 𝑟, 𝑠 = 12 𝑓𝐴  𝑟cosh 𝑘 𝑟 . (70)

To find the stress in a simple form, the average of three principal stresses components on 
Eqs. (47)-(49) will be considered as follows: 𝜎 𝑟, 𝑠 = 𝜎 + 𝜎 + 𝜎3= 1 − 43𝛽 1 − 𝐷 �̅� 𝑟, 𝑠 − 1 − 𝐷 �̅� 𝑟, 𝑠 − 1 − 𝐷 �̅� 𝑟, 𝑠 . (71)

To obtain all the studied functions in the time domain numerically, the Riemann-sum 
approximation techniques will be applied, where the Laplace transform of any function 𝑓̅ 𝑟, 𝑠  
could be inverted as follows [32]: 
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𝑓 𝑟, 𝑡 = 𝑒2𝑡 𝑓̅ 𝑟, 𝜅 + 𝑒𝑡 Re −1 𝑓̅ 𝑟, 𝜅 + 𝑖 𝑛𝜋𝑡 , (72)

where “𝑅𝑒” is the real part and “𝑖” is the well-known imaginary number unit. For a convergence 
with faster prosses, Tzou stated that the value 𝜅must satisfy the relation 𝜅 𝑡 ≈ 4.7 [32]. MAPLE 
software has been used to formulate the Eq. (72) and to compute the temperature increment 
volume deformation, concentration, displacement, average stress, and chemical potential in the 
time domain. 

3. Numerical results and discussion 

The copper material has been taken as the thermoelastic material for which the following 
values of the physical constants have been taken [4, 7, 9, 10, 34]: 𝜇 = 3.86×1010 kg m-1 s-2,  𝜆 =  7.76×1010 kg m-1 s-2, 𝜌 =  8954 kg m-3, 𝑐 =  383.1 m2 k-1 s-2, 𝛼 =  1.78 10-5 k-1,  𝐾 =  386 kg m k-1s-3, 𝛼 = 1.98 10-4 m3 kg-1, 𝐵 =  0.85×10-8 kg s m-3, 𝑇 =  293 k,  𝑐 = 1.2×104 m2 s-2 K-1, 𝑏 = 0.9×106 m5 s-2 kg-1, 𝜂 = 8886.73 s m-2. 

Thus, the non-dimensional parameters take the following values: 𝛼 = 5.48, 𝛼 = 3.78×10-4, 𝛼 = 36.98, 𝜀 =16.86×10-3, 𝜀 = 92.15×10-3, 𝛽 = 4, 𝜑 = 1.0, 𝑃 = 1.0, 𝜏 = 0.02, 𝜏 = 0.01. 
The numerical results of the temperature increment, volumetric deformation, concentration, 

displacement, average stress, and chemical potential distributions will be shown in figures with a 
wide range of the dimensionless radial distance 𝑟 0 ≤ 𝑟 ≤ 4.0  and at a dimensionless value of 
time 𝑡 = 1.0. Figs. 2-7 have been carried out for the temperature increment, concentration of the 
diffusive material, volumetric strain, displacement, average stress, and chemical potential, 
respectively, with various mechanical damage parameters when 𝐷 = (0.0, 0.2, 0.4) where the 
value 𝐷 = 0.0 represents the undamaged state. In contrast, the values 𝐷 = 0.2, 0.4 represent the 
damage states. 

 
Fig. 2. The temperature increment with variance 

values of mechanical damage variable 

 
Fig. 3. The concentration of the diffusive material 

with variance values of mechanical damage variable 

Fig. 2 represents the temperature increment distribution where the three curves have the same 
behaviors and begin with the same value 𝜑 𝑟 = 4.0 = 1.0, which agrees with the value of the 
thermal shock on the bounding surface of the sphere. It is noted that the mechanical damage 
parameter has a limited effect on the temperature increment distribution. The curve of the 
temperature increment falls to zero at the sphere center 𝑟 = 0, thus, the thermal wave has a finite 
speed of propagation. 

Fig. 3 shows the concentration distribution where the three curves have the same behavior and 
begin with the same value 𝐶 𝑟 = 4.0 = 0.18. The value of the mechanical damage parameter 
has a limited effect on the concentration distribution. An increase in the mechanical damage 
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parameter leads to a rise in the concentration distribution. The concentration curve falls to zero at 
the center 𝑟 = 0 which means the diffusion wave propagates with a finite speed. 

 
Fig. 4. The volumetric strain with variance values  

of mechanical damage variable 

 
Fig. 5. The displacement with variance values  

of mechanical damage variable 

Fig. 4 represents the volumetric strain distribution. It is noted that the three curves have the 
same behaviors with different values. All the curves begin with the same value 𝑒 𝑟 = 4.0 = 0.0, 
which agrees with the mechanical boundary conduction. The parameter of the mechanical damage 
has a significant effect on the volumetric strain distribution. An increase in the mechanical damage 
parameter leads to a decrease in the absolute value of the volumetric strain. Each curve has a peak 
point in the following order: |𝑒 𝐷 = 0 | > |𝑒 𝐷 = 0.2 | > |𝑒 𝐷 = 0.4 |. (73)

Fig. 5 shows the displacement distribution, and it is noted that the three curves have the same 
behavior with different values and begin with the same value 𝑒 𝑟 = 4.0 = 0.0 which agrees with 
the mechanical boundary condition. The parameter of the mechanical damage has a significant 
impact on the displacement distribution. An increase in the mechanical damage parameter leads 
to a decrease in the absolute value of the displacement. Each curve has a peak point in the 
following order: |𝑢 𝐷 = 0 | > |𝑢 𝐷 = 0.2 | > |𝑢 𝐷 = 0.4 |. (74)
 

 
Fig. 6. The average stress with variance values  

of mechanical damage variable 

 
Fig. 7. The chemical potential with variance values 

of mechanical damage variable 

Fig. 6 represents the average stress distribution where three curves have the same behavior 



THERMAL SHOCK PROBLEM OF A GENERALIZED THERMOELASTIC SOLID SPHERE AFFECTED BY MECHANICAL DAMAGE AND THERMAL DIFFUSION.  
HAMDY M. YOUSSEF 

12 JOURNAL OF ENGINEERING AND THERMAL SCIENCES. JUNE 2021, VOLUME 1, ISSUE 1  

with different values. All the curves begin and end with different values. The mechanical damage 
parameter has a significant impact on the average stress distribution. An increase in the mechanical 
damage parameter leads to a decrease in the absolute value of the average stress.  

Fig. 7 shows the potential chemical distributions in which the three curves have the same 
behavior with different values in the region 0 ≤ 𝑟 ≤ 2.5. The mechanical damage parameter has 
significant effects on potential chemical distributions. An increase in the value of the mechanical 
damage parameter leads to a decrease in the chemical potential values.  

 
Fig. 8. The temperature increment  

distribution when 𝐷 = 0.2  

 
Fig. 9. The concentration of the diffusive material 

distribution when 𝐷 = 0.2 
 

 
Fig. 10. The volumetric strain distribution  

when 𝐷 = 0.2 

 
Fig. 11. The displacement distribution  

when 𝐷 = 0.2 
 

 
Fig. 12. The average stress distribution  

when 𝐷 = 0.2 

 
Fig. 13. The chemical potential distribution 

when 𝐷 = 0.2 
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In 3-D, Figs. 8-13 show the distributions of the temperature increment, volumetric strain, 
concentration, displacement, average stress, and chemical potential distributions, respectively, 
when 𝐷 = 0.2. All the studied functions have been figured in a dimensionless wide range of the 
radial distance 𝑟 0 ≤ 𝑟 ≤ 4.0  and a dimensionless wide range of the time 𝑡 0 ≤ 𝑡 ≤ 3.0 . It is 
shown that distance 𝑟 and time 𝑡 have significant effects on all the studied functions. An increase 
in the value of the time leads to an increase in all the studied functions, while an increase in the 
value of the distance along the radius of the sphere leads to a decrease in the values of all the 
studied functions. 

Fig. 14-19 have been carried out for the temperature increment, concentration of the diffusive 
material, volumetric strain, displacement, average stress, and chemical potential, respectively, 
with various situations of relaxation times. 𝜏 = 𝜏 = 0  represents the studied functions 
distributions without thermal and diffusional relaxation time, 𝜏 = 0.08, 𝜏 = 0.04 represents the 
distribution of the studied functions when the value of thermal relaxation time is higher than the 
value of the diffusional relaxation time, and 𝜏 = 0.04, 𝜏 = 0.08 represents the distribution of 
the studied functions when the value of thermal relaxation time is smaller than the value of the 
diffusional relaxation time. The figures show that thermal and diffusional relaxation times have 
significant effects on all the studied functions. 

 
Fig. 14. The temperature increment with various 
values of thermal and diffusive relaxation times 

 

 
Fig. 15. The concentration of the diffusive material 

with various values of thermal and diffusional 
relaxation times 

 

 
Fig. 16. The volumetric strain with various values of 

thermal and diffusional relaxation times 

 
Fig. 17. The displacement with various values of 

thermal and diffusional relaxation times 

Fig. 14 shows the temperature increment, and its values take the following order: 𝜃 𝜏 = 𝜏 = 0 > 𝜃 𝜏 < 𝜏 > 𝜃 𝜏 > 𝜏 . (75)
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Fig. 15 shows the concentration of the diffusive material, and its values take the following 
order: 𝐶 𝜏 = 𝜏 = 0 > 𝐶 𝜏 < 𝜏 > 𝐶 𝜏 > 𝜏 . (76)

Fig. 16 shows the volumetric strain distributions, and its peak points take the following order: |𝑒 𝜏 > 𝜏 | > |𝑒 𝜏 < 𝜏 | > |𝑒 𝜏 = 𝜏 = 0 |. (77)

Fig. 17 shows the displacement distributions, and its peak points take the following order: |𝑢 𝜏 > 𝜏 | > |𝑢 𝜏 < 𝜏 | > |𝑢 𝜏 = 𝜏 = 0 |. (78)
 

 
Fig. 18. The average stress with various values  

of thermal and diffusional relaxation times 

 
Fig. 19. The chemical potential with various values 

of thermal and diffusional relaxation times 

Fig. 18 shows the average stress distributions, and its endpoints take the following order: |𝜎 𝜏 = 𝜏 = 0 | > |𝜎 𝜏 < 𝜏 | > |𝜎 𝜏 > 𝜏 |. (79)

Fig. 19 shows the potential chemical distributions, and take the following order: 𝑃 𝜏 = 𝜏 = 0 > 𝑃 𝜏 > 𝜏 > 𝑃 𝜏 < 𝜏 . (80)

For validation of the current results, we can see that some of the current results agree with the 
results of Aouadi [10]. 

4. Conclusions 

The results of this work conclude that in the context of the Lord-Shulman model, the thermal, 
diffusional, and mechanical waves propagate with finite speeds.  

Moreover, the mechanical damage variable, radial distance, and time significantly affect all the 
studied functions. 

The thermal and diffusional relaxation times have significant effects on all the studied functions. 
The mechanical damage variable does not affect the temperature increment distribution and has a 

small impact on the concentration and chemical potential distributions.  
The mechanical damage variable has significant impacts on the volumetric strain, displacement, 

and average stress. 
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