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Abstract. Small scale parameter of graphene sheet is considered as uncertain one, vibration 
equation of a simply supported graphene sheet with uncertainty is established based on nonlocal 
theory. Trigonometric function series solution and interval operator are used to obtain the upper 
and lower bound of response of the simply supported graphene sheet. the uncertainty level of 
response for the different dimension is investigated. The numerical result shows that for the same 
uncertainty level of small scale parameter, the uncertainty level of the response will decrease with 
increase of the graphene sheet dimension, and a small uncertainty level of the small scale 
parameter can cause much greater uncertainty level of the response before the small scale effect 
disappears. 
Keywords: graphene sheet, uncertain parameter, interval variable, nonlocal theory. 

1. Introduction 

With the development of nano mechanical and electrical technology, the mechanical properties 
of nanoscale structures to cause the considerable attention of many scholars. The small scale effect 
is found during study of nano structures. Due to the surface effect and the small-scale effect of 
nanomaterials, classical continuum mechanics will lead to an inaccurate result when it is used to 
solve the mechanics problem of nanomaterials. Fortunately, the nonlocal theory given by Eringen 
[1] can remove the shortcoming of classical continuum mechanics. Based on the nonlocal theory, 
Zhang, Liu, and Wang [2] studied the buckling of multi-walled carbon nanotube. Xie, Han, and 
Long [3-5] investigated the small scale effect and the vibration of carbon nanotube. Wang [6] used 
a modified nonlocal beam model to study vibration and stability of nanotubes conveying fluid. 
Hybrid nonlocal beam model [7] was employed to study bending, buckling, and vibration of 
micro/nanobeams. Liang Y. and Han Q. [8] gave prediction of the nonlocal scaling parameter for 
graphene sheet. L Yang，J S Peng [9] used the nonlocal-gradient elasticity theory to scale effect 
on dynamic analysis of electrostatically actuated nano beams. Hamid M. et al. [10] studied the 
size dependent static and dynamic pull-in instability of cantilever nanoactuator based on strain 
gradient theory. Fang B., Zhen Y. X., Zhang C. P., et al. [11] carried out nonlinear vibration 
analysis of double-walled carbon nanotubes based on nonlocal elasticity theory. Reddy J. N. [12] 
presented nonlocal nonlinear formulations for bending of classical and shear deformation theories 
of beams and plates. M. Ghalambaz [13] used energy balance method to investigate nonlinear 
oscillation of nanoelectro-mechanical resonators.  

In previous studies, the parameters of the graphene sheet are deterministic. However, until 
now, the deterministic small scale parameter of the graphene sheet has been given. This will lead 
to the uncertain dynamic response of the graphene sheet. 

In this paper, a nonlocal model of nanoplate is developed for vibration of a simply supported 
graphene sheet with uncertainty. The upper and lower bound of response of a clamped graphene 
sheet is obtained, and the uncertainty level of response is also obtained.  
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2. Formulation 

2.1. Nonlocal constitutive equation 

The nonlocal constitutive equations of graphene [2] are: 

⎩⎪⎪⎨
⎪⎪⎧𝜎ଵଵ − ሺ𝑒଴𝑎ሻଶ 𝜕ଶ𝜎ଵଵ𝜕𝑥ଵଶ = 𝐸1 − 𝜇ଶ ሾ𝜀ଵଵ + 𝜇𝜀ଶଶሿ,𝜎ଶଶ − ሺ𝑒଴𝑎ሻଶ 𝜕ଶ𝜎ଶଶ𝜕𝑥ଶଶ = 𝐸1 − 𝜇ଶ ሾ𝜀ଶଶ + 𝜇𝜀ଵଵሿ,ሺ1 − ሺ𝑒଴𝑎ሻଶ𝛻ଶሻ𝜎ଵଶ = 𝐸1 + 𝜇 𝜀ଵଶ,

 (1)

where 𝐸 is the elastic modulus of graphene, and 𝜇 Poisson’s ratio, 𝑎 an internal characteristic 
length (C-C bond length), 𝑒଴ a constant appropriate to each material considered as the uncertain 
parameter. 

Eq. (1) can be approximately expressed as: 

⎩⎪⎪⎨
⎪⎪⎧𝜎ଵଵ = 𝐸1 − 𝜇ଶ ቈ1 + ሺ𝑒଴𝑎ሻଶ 𝜕ଶ𝜕𝑥ଵଶ቉ ሾ𝜀ଵଵ + 𝜇𝜀ଶଶሿ,𝜎ଶଶ = 𝐸1 − 𝜇ଶ ቈ1 + ሺ𝑒଴𝑎ሻଶ 𝜕ଶ𝜕𝑥ଷଶ቉ ሾ𝜀ଶଶ + 𝜇𝜀ଵଵሿ,𝜎ଵଶ = 𝐸1 + 𝜇 ሾ1 + ሺ𝑒଴𝑎ሻଶ∇ଶሿ𝜀ଵଶ.

 (2)

2.2. Geometric equations 

Eringen [1] proposed the nonlocal theory in which the nonlocality of stress is mainly 
considered and strain is remained the same as the classical. three displacement components can 
be expressed in terms of the deflection based on the Kirchhoff assumption. The relationship 
between the three components of strain and deflection can be given by: 

𝜀ଵଵ = −𝑧 𝜕ଶ𝑤𝜕𝑥ଵଶ ,𝜀ଶଶ = −𝑧 𝜕ଶ𝑤𝜕𝑥ଶଶ ,𝜀ଵଶ = −2𝑧 𝜕ଶ𝑤𝜕𝑥ଵ𝜕𝑥ଶ .
 (3)

2.3. The governing equation of motion 

Hamilton principle is used to establish the governing equation of motion, mathematically, 
Hamilton principle states: 

𝛿 න 𝐿௧మ௧భ d𝑡 = 0, (4)

where 𝐿 is Lagrangian function. 𝐿 is given as: 𝐿 = 𝑇 − 𝑈 + 𝑊, (5)



VIBRATION OF A SIMPLY SUPPORTED GRAPHENE SHEET WITH UNCERTAIN SMALL SCALE PARAMETER BASED ON NONLOCAL THEORY.  
G. Q. XIE, S. S. NI 

24 MATHEMATICAL MODELS IN ENGINEERING. JUNE 2021, VOLUME 7, ISSUE 2  

where 𝑇 is the kinetic energy, 𝑈 the strain energy, and 𝑊 the work done by the external forces. 
The kinetic energy is given by: 𝑇 = 12ඵ𝑚ഥ𝑤ሶ ଶ஺ 𝑑𝑥𝑑𝑦, (6)

where 𝑚ഥ  is the mass density of unit area, 𝐴 stands for the whole area of the graphene sheet. 
The strain energy of the graphene sheet can be expressed as: 𝑈 = 12ම𝜎𝜀்௏ 𝑑𝑉. (7)

The work done by the external force can be obtained by: 𝑊 = ඵሺ𝑓 − 𝑐𝑤ሶ ሻ𝑤𝑑𝑥𝑑𝑦஺ , (8)

where 𝑓 is the distribution force on the upper surface of the graphene sheet, 𝑐 stands for damping 
coefficient. 

Substitution of Eqs. (5)-(8) into Eq. (4) yields the governing equation of motion: 

ሺ𝑒଴𝑎ሻଶ ቆ𝜕଺𝑤𝜕𝑥ଵ଺ + 𝜕଺𝑤𝜕𝑥ଶ଺ቇ + ሺ𝑒଴𝑎ሻଶ ቆ 𝜕଺𝑤𝜕𝑥ଵସ𝜕𝑥ଶଶ + 𝜕଺𝑤𝜕𝑥ଵଶ𝜕𝑥ଶସቇ + 𝛻ସ𝑤 + 𝑚ഥ𝐷 𝑤ሷ + 𝑐𝐷𝑤ሶ = 𝑓𝐷, (9)

where 𝐷 is the flexural rigidity 𝐷 = ா௛యଵଶሺଵିఓమሻ, ℎ thickness of the graphene sheet.  

2.4. Solution of the governing equation of motion  

Transient response of Eq. (9) satisfying the simply supported boundary can be given by: 𝑤ଵ = 𝑒௦௧sin𝑚𝜋𝑥𝑙௫ sin𝑛𝜋𝑦𝑙௬ , (10)

where 𝑙௫ and 𝑙௬ denote the length and width of the graphene sheet, respectively.  
Substitution of Eq. (10) into Eq. (9) yields the transient response: 𝑤ଵ = ෍𝑒ି఍ఠ೘೙௧ሾ𝐴௠௡sinሺ𝜔ௗ௠௡𝑡ሻ + 𝐵௠௡cosሺ𝜔ௗ௠௡𝑡ሻሿ   sin𝑚𝜋𝑥𝑙௫ sin𝑛𝜋𝑦𝑙௬ , (11)

where damping frequency 𝜔ௗ௠௡: 𝜔ௗ௠௡ = ඥ1 − 𝜁ଶ𝜔௠௡. (12)

The undamped natural frequency 𝜔௠௡: 

𝜔௠௡ = ඨ𝐷𝑚ഥ ൥ሺ𝑒଴𝑎ሻଶ ቆ𝑚଺𝜋଺𝑙௫଺ + 𝑛଺𝜋଺𝑙௬଺ + 𝑚ସ𝑛ଶ𝜋଺𝑙௫ସ𝑙௬ଶ + 𝑚ଶ𝑛ସ𝜋଺𝑙௫ଶ𝑙௬ସ ቇ + ቆ𝑚ଶ𝜋ଶ𝑙௫ଶ + 𝑛ଶ𝜋ଶ𝑙௬ଶ ቇଶ൩. (13)

Damping ratio 𝜁: 
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𝜁 = 𝑐2𝑚ഥ𝜔௠௡. (14)

The initial condition: 𝑤 = 𝑤଴, 𝑤ሶ = 𝑤ሶ ଴. (15)

Combination of Eq. (15) with Eq. (11), has: 

𝐴௠௠ = ቐ𝑤ሶ ଴ + 𝜁𝜔௠௡𝑤଴𝜔ௗ௠௡ 16𝑚𝑛𝜋ଶ , 𝑚,𝑛 = 1,3,5, … ,0,     𝑚,𝑛 = 2,4,6, … ,  (16)

𝐵௠௠ = ൝16𝑤଴𝑚𝑛𝜋ଶ , 𝑚,𝑛 = 1,3,5, … ,0,     𝑚,𝑛 = 2,4,6, … .  (17)

Transient response: 

𝑤ଵ = ෍ ෍ 16𝑒ି఍ఠ೘೙௧𝑚𝑛𝜋ଶ ቈ𝑤ሶ ଴ + 𝜁𝜔௠௡𝑤଴𝜔ௗ௠௡ sinሺ𝜔ௗ௠௡𝑡ሻஶ
௡ୀଵ,ଷ,ହ⋯

ஶ
௠ୀଵ,ଷ,ହ⋯+ 𝑤ሶ ଴cosሺ𝜔ௗ௠௡𝑡ሻ቉ sin𝑚𝜋𝑥𝑙௫ sin𝑛𝜋𝑦𝑙௬ . (18)

Let a harmonic excitation 𝑓 = 𝑞଴sin𝜔𝑡 is applied on the graphene sheet, the steady response 
of the graphene sheet can be adopted as the following form: 

𝑤ଶ = ෍ ෍𝑊ሺ𝑡ሻsin𝑚𝜋𝑥𝑙௫ sin𝑛𝜋𝑦𝑙௬ஶ
௡ୀଵ

ஶ
௠ୀଵ . (19)

Substituting Eq. (19) and 𝑓 into Eq. (9) and then solving Eq. (9) based on orthogonal property 
of trigonometric function yields: 

𝑊ሺ𝑡ሻ = ቐ 16𝑚𝑛𝜋ଶ 𝑞଴sinሺ𝜔𝑡 − 𝜑ሻඥሺ𝑘 − 𝑚ഥ𝜔 ଶሻଶ − ሺ𝑐𝜔ሻଶ , 𝑚,𝑛 = 1,3,5, … ,0,     𝑚,𝑛 = 2,4,6, … ,  (20)

where: 𝜑 = tanିଵ 𝑐𝜔𝑘 −𝑚ഥ𝜔ଶ, (21)𝑘 = 𝐷 ൥ሺ𝑒଴𝑎ሻଶ ቆ𝑚଺𝜋଺𝑙௫଺ + 𝑛଺𝜋଺𝑙௬଺ + 𝑚ସ𝑛ଶ𝜋଺𝑙௫ସ𝑙௬ଶ + 𝑚ଶ𝑛ସ𝜋଺𝑙௫ଶ𝑙௬ସ ቇ + ቆ𝑚ଶ𝜋ଶ𝑙௫ଶ + 𝑛ଶ𝜋ଶ𝑙௬ଶ ቇଶ൩. (22)

The total response is: 𝑤 = 𝑤ଵ + 𝑤ଶ. (23)

2.5. Interval analysis of vibration response 

Let 𝑣ூ is an interval variable, the upper and lower bound of 𝑣ூ can be expressed as: 
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𝑣̅ = 𝑣 ௠ + 𝑣 ௥, 𝑣 = 𝑣 ௠ − 𝑣 ௥ , (24)

where 𝑣௠ is the midpoint value of 𝑣ூ, 𝑣௥ the interval radius of 𝑣ூ. 
The interval variable 𝑣ூ is between the upper and lower bound: 𝑣ூ ∈ ൣ𝑣̅, 𝑣൧. (25)𝑤 can be expanded into Taylor series: 

𝑤 = 𝑤ଵሺ𝑣௠ሻ + 𝜕𝑤ଵሺ𝑣௠ሻ𝑣ூ ሺ𝑣ூ − 𝑣௠ሻ + ⋯+ 𝑤ଶሺ𝑣௠ሻ + 𝜕𝑤ଶሺ𝑣௠ሻ𝑣ூ ሺ𝑣ூ − 𝑣௠ሻ + ⋯. (26)

The midpoint value of response 𝑤: 𝑤௠ = 𝑤ଵሺ𝑣 ௠ሻ + 𝑤ଶሺ𝑣 ௠ሻ. (27)

The interval radius of response 𝑤: 

𝑤௥ ≈ ቈቤ𝜕𝑤ଵሺ𝑣 ௠ሻ𝑣ூ ቤ + ቤ𝜕𝑤ଶሺ𝑣 ௠ሻ𝑣ூ ቤ቉ 𝑣 ௥ . (28)

3. Numerical example 

For all the subsequent numerical example, the length of C-C bond 𝑎 = 0.142×10-9 m, in-plane 
stiffness 𝐸ℎ = 360 J/m2 (Sanchez -Portal,D, [14]), Poisson’s ratio 𝜇 = 0.26, the thickness of the 
graphene sheet ℎ = 0.34×10-9 m, the mass density of unit area 𝑚ഥ = 0.77×10-3 kg/m2, the damping 
coefficient 𝑐 = 0.3 Ns/m. The initial velocity 𝑤ሶ ଴ = 0, the initial deflection 𝑤଴ = 5×10-9 m. 

Let 𝑒଴ is an interval variable, the uncertainty level ±3 % off from the midpoints 𝑒଴ = 0.39, 
investigated. The amplitude of load is 𝑞଴ = 300 nN/m2, the uncertainty level of response for the 
different dimension graphene sheet is investigated. 

Dynamic response bounds of deflection of the center point of the sheet 𝑙௫ =  2×10-2 m,  𝑙௬ = 1×10-2 m) is shown in Fig. 1(a). From this figure, it can be found that the amplitude of 
vibration of the sheet obeys law of exponent decay. The maximum uncertainty level of response 
off from the midpoints is 2.393 %. The maximum uncertainty level of response is smaller than the 
uncertainty level ±3 % of 𝑒଴. 

Dynamic response bounds of deflection of the center point of the sheet (𝑙௫ = 2×10-3 m,  𝑙௬ = 1×10-3) mis shown in Fig. 1(b). From this figure, it can be found that the amplitude of 
vibration of the sheet obeys law of exponent decay. The maximum uncertainty level of response 
off from the midpoints is 10.733 %. The maximum uncertainty level of response is 3 times more 
than the uncertainty level ±3 % of 𝑒଴.  

Dynamic response bounds of deflection of the center point of the sheet (𝑙௫ = 2×10-4 m,  𝑙௬ = 1×10-4 is shown in Fig. 1(c). From this figure, it can be found that the amplitude of vibration 
of the sheet obeys law of exponent decay. The maximum uncertainty level of response off from 
the midpoints arrives to 45.423 %. The maximum uncertainty level of response is 15 times more 
than the uncertainty level ±3 % of 𝑒଴. 
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a) 𝑙௫ = 2×10-2 m, 𝑙௬ = 1×10-2 m 
 

b) 𝑙௫ = 2×10-3 m, 𝑙௬ = 1×10-3 m 

 
c) 𝑙௫ = 2×10-4 m, 𝑙௬ = 1×10-4 m 

Fig. 1. Response bounds of deflection of the center point of the sheet 

 
a) 𝑙௫ = 2×10-5 m, 𝑙௬ = 1×10-5 m 
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b) 𝑙௫ = 2×10-7 m, 𝑙௬ = 1×10-7 m 

Fig. 2. Response bounds of deflection of the center point of the sheet 

Dynamic response bounds of deflection of the center point of the sheet (𝑙௫ = 2×10-5 m,  𝑙௬ = 1×10-5 m) is shown in Fig. 2(a). It can be seen that amplitude of the sheet overall presents 
the attenuation trend. The maximum uncertainty level of response off from the midpoints arrives 
to 7.618×105 %.  

Dynamic response bounds of deflection of the center point of the sheet (𝑙௫ = 2×10-7 m,  𝑙௬ = 1×10-7 m) is shown in Fig. 2(b). From this figure, it can also be found that amplitude of the 
sheet overall presents the attenuation trend. The numerical result shows that the maximum 
uncertainty level of response off from the midpoints arrives to 3.814×107 %. 

4. Conclusions 

Comparison of the above maximum uncertainty level of the different dimension graphene 
sheet can be concluded that for the same uncertainty level of small scale parameter, the uncertainty 
level of the response will decrease with increase of the graphene sheet dimension. We found from 
the previous study G. Q. Xie [15] that the small scale effect will disappear if the side lengths of 
the graphene sheet are both larger than 1×10-7 m. Here we found that a small uncertainty level of 
the small scale parameter can cause much greater uncertainty level of the response before the small 
scale effect disappears. 

The result that the small scale effect will disappear if the side lengths of the graphene sheet are 
both larger than 1×10-7 mis valuable and very helpful for the design and manufacture of graphene 
and CNT devices are of guiding significance. 
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