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Abstract. A novel mathematical model of thermoelastic of a homogenous isotropic solid 
cylindrical infinite medium has been constructed in this paper. Thermally shocked is the bounding 
surface of the cylinder. In the sense of the hyperbolic two-temperature generalized 
thermoelasticity with fractional stress theory, the governing equations have been taken. Different 
values of the fractional order and two-temperature parameters have shown numerical results for 
the dynamical and conductive temperature increment, strain, displacement, and average stress, 
which are graphically applicable to all the functions studied. The fractional-order parameter has 
significant effects on stress and displacement distributions, while it has little effect on the 
dynamical and conductive temperatures increment and significant effects on all studied functions 
as well as on the two-temperature parameter. The two-temperature hyperbolic model is precious 
and effective. 
Keywords: hyperbolic two-temperature generalized thermoelasticity, cylindrical body, 
fractional-order strain, two-temperature generalized thermoelasticity. 

Nomenclature 𝐶  Specific heat at constant strain 𝑐 𝜆 2 𝜇𝜌  Longitudinal wave speed 𝑒 The volumetric strain 𝐾 Thermal conductivity 𝑇,𝑇  Temperature and reference temperature 𝑡 Time 𝑢 The displacement functions 𝛼  Coefficient of linear thermal expansion 𝛼 Fractional-order parameter 𝛽 𝜆 2𝜇𝜇   𝛾 3𝜆 2𝜇 𝛼   𝜀 𝛾𝜌 𝐶  The mechanical coupling constant (dimensionless) 𝜀 𝛾𝑇𝜇  The thermoelastic coupling constant (dimensionless) 𝜂 𝜌 𝐶𝐾  The thermal viscosity 𝜆, 𝜇 Lamé’s constants 
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𝜌 Density 𝜎  Components of the stress tensor 𝜏 , 𝜏 Thermal and mechanical relaxation times 

1. Introduction 

Finding the best mathematical model that simulates the behavior of these materials close to 
experience is one of the key problems in materials and solid sciences. The mathematical model 
produces results that are completely consistent with experimental findings, and researchers in this 
area are primarily interested in the physical behavior of these compounds. Various mathematical 
models have been proposed by scientists and researchers to explain the propagation of mechanical 
waves and heat in solid and elastic materials. However, not all these models are suitable, since 
one of the metrics of an ideal model is to include the speed of progression of mechanical and 
thermal waves with finite values as experimental results. Mathematical models of 
thermomechanical transformation through elastic materials involve a large amount of space that 
cannot be included in a single study. However, new models that seek to demonstrate new 
observations that are very close to laboratory studies and are generally consistent with the physical 
behavior of thermo-elastic materials should be discussed. 

Chen and Gurtin [1] have introduced a thermoelastic theory based on two different 
temperatures, conductive and dynamic temperature. The difference between these two 
temperatures is proportional to the heat source. Warren and Chen [2] studied wave propagation in 
the two-temperature thermo-elasticity principle. However, there is no investigation of this theory 
until Youssef [3] has updated this theory and introduced a two-temperature generalized 
thermo-elasticity model. Youssef and Elsibai enhanced the two-temperature thermoelasticity 
principle without a Green-Naghdi model energy dissipation [4]. Youssef and many other authors 
have used this model in many applications and research [5-8]. Youssef and El-Bary approved that 
the two-temperature generalized thermoelasticity model does not provide a finite speed of 
propagation of the thermal waves [9]. Youssef and El-Bary have therefore updated the model and 
have introduced a new two-temperature model based on different heat piping rules, known as 
hyperbolic, generalized 2-temperature thermoelasticity [9].  

Youssef suggested in this model that the difference between the conductive temperature 
acceleration and the acceleration of the thermal temperature during the material transition is 
proportionate to the heater supply. The speed of the spread of thermal waves is limited within this 
model. 

Additional new models of thermoelasticity based on the fractional calculus principle were 
introduced. Magin and Royston [10] have introduced the first model that applies the fractional 
deformation derivative characterizing the material's behavior. The zero-order of the derivative is 
for a Hookean solid while the one-order is for a Newtonian fluid. The thermoelastic and 
thermoviscoelastic materials are sitting in the intermediate range with a fractional order parameter 
between zero and one [10]. C Li et al. studied the generalized thermoelastic diffusion problems 
with fractional-order strain [11, 12]. Li, Chenlin, et al. studied the generalized piezoelectric 
thermoelasticity problems with strain rate and transient thermo‐electromechanical responses 
analysis [13]. 

Recently, many applications used the fractional-order definition with various construction and 
different models [14-22]. Depending on the fractional strain, Youssef [23] presented another new 
theory of generalized thermoelectricity. It is seen as another shift in the stress-strain relationship 
between Duhamel and Neumann. Youssef solved an application of thermoelasticity with fractional 
order strain for a one-dimensional half-space, in the context of models of Biot, Lord-Shulman, 
Green-Lindsay, and Green-Naghdi type II [23]. Youssef solved many applications of 
thermoelasticity of infinite thermoelastic cylindrical medium [8, 24]. 

In the present investigation, we will study the induced conductive temperature, dynamic 
temperature, deformation, displacement, and stress fields in a thermoelastic one-dimensional 
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infinite cylindrical body. The work under the purview of the theory of thermoelasticity with 
fraction order strain is based on hyperbolic two-temperature heat conduction laws. 

The main target of this work is to discuss and study the effects of the fractional-order strain 
parameter and hyperbolic two-temperature parameter on thermomechanical waves through a 
thermoelastic body. 

2. The governing equations 

Consider a perfect thermal conducting, isotropic, elastic, and cylindrical body occupies the 
region Λ = 𝑟,𝜓, 𝑧 : 0 ≤ 𝑟 ≤ 𝑎, 0 ≤ 𝜓 ≤ 2𝜋, 0 ≤ 𝑧 < ∞ . We apply a cylindrical coordinates 
system 𝑟,𝜓, 𝑧; 𝑡  in which the 𝑧-axis was lying along the axis of the cylinder, as in Fig. 1, and 
due to symmetry, the medium is one-dimensional. Moreover, all the state-functions will depend 
on the radial distance 𝑟 and the time 𝑡. It is proposed that there are no body forces or heat sources 
in the medium and initially at rest.  

Thus, the governing equations in cylindrical one-dimensional with fractional order strain can 
be written as [8, 24]. 

The equation of motion: 

𝜆 + 2𝜇 1 + 𝜏 𝐷  𝜕 𝑒𝜕 𝑟 − 𝛾 𝜕 𝑇𝜕 𝑟 = 𝜌 𝜕 𝑢𝜕 𝑡 . (1)

The heat equation: 

∇ 𝜑 = 𝜕𝜕 𝑡 + 𝜏 𝜕 𝜕 𝑡 𝜌 𝐶𝐾 𝜃 + 𝑇 𝛾𝐾 1 + 𝜏 𝐷 𝑒 , (2)𝜕𝜕𝑡 𝜑 − 𝜃 = 𝑐 ∇ 𝜑, (3)

where 𝑐 (m/s) is constant (two-temperature parameter). 

 
Fig. 1. The isotropic homogeneous thermoelastic solid cylinder 

The constitutive relations will take the forms: 

𝜎 = 2 𝜇 1 + 𝜏 𝐷  𝜕 𝑢𝜕 𝑟 + 𝜆 1 + 𝜏 𝐷 𝑒 − 𝛾 𝜃, (4)𝜎 = 2 𝜇 1 + 𝜏 𝐷  𝑢𝑟 + 𝜆 1 + 𝜏 𝐷  𝑒 − 𝛾 𝜃, (5)𝜎 = 𝜆 1 + 𝜏 𝐷 𝑒 − 𝛾𝜃, (6)𝜎 = 𝜎 = 𝜎 = 0, (7)
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and 𝑒 is the volume dilatation and satisfies the relation: 

𝑒 = 1𝑟  𝜕 𝑟𝑢𝜕𝑟 , (8)

where ∇ =  + . 
In the above equations, we apply the definition of the Riemann–Liouville fractional integral 𝐼 𝑓 𝑡  written in a convolution type form ]:25 [   

𝐼 𝑓 𝑡 = 1Γ 𝛼 𝑡 − 𝜐 𝑓 𝜐 𝑑𝜐,     𝑡 > 0,    𝛼 > 0, (9)

which gives Caputo fractional derivatives in the form: 

𝐷 𝑓 𝑡 = 𝐼 𝑓 𝑡 = 1Γ 1 − 𝛼 𝑡 − 𝜐 𝑓 𝜐 𝑑𝜐,     𝑡 > 0,   1 > 𝛼 > 0. (10)

For convenience, we will use the following non-dimensional variables [8, 24]: 𝑟′,𝑢′,𝑎′ = 𝑐 𝜂 𝑟,𝑢,𝑎 ,     𝑡′, 𝜏′, 𝜏′ = 𝑐 𝜂 𝑡, 𝜏, 𝜏 ,      𝜃′,𝜑′ = 1𝑇 𝜃,𝜑 ,      𝜎 = 𝜎𝜇, (11)

where 𝑐 =  and 𝜂 = . 
Eqs. (1)-(6) take the following forms (the primes are suppressed for simplicity): 

1 + 𝜏 𝐷  ∇ 𝑒 − 𝑏∇ 𝜃 = 𝜕 𝑒𝜕𝑡 , (12)∇ 𝜑 = 𝜕𝜕 𝑡 + 𝜏 𝜕 𝜕 𝑡  𝜃 +  𝜀 1 + 𝜏 𝐷  𝑒 , (13)𝜕𝜕𝑡 𝜑 − 𝜃 = �̃� ∇ 𝜑, (14)𝜎 =  𝛽 1 + 𝜏 𝐷 𝑒 − 2 1 + 𝜏 𝐷 𝑢𝑟 − 𝜀  𝜃, (15)𝜎 = 𝛽 1 + 𝜏 𝐷 𝑒 − 2 1 + 𝜏 𝐷 𝜕𝑢𝜕𝑟 − 𝜀  𝜃, (16)𝜎 = 𝛽 − 2 1 + 𝜏 𝐷  𝑒 − 𝜀 𝜃, (17)

where 𝛾 = 3𝜆 + 2𝜇  𝛼 , 𝜀 = , 𝜀 = , 𝛽 = , 𝑏 = , �̃� = . 
We apply the Laplace transform defined as: 

ℓ 𝑓 𝑡 = 𝑓̅ 𝑠 = 𝑓 𝑡  𝑒 𝑑𝑡. (18)

The Laplace transform of the fractional derivative is defined as [25]: ℓ 𝐷 𝑓 𝑡 = 𝑠 𝑓̅ 𝑠 − 𝐷 𝐼 𝑓 0 ,       0 < 𝛼 < 1. (19)

We assume the following initial conditions: 
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𝐷 𝐼 𝑢 𝑟, 0 , 𝑒 𝑟, 0 = 0,       0 < 𝛼 < 1, (20)𝜃 𝑟, 0 = 𝜑 𝑟, 0 = 𝜕𝜃 𝑟, 𝑡𝜕𝑡 = 𝜕𝜑 𝑟, 𝑡𝜕𝑡 . (21)

Thus, the Eqs. (12)-(17) have the forms: 1 + 𝜏 𝑠  ∇ �̅� − 𝑏∇ �̅�  = 𝑠 �̅�, (22)∇ 𝜑 = 𝑠 + 𝜏 𝑠  �̅� +  𝜀 1 + 𝜏 𝑠  �̅� , (23)𝜑 − �̅� = 𝛿 ∇ 𝜑, (24)𝜎 =  𝛽 1 + 𝜏 𝑠 �̅� − 2 1 + 𝜏 𝑠 𝑢𝑟 − 𝜀  �̅�, (25)𝜎 = 𝛽 1 + 𝜏 𝑠 �̅� − 2 1 + 𝜏 𝑠 𝜕𝑢𝜕𝑟 − 𝜀 �̅�, (26)𝜎 = 𝛽 − 2 1 + 𝜏 𝑠  �̅� − 𝜀 �̅�, (27)�̅� = 1𝑟  𝜕 𝑟𝑢𝜕𝑟 = 𝑢𝑟 + 𝜕𝑢𝜕𝑟 , (28)

where 𝛿 = �̃� 𝑠⁄ .  
We can re-write Eqs. (22)-(24) in the forms: ∇ �̅� − 𝛼 ∇ �̅�  = 𝛼 �̅�, (29)∇ 𝜑 =  𝛼 �̅� + 𝛼  �̅�, (30)�̅� = 𝜑 − 𝛿 ∇ 𝜑, (31)

where 𝛼 = , 𝛼 = , 𝛼 = 𝑠 + 𝜏 𝑠 , 𝛼 = 𝜀 𝑠 + 𝜏 𝑠 1 + 𝜏 𝑠 .  
By inserting Eq. (31) into the Eq. (29), we obtain: ∇  − 𝛼 �̅� = 𝛼 ∇ − 𝛿 ∇ 𝜑. (32)

Substitute from Eq. (31) into the Eq. (30), we get: ∇ − 𝛼 𝜑 = 𝛼  �̅�, (33)

where 𝛼 =  and 𝛼 = . 
Substitute from Eq. (33) into the Eq. (31), we get: �̅� = 𝛼 𝜑 −  𝛼 �̅�, (34)

where 𝛼 = 1 − 𝛿 𝛼  and 𝛼 = 𝛿 𝛼 . 
By eliminating �̅� between Eq. (32) and (33), we obtain: ∇ − 𝐿∇ + 𝑀 𝜑  = 0. (35)

By eliminating 𝜑 between Eqs. (32) and (33), we get: ∇ − 𝐿∇ + 𝑀 �̅�  = 0, (36)

where 𝐿 =  and 𝑀 = .  
The bounded solutions at 𝑟 = 0 of the Eqs. (35) and (36) take the forms: 
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𝜑 𝑟, 𝑠 =  𝛼 𝐴 𝐼 𝑘 𝑟 , (37)

�̅� 𝑟, 𝑠 = 𝑘 − 𝛼 𝐴 𝐼 𝑘 𝑟 , (38)

where 𝐼 ∗  is the modified Bessel function of the first kind of order zero, and ±𝑘 , ±𝑘  are the 
roots of the characte, ristic equation: 𝑘 − 𝐿𝑘 + 𝑀 = 0. (39)

For the thermal boundary condition, we consider the edge of the cylinder 𝑟 = 𝑎 to be thermally 
loaded as follows: 𝜑 𝑎, 𝑡 = 𝜑 𝑔 𝑡 , (40)

where 𝑔 𝑡  is the function of the thermal loading and 𝜑  is constant (the thermal loading  
strength). For the mechanical boundary conditions, we consider the edge of the cylinder 𝑟 = 𝑎 is 
connected to a rigid foundation which can prevent any displacement which leads to zero 
volumetric deformation as follows: 𝑒 𝑎, 𝑡 = 0. (41)

Applying Laplace transform on the Eqs. (40) and (41), we obtain: 𝜑 𝑎, 𝑠 = 𝜑 �̅� 𝑠 . (42)

Applying the boundary conditions in the Eqs. (37) and (38), we get the following system: 

 𝐴 𝐼 𝑘 𝑎 = 𝜑 �̅� 𝑠𝛼 , (43)

𝑘 − 𝛼  𝐴 𝐼 𝑘 𝑎 = 0. (44)

By solving the system in Eq. (43) and Eq. (44), we get: 

𝐴 = 𝜑 𝐺 𝑠 𝑘 − 𝛼𝛼 𝑘 − 𝑘 𝐼 𝑘 𝑎 ,     𝐴 = − 𝜑 𝐺 𝑠 𝑘 − 𝛼𝛼 𝑘 − 𝑘 𝐼 𝑘 𝑎 . 
Hence, we have: 

𝜑 𝑟, 𝑠 =  𝜑 𝐺 𝑠𝑘 − 𝑘 𝑘 − 𝛼𝐼 𝑘 𝑎 𝐼 𝑘 𝑟 − 𝑘 − 𝛼𝐼 𝑘 𝑎 𝐼 𝑘 𝑟 , (45)�̅� 𝑟, 𝑠 = 𝜑 𝐺 𝑠 𝑘 − 𝛼 𝑘 − 𝛼𝛼 𝑘 − 𝑘 𝐼 𝑘 𝑟𝐼 𝑘 𝑎 − 𝐼 𝑘 𝑟𝐼 𝑘 𝑎 . (46)

To get the displacement function, we use the Eqs. (28) and (46) as follows: 𝑢 𝑟, 𝑠 = 1𝑟 𝑟 �̅� 𝑟, 𝑠 𝑑𝑟, (47)
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which gives: 𝑢 𝑟, 𝑠= 𝜑 𝐺 𝑠 𝑘 − 𝛼 𝑘 − 𝛼𝛼 𝑘 − 𝑘 1𝐼 𝑘 𝑎 1𝑟 𝑟𝐼 𝑘 𝑟 𝑑𝑟 − 1𝐼 𝑘 𝑎 1𝑟 𝑟𝐼 𝑘 𝑟 𝑑𝑟 . (48)

We use the well-known relation of Bessel integration as follows: 𝐼 𝑧 = 1𝑧 𝑧 𝐼 𝑧 𝑑𝑧, (49)

where 𝐼 ∗  is the modified Bessel function of the first kind of first order. 
Hence, we obtain: 

𝑢 𝑟, 𝑠 = 𝜑 𝐺 𝑠 𝑘 − 𝛼 𝑘 − 𝛼𝛼 𝑘 − 𝑘 1𝐼 𝑘 𝑎 𝑘 𝐼 𝑘 𝑟 − 1𝐼 𝑘 𝑎 𝑘 𝐼 𝑘 𝑟 . (50)

To obtain the dynamical temperature, we substitute from equations (45) and (46) in the 
Eqs. (34) to be in the form: 

�̅� 𝑟, 𝑠 = 𝜑 𝐺 𝑠𝛼 𝑘 − 𝑘 𝑘 − 𝛼 𝛼 𝛼 − 𝛼 𝑘 − 𝛼𝐼 𝑘 𝑎 𝐼 𝑘 𝑟        − 𝑘 − 𝛼 𝛼 𝛼 − 𝛼 𝑘 − 𝛼𝐼 𝑘 𝑎 𝐼 𝑘 𝑟 . (51)

To get the stress distribution and to avoid the singularity when 𝑟 = 0, we take the average of 
the three principal stresses components as follows: 𝜎 = 𝜎 + 𝜎 + 𝜎3 = 𝛽 − 43 1 + 𝜏 𝑠 �̅� − 𝜀 �̅�. (52)

We re-write the Eq. (52) to be in the form: 𝜎 = 𝛼 �̅� − 𝜀 �̅�, (53)

where 𝛼 = 𝛽 − 4/3 1 + 𝜏 𝑠 .  
Substitute from Eqs. (46) and (51) in the Eq. (53), hence, we get: 

𝜎 𝑟, 𝑠 = 𝜑 𝐺 𝑠𝛼 𝑘 − 𝑘 𝑘 − 𝛼 𝛼 𝑘 − 𝛼 − 𝜀 𝛼 𝛼 − 𝛼 𝑘 − 𝛼𝐼 𝑘 𝑎 𝐼 𝑘 𝑟        − 𝑘 − 𝛼 𝛼 𝑘 − 𝛼 − 𝜀 𝛼 𝛼 − 𝛼 𝑘 − 𝛼𝐼 𝑘 𝑎 𝐼 𝑘 𝑟 . (54)

The conducting and dynamical temperature increments, pressure, displacement, and average 
stress can both be measured using Riemann-sum approximation techniques over time. This 
method is used to invert some function’s Laplace transformation [26]: 

𝑓 𝑡 = 𝑒𝑡 12𝑓̅ 𝜅 + Re −1 𝑓̅ 𝜅 + 𝑖𝑛𝜋𝑡 , (55)

where “𝑖” is an imaginary number unit, and “𝑅𝑒” is the real part. For convergence with a faster 
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process, many numerical experiments have shown that the value 𝜅  satisfies the relation  𝜅𝑡 ≈ 4.7 [26]. 

3. Numerical results and discussion 

Copper is known as the thermoelastic material for the numerical results and for the various 
physical constants we take the following values: 𝐾 = 386 kg m k-1 s-3, 𝛼 = 1.78×10-5 k-1,  𝜌 = 8954 kg m-3, 𝑇 =  293 k, 𝐶 = 383.1 m2 k-1s-2, 𝜇 = 3.86 1010 kg m-1 s-2,  𝜆 = 7.76×1010 kg m-1 s-2.  

Thus, we get the non-dimensional values of the problem as [8, 24]: 𝑏 = 0.01047,  𝜀 = 0.0419, 𝜀 = 1.6086, 𝛽 = 4, 𝜑 = 1.0, 𝜏 = 0.02, 𝜏 = 0.01, �̃� = 0.1 (assumed). 
The numerical results of the conductive and dynamical temperature increments, the strain, the 

displacement, and the average stress distributions have been figured for a wide range of the 
dimensionless radial distance 𝑟 0 ≤ 𝑟 ≤ 2.0  at the instant value of dimensionless time 𝑡 = 1.0.  

In Figs. 2-6, the calculations have been carried out for various values of the fractional-order 
parameter 𝛼 = 0.0,0.5,0.9 in the context of the hyperbolic two-temperature thermoelasticity 
model to stand on the effect of this parameter on all the studied functions.  

It is noted from Figs. 2 and 3 that the fractional-order parameter has very limited effects on the 
conductive and dynamical temperature increment. It is expectable results where the 
fractional-order definition has been applied to the strain function. 

 
Fig. 2. The conductive temperature distribution with 
the variance value of the fractional-order parameter 

 
Fig. 3. The dynamical temperature distribution with 

variance value of fractional order parameter 

Fig. 4 shows that the fractional-order parameter has a significant effect on the strain 
distributions. The absolute values of the peak points of the strain distribution take the following 
order: |𝑒 𝛼 = 0.0 | > |𝑒 𝛼 = 0.9 | > |𝑒 𝛼 = 0.5 |. (56)

Fig. 5 shows that the fractional-order parameter has a significant effect on the displacement 
distributions, and this effect is visible near the impact of the thermal shock. The absolute values 
of the displacement at the edge of the cylinder 𝑟 = 𝑎 take the following order: |𝑢 𝛼 = 0.0 | > |𝑢 𝛼 = 0.9 | > |𝑢 𝛼 = 0.5 |. (57)

Fig. 6 shows that the fractional-order parameter has a significant effect on the average stress 
distributions. The absolute values of the average stress at the center of the cylinder 𝑟 = 0 take the 
following order: |𝜎 𝛼 = 0.5 | > |𝜎 𝛼 = 0.9 | > |𝜎 𝛼 = 0.0 |. (58)
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Fig. 4. The strain distribution with variance value of fractional order parameter 

 
Fig. 5. The displacement distribution with variance value of fractional order parameter 

 
Fig. 6. The average stresses distribution with variance value of fractional order parameter 

In Figs. 7-11, the calculations have been carried out for various models of thermoelasticity 
(one-temperature, two-temperature, and hyperbolic two-temperature) without fractional-order 
strain 𝛼 = 0.5 to stand on the two-temperature parameter effects on all the studied functions.  

In Fig. 7, it is noticed that the behavior of the conductive temperature increment distributions 
in the context of the one-temperature and hyperbolic two-temperature models is closed but with 
different values. In contrast, the behavior of the classical two-temperature model is different. The 
curves of the one-temperature and hyperbolic two-temperature models fail down close to zero, 
more than the curve of the two-temperature model. The one-temperature and hyperbolic 
two-temperature models offer thermal waves with finite speed of propagation while the model of 
classical two-temperature parameter offers thermal waves with an infinite speed of propagation. 
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Fig. 8 shows that the dynamical temperature increment distributions in the context of the 
one-temperature and hyperbolic two-temperature models have the same behavior but with 
different values, while the behavior of the classical two-temperature model is different. The values 
of the dynamical temperature increment based on the one-temperature model in Fig. 8 coincide 
with the value of the conductive temperature increment in Fig. 7 based on the same model. 

 
Fig. 7. The conductive temperature increment 
distribution with variance models and 𝛼 = 0.5 

 
Fig. 8. The dynamical temperature increment 

distribution with variance models 𝛼 = 0.5 

Fig. 9 shows that the strain distributions in the context of the one-temperature and hyperbolic 
two-temperature models have the same behavior but with different values, while its behavior 
based on the classical two-temperature model is different. The absolute values of the peak points 
of the strain take the following order: |𝑒 one − temp | > |𝑒 hyp two − temp | > |𝑒 two − temp |. (59)

 
Fig. 9. The strain increment distribution with variance models 𝛼 = 0.5 

Fig. 10 shows that the displacement distributions in the context of the one-temperature and 
hyperbolic two-temperature models have closed behavior, while its behavior based on the classical 
two-temperature model is different. The values of the peak points of the displacement take the 
following order: |𝑢 one − temp | > |𝑢 hyp two − temp | > |𝑢 two − temp |. (60)

Fig. 11 shows that the average stress distributions in the context of the one-temperature and 
hyperbolic two-temperature models have a closed behavior, while its behavior based on the 
classical two-temperature model is different. The absolute values of the stress in the edge of the 
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cylinder 𝑟 = 𝑎 take the following order: |𝜎 one − temp | > |𝜎 hyp two − temp | > |𝜎 two − temp |. (61)

We can see that for the special cases of zero fractional order of strain, one-temperature model, 
and classical two-temperature model, the results agree with the results in the publications  
[8, 27, 28]. 

 
Fig. 10. The displacement distribution with variance models 𝛼 = 0.5 

 
Fig. 11. The average stresses distribution with variance models 𝛼 = 0.5 

4. Conclusions 

The issue of a thermoelastic homogeneous isotropic infinite cylindrical medium when the 
bounding surface is thermally shocked and no volume deformation is addressed in this article. 
One-temperature, classical two-temperature, and hyperbolic two-temperature models have also 
been used to solve the problem.  

The fractional-order parameter has negligible impacts on conductive and dynamical 
temperature increments, but has a substantial influence on the strain, displacement, and average 
stresses, according to the numerical data.  

The one-temperature model, like the hyperbolic two-temperature model, produces thermal 
waves with finite propagation speeds, while the classical two-temperature model generates 
thermal waves with an infinite propagation speed.  

As a result, the hyperbolic two-temperature thermoelasticity model is a good fit for describing 
the thermodynamic behavior of thermoelastic materials. 
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