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Abstract. In this paper, the inverse problem of technological thermophysics under the influence 
of disturbing factors is under study. In the problem of identifying the process of nonstationary heat 
conduction, it is required to concretize its mathematical model by qualitatively and quantitatively 
expressing an unknown characteristic based on the results of experimental studies. It is necessary 
to determine the uncontrolled time-varying heat flux density on the surface of the heated product 
from the noisy temperature measurement results at a certain point inside the object. The problem 
is formulated in an extreme setting as a problem of optimal control of an object with distributed 
parameters, in which the quadratic value of the temperature discrepancy between experimental 
and model data is used as an optimality criterion. The preliminary parametrization of the desired 
control on a compact set of polynomial functions implements the reduction to the parametric 
optimization problem. Physically substantiated solutions to inverse heat conduction problems are 
found as a result of their sequential parametric optimization using an algorithmically accurate 
method based on optimal control theory. The proposed solution combines the advantages of an 
accurate analytical method, which allows taking into account the physical essence of the process 
of interest and artificial intelligence methods, which provide great opportunities to find an 
quasioptimal solution under conditions of uncertainty in the mathematical description of the 
process. The analytical method of sequential parameterization provides a search for solutions on 
a compact set of smooth functions, as a result of which there is a reduction to the problem of 
parametric optimization. Measurement errors lead to processing large amounts of data, which 
necessitates the use of artificial neural networks for parametric optimization of the identified 
characteristics. The attained results confirm the possibility of obtaining adequate solutions to the 
inverse problems of thermal conductivity with the intensity of the measurement noise in the range 
of 0-15 %. In the investigated class of solutions, with a suitable setting of the ranges of belonging 
of the parameters, the error in approximating the temperature state can be up to 2-5 %, and the 
error in restoring the unknown characteristic can be up to 7-10 %. 
Keywords: inverse problem of technological thermophysics, compact set, well-posed problems, 
physically realizable solutions, sequential parametrization, parametric optimization problem, 
artificial neural networks. 

1. Introduction 

This work is devoted to the search for methods for solving inverse problems, formulated in 
relation to equations of mathematical physics of parabolic type and providing for the definition of 
an unknown function that sets the boundary conditions when the input data are not fully known. 
Objects described by equations of this class are characterized by the spatial distribution of the 
modeled state function, and in some cases, input quantities, and refer to the systems with 
distributed parameters. Mathematical models based on differential equations in partial derivatives 
of parabolic type are widely used in many industrial technologies to describe the processes of 
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unsteady heat conduction, heat and mass transfer, unsteady diffusion, electromagnetic waves 
propagation, and others.  

The main difficulty in solving inverse problems of mathematical physics (IPMP) is their 
belonging to the class of ill-posed problems, which necessitates the use of special numerical 
regularizing algorithms to obtain a stable solution [1], [2]. In the case of an unavoidable 
measurement error or other disturbances, the problem of constructing special regularizing 
algorithms for a stable solution of such problems becomes especially urgent [3], [4]. 

In the theory of inverse ill-posed problems of mathematical physics, a large number of methods 
and computational algorithms have been developed that make it possible to obtain regular 
solutions based, as a rule, on the use of smoothing functionals or additional restrictions on the 
class of sought solutions [5]-[7]. These approaches require significant computational efforts, 
depending on factors that are difficult to formalize [1], [2] or the availability of a priori information 
about the solution, which is usually absent [1], [4]. In such a situation, the development of methods 
for solving inverse and ill-posed problems of mathematical physics is an urgent problem. It makes 
possible to obtain stable solutions with satisfactory accuracy while reducing the computational 
complexity of methods and algorithms. 

In the papers [8]-[11], the authors propose an analytical method of parametric optimization, 
which searches for solutions in the class of physically realizable functions based on their 
smoothness. The advantages of this approach are an accurate mathematical model that takes into 
account the qualitative physical laws and basic properties of the process under study, as well as 
displaying the solution in an analytical form, which provides benefits for its subsequent use in 
solving technological problems of various directions (control, monitoring, control, forecasting, 
diagnostics process and other tasks). The disadvantage of the approach may be its limited 
application under conditions of inevitable disturbing factors due to the sensitivity of the developed 
method, which uses analytical optimality conditions, to the level of input data error. 

This paper presents an approach to the search for physically grounded solutions of the IPMP 
using the example of parabolic equations on compact sets of polynomial functions under the 
conditions of disturbed input data based on parametric optimization implemented using artificial 
neural networks (ANN). The solution to the problem is obtained on the basis of a combination of 
an accurate analytical approach, which takes into account information about the physical 
characteristics of processes and systems with distributed parameters, and intelligent technologies 
that allow finding the quasioptimal solution under conditions of uncertainty in the mathematical 
description of the process.  

The proposed approach allows us to find solutions to inverse problems without the use of 
laborious numerical regularizing algorithms that depend on factors that are difficult to formalize 
on a compact set of smooth functions, taking into account the measurement noise acting over a 
sufficiently wide range, with an accuracy acceptable for practical applications. Difficulties 
associated with the need to process a large amount of input information affect the training of an 
artificial neural network, and practically do not affect its performance when it is subsequently used 
to solve a specific problem of identifying the boundary conditions of the process. 

2. Formulation of the problem 

We consider a linear one-dimensional homogeneous partial differential equation of parabolic 
type, given in relative coordinates: 𝜕𝑇ሺ𝑥, 𝑡ሻ𝜕𝑡 = 𝜕ଶ𝑇ሺ𝑥, 𝑡ሻ𝑥ଶ ,     𝑥 ∈ ሺ0,1ሻ,      𝑡 ∈ (0, 𝑡∗ሿ, (1)

supplemented by initial and boundary conditions of the second kind: 
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𝑇(𝑥, 0ሻ = 0,     𝜕𝑇(0, 𝑡ሻ𝜕𝑥 = 0,     𝜕𝑇(1, 𝑡ሻ𝜕𝑥 = 𝑞(𝑡ሻ. (2)

The formulation of the inverse problem provides for the presence of input information  𝑇∗(𝑡ሻ = 𝑇(𝑥∗, 𝑡, 𝛿ሻ, where in most real cases the value of the state function is used – temperature 𝑇(𝑥, 𝑡ሻ, – obtained as a result of its control (measurements) at some fixed point 𝑥∗ ∈ [0,1] at 
discrete moments in the identification interval 𝑡 ∈ [0: ℎ: 𝑡∗ሿ and containing measurement errors 𝛿. 
In the inverse boundary problem, it is required to determine the unknown time-dependent heat 
flux density 𝑞(𝑡ሻ , applied to the outer boundary 𝑥 = 1, with the remaining parameters and 
characteristics of the object given. 

As a rule, a modern approach to the formulation of inverse problems is their definition in a 
variational formulation, which provides for the minimization of the objective functional in the 
space of possible solutions [12]. As a measure of the correspondence of the mathematical model 
to the real process, the value of the temperature residual is used, written in a quadratic or uniform 
metric [12]-[14]. Then the inverse problem is considered as an optimal control problem in which 
the conditions for the extremum of the formulated target functional of the temperature residual are 
investigated [14]. 

In this paper the inverse problem is formulated in a variational setting as an optimal control 
problem, where, based on the experimental data obtained under the conditions of disturbances, it 
is necessary to restore the unknown characteristic 𝑞ெ(𝑡ሻ = 𝑞(𝑡ሻ , minimizing the deviation  𝜀் = 𝑇∗(𝑡)–𝑇ெ (𝑥∗, 𝑡) between the experimental results 𝑇∗(𝑡) and the values of the state function 𝑇ெ (𝑥∗, 𝑡), calculated on the basis of the mathematical model (Eq. (1)-(2)) when using found 
solution 𝑞ெ(𝑡) on a given identification interval at the same point 𝑥∗. To estimate the deviation of 
the model temperature from the experimental one, a functional based on the squared error is used: 𝐼ௌ஽(𝑞(𝑡)) = ෍ ቀ𝑇ெ൫𝑥∗, 𝑡, 𝑞(𝑡)൯ − 𝑇∗(𝑡)ቁଶ → min௤(௧)∈௏,௧∈[଴,௧∗ሿ  (3)

where the function to be identified 𝑞(𝑡) is considered as the desired control and is subject to the 
conditions of belonging to the corresponding set 𝑉. Quadratic error functional Eq. (3) is chosen 
as the most widespread in neural network technologies, which are used further in solving the 
problem of parametric optimization. 

3. Parametric optimization of the desired characteristic 

To solve the formulated problem (Eq. (3)), a transition is made from the original set 𝑉 to the 
class of functions physically substantiated in the process of identifying functions that form a 
compact set. As physically realizable characteristics specified on the basis of requirements for 
their smoothness, we consider a set of polynomial functions of the form: 

𝑞ெ(𝑡) = ෍𝑎௡𝑡௡,ே
௡ୀ଴  (4)

where the exact value 𝑁 ensures that the identified characteristic belongs to a specific class of 
functions. Thus, the value 𝑁  and the corresponding vector of parameters Δ = (𝑎଴,𝑎ଵ, …𝑎ே, ) 
uniquely determine the parametric representation according to Eq. (4) of the sought-for heat flux 
density 𝑞(𝑡) = 𝑞(𝑡,∆).  

Then the mathematical description of the process under study (Eq. (1)-(2)) makes it possible 
to obtain the calculated value of the state function 𝑇ெ(𝑥, 𝑡) = 𝑇ெ(𝑥, 𝑡,Δ) as a reaction to the 
boundary effect 𝑞(𝑡,Δ) , expressed in parametric form, at given values 𝑁  and Δ , which 
corresponds to the temperature parameterization procedure. The resulting representation 
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𝑇ெ (𝑥, 𝑡,∆) leads to the parametric optimization problem: 

𝐼଴(∆) = ෍ ൫𝑇ெ(𝑥∗, 𝑡,∆) − 𝑇∗(𝑡)൯ଶ → min∆ ,ே
௧∈[଴,௧∗ሿ  (5)

with respect to the desired vector of parameters Δ. 
Thus, the narrowing of the original class of solutions 𝑉  to a compact set of polynomial 

functions according to Eq. (4) given by the number 𝑁 and the corresponding vector Δ, allows us 
to formulate the parametric optimization problem given in a form of Eq. (5), and thus corresponds 
to the transition from the original ill-posed problem to the conditionally correct formulation, which 
solution does not require the use of regularization methods. 

Proposed approach to identifying an unknown function 𝑞(𝑡)  is based on constructing a 
sequence of functions on a compact set 𝑞൫𝑡,Δ(ே)൯ , that minimizes the quadratic deviation ∑ ൫𝑇ெ(𝑥∗, 𝑡,∆) − 𝑇∗(𝑡)൯ଶ → min∆ே௧∈[଴,௧∗ሿ  with increasing number 𝑁  and, thus, converges to the 
exact solution 𝑞଴(𝑡). Based on the Weierstrass theorem [15], the solutions obtained are regular. 
Each successive approximation of the sequence can be considered as an intermediate solution, and 
the computational procedure can be stopped when the deviation of the calculated value 𝑇ெ (𝑥∗, 𝑡,∆) from the measured one 𝑇∗(𝑡) meets the requirements of a given accuracy. 

At a low level of perturbations, the solution to the problem can be realized using the minimax 
optimization method [8]-[11], based on the analytical optimality conditions [16]. In a situation 
where the input data is significantly distorted by measurement errors, it is proposed to solve the 
problem using artificial intelligence methods that allow processing large data arrays to find vector 
values Δ, that ensure the fulfillment of the quadratic optimality criterion Eq. (5). 

4. Construction of neural networks for solving inverse problems of mathematical physics 

There are no general solution methods that allow one to find the global extremum of functional 
Eq. (5) under the conditions of the action of perturbations. When using input data 𝑇∗(𝑡, 𝛿), that 
take into account measurement errors 𝛿, the method of sequential parameterization [8]-[11], which 
is successfully used to find solutions to inverse problems of heat conduction under deterministic 
influences, is proposed to be supplemented with the use of ANN. Neural networks are profitably 
applied to solve problems of approximating time series, constructing dynamic dependencies, 
predicting the values of functions at future moments in time related to direct problems [17]-[19]. 
By choosing the type of neural network, the number of layers and neurons in each of the layers, 
setting the activation function and the network learning algorithm, the behavior of the state 
function is reproduced with a sufficient degree of accuracy. To search for solutions to problems 
in mathematical physics, it is recommended to use such neural networks as multilayer perceptron, 
networks with radial basis functions, probabilistic networks, generalized regression networks [20], 
[21]. Neural network technologies can also be used to solve inverse problems [22]-[24].  

The formulated parametric optimization problem (Eq. (5)) is considered under conditions of 
interval uncertainties, when the amount of a priori information about the values of the parameters 𝑎଴ − 𝑎ே is limited by information about the boundaries of the interval of their possible change: 𝑎௜୧୬୤ ≤ 𝑎௜ ≤ 𝑎௜ୱ୳୮,     𝑖 = 0,𝑁.തതതതതത (6)

A set of possible combinations of parameters 𝑎௜, 𝑖 = 0,𝑁തതതതത forms a ensemble of temperature 
curves 𝑇ெ(𝑥∗, 𝑡,Δ), Δ = (𝑎଴,𝑎ଵ, … 𝑎ே), that satisfy the conditions (Eq. (6)). Then the problem 
(Eq. (5)) is considered with respect to a set of temperature realizations that satisfy all possible 
combinations of parameter values 𝑎௜, 𝑖 = 0,𝑁തതതതത. To solve this problem, neural networks are used 
that allow processing large data arrays containing possible values of the parameters of the 
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identified characteristic and the corresponding realizations of the temperature field. 
Solution to the problem (Eq. (5)) based on noisy input data 𝑇∗(𝑡, 𝛿) is reduced to a step-by-

step search for the values of the parameter vector Δ(ே) = (𝑎଴,𝑎ଵ, …𝑎ே, ) for increasing values 𝑁 = 1,2, … ,𝑁∗. The iterative procedure ends at 𝑁 = 𝑁∗, when the solution obtained at the next 
step Δ(ே)  ensures the achievement of an absolute 𝑇ெ൫𝑥∗, 𝑡,∆(ே)൯ − 𝑇∗(𝑡) ≤ 𝜀ଵ  or relative 𝑇ெ൫𝑥∗, 𝑡,∆(ே)൯ − 𝑇ெ൫𝑥∗, 𝑡,∆(ேିଵ)൯ ≤ 𝜀ଶ accuracy. 

At each iteration, for a chosen number 𝑁 and a given, thus, the structure of the vector Δ(ே), the 
problem of parametric optimization (Eq. (5)) taking into account the perturbed input data 𝑇∗(𝑡, 𝛿) 
is reduced to the execution of the following algorithm. 

1) Based on a priori information about design, technological or other constraints, the 
permissible range of variation of the desired characteristic is determined 𝑞(𝑡) , and then the 
approximate boundaries of possible intervals of change in values are determined (𝑎௜୧୬୤,𝑎௜ୱ୳୮) of 
every parameter 𝑎௜ , 𝑖 = 0,𝑁തതതതത . For each of the them, a sampling step is selected ℎ௜  and a 
one-dimensional array 𝐴௜ = (𝑎௜୧୬୤,𝑎௜୧୬୤ + ℎ,𝑎௜୧୬୤ + 2ℎ௜ , … ,𝑎௜ୱ୳୮)  of discrete parameter values is 

formed each with the dimension [𝐾௜ × 1ሿ, 𝐾௜ = ௔೔౩౫౦ି௔೔౟౤౜௛೔ + 1. 
2) Based on one-dimensional vectors 𝐴௜ an array of sample values of all parameters is formed, 

i.e. a matrix is drawn up 𝐀 = ሼ𝐴௜ሽ, 𝑖 = 0,𝑁,തതതതതത with the dimension [(𝐾଴ × 𝐾ଵ × …𝐾ே) × (𝑁 + 1)ሿ, 
containing a set of all possible combinations of discrete parameter values (𝑎଴,𝑎ଵ, …𝑎ே, ) from the 
corresponding ranges of their variation. Thus, each row of the matrix 𝐀 contains some 𝑗 variant of 
the admissible realizations of the combination of discrete values Δ௝, 𝑗 = 1, (𝐾଴ × 𝐾ଵ × …𝐾ே)തതതതതതതതതതതതതതതതതതതതതതതതത of 
the vector ൛Δ௝ൟ = 𝐀, Δ(ே) = (𝑎଴,𝑎ଵ, …𝑎ே), and the complete matrix 𝐀 consists of all possible 
combinations. The matrix 𝐀 composed in this way forms the target vector in the development of 
the ANN. 

3) On the basis of the mathematical model of an object with distributed parameters 
(Eq. (1)-(2)), a set of direct problems of heat conduction is solved for all variants of combinations 
of parameters from the matrix 𝐀 on a given identification interval 𝑡 ∈ [0: ℎ: 𝑡∗ሿ. As a result, each 𝑗-th row of matrix 𝐀 is associated with a model temperature realization 𝑇ெ௝൫𝑥∗, 𝑡,Δ௝൯, obtained at 
discrete times of the identification interval for each variant of the combination of parameters Δ௝, 𝑗 = 1, (𝐾଴ × 𝐾ଵ × …𝐾ே)തതതതതതതതതതതതതതതതതതതതതതതതത, ൛Δ௝ൟ = 𝐀. 

4) A neural network model of the inverse problem of heat conduction is created. The input 
data of the ANN is the set of all temperature realizations 𝑇ெ௝൫𝑥∗, 𝑡,∆௝൯, 𝑗 = 1, (𝐾଴ × 𝐾ଵ × …𝐾ே)തതതതതതതതതതതതതതതതതതതതതതതതത, 
and the target values are the corresponding parameters that form the matrix 𝐀. The neural network 
training procedure consists in calculating the weight coefficients (synaptic weights) that minimize 
the deviation error between the temperature realizations obtained on the basis of the neural 
network model 𝑇஺ேே(𝑥∗, 𝑡,Δ஺ேே), that correspond to the found solutions Δ ANN, and the specified 
temperature realizations 𝑇ெ௝൫𝑥∗, 𝑡,Δ௝൯  for the entire data array 𝐀 = ൛Δ௝ൟ,  𝑗 = 1, (𝐾଴ × 𝐾ଵ × …𝐾ே)തതതതതതതതതതതതതതതതതതതതതതതതത.  

The ANN constructed in this way is used further to calculate on the basis of noisy experimental 
data 𝑇∗(𝑡, 𝛿), obtained at the temperature control point 𝑥∗ ∈ [0, 1] in the identification interval  𝑡 ∈ [𝑡ଵ, 𝑡ଶ, … 𝑡௦ሿ; 𝑡ଵ = 0, 𝑡௦ = 𝑡∗ the parameter values 𝐴௜ = (𝑎଴଴,𝑎ଵ଴, … ,𝑎ே଴ ) = ∆଴, providing the 
best coincidence of the calculated data and measurement results according to the criterion of the 
minimum squared error. The obtained solution to the parametric optimization problem (Eq. (5)), 
corresponding to the conditionally correct formulation of the inverse heat conductivity problem, 
belongs to a compact set of functions of a given form Eq. (4) and is stable, regardless of the input 
data error. The magnitude of the error only affects the accuracy of the reconstruction of the 
identified characteristic. The block diagram reflecting the procedure for solving the inverse 
problem of technological thermophysics is shown in Fig. 1. 
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Fig. 1. Solution pattern to the inverse heat conductivity problem: ODP – object with  

distributed parameters, MU – measurement unit, DHCP – direct heat conductivity problem 

The formulated parametric optimization problem (Eq. (5)) was solved using radial basis 
function network (RBFN) [20], [21], which showed efficiency in solving direct problems of 
mathematical physics. These structures contain an inner layer consisting of radial elements that 
implement the Gaussian function, and a linear layer that provides a weighted average estimate. 
The weighting factors are obtained by minimizing the distance between the calculated values 𝑇஺ேே(𝑥∗, 𝑡,Δ஺ேே), corresponding to the found vector of parameters Δ஺ேே and the corresponding 
realizations of the input data array 𝑇ெ௝൫𝑥∗, 𝑡,Δ௝൯. A linear combination of the output signals of the 
radial elements for all elements of the training sample, with the found weight coefficients, makes 
it possible to obtain the resulting estimate of the values of the parameters of the polynomial 
representation according to Eq. (4) of the identified characteristic 𝑞(𝑡). A diagram showing the 
architecture of a radial basic neural network for solving a parametric optimization problem is 
shown in Fig. 2. 

 
Fig. 2. RBF – network architecture, 𝜑(𝐓∗,𝐀) – radial basis functions, 𝑤 – network setup parameters  

5. Results and discussion 

According to the described method, on the basis of the mathematical model (Eq. (1), (2)), the 
inverse boundary problem of heat conduction was solved by restoring the unknown function of 
the heat flux density: 



PARAMETRIC IDENTIFICATION OF TECHNOLOGICAL THERMOPHYSICS PROCESSES BASED ON NEURAL NETWORK APPROACH.  
ANNA DILIGENSKAYA, ALEXANDR SAMOKISH 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1413 

𝑞଴(𝑡) = 𝑘൫1 − 𝑒ିఉ௧൯, (7)

using experimental data 𝑇∗(𝑡, 𝛿)  taking into account the additive measurement error 𝑇∗(𝑡, 𝛿) =  𝑇଴(𝑥∗, 𝑡) + 𝛿𝑟𝑎𝑛𝑑𝑛, where 𝑇଴(𝑥∗, 𝑡) – exact solution of the heat conduction problem 
(Eq. (1), (2)), and “randn” function simulates a normal distribution with zero mean value and 
standard deviation 𝛿. 

Temperature dependence 𝑇଴(𝑥∗, 𝑡) was obtained at the point 𝑥∗ = 0.9 based on the general 
solution of the heat problem, expressed in integral form: 

𝑇(𝑥, 𝑡) = න𝐺(𝑥, 1, 𝑡 − 𝜏)𝑞(𝜏)𝑑𝜏,௧
଴  (8)

where 𝐺(𝑥, 𝜉, 𝑡– 𝜏) – Green’s function corresponding to the boundary value problem (Eq. (1), (2)). 
In accordance with Eq. (7), the flux density is taken to be 𝑞(𝑡) = 𝑞଴(𝑡), and Eq. (8) takes the form: 

𝑇଴(𝑥, 𝑡) = 𝑘𝑡 − 𝑘𝛽 ൫1 − 𝑒ିఉ௧൯ 
      +2𝑘 ෍(−1)௠ஶ

௠ୀଵ ቆ1 − 𝑒ିగమ௠మ௧𝜋ଶ𝑚ଶ + 𝑒ିగమ௠మ௧ − 𝑒ିఉ௧𝜋ଶ𝑚ଶ − 𝛽 ቇ cos(𝜋𝑚𝑥). (9)

The parametric optimization problem was solved in the class of polynomial functions 
according to Eq. (4) with 𝑁 = 2, 3. Temperature curves 𝑇ெ൫𝑥∗, 𝑡,Δ(ଷ)൯ with 𝑁 = 3 which are the 
input data for the ANN, are obtained on the basis of Eq. (8) when specifying 𝑞(𝑡) = 𝑞଴൫𝑡,Δ(ଷ)൯ 
in the form of a polynomial dependence (Eq. (4)) with 𝑁 = 3, Δ(ଷ) = (𝑎଴,𝑎ଵ,𝑎ଶ,𝑎ଷ), which has 
the following form: 

𝑇൫𝑥, 𝑡,∆(ଷ)൯ = 𝑎଴𝑡 + 𝑎ଵ𝑡ଶ2 + 𝑎ଶ𝑡ଷ3 + 𝑎ଷ𝑡ସ4 + 2 ෍ cos (𝜋𝑚𝑥)ஶ
௠ୀଵ ∗ cos(𝜋𝑚) 

      ∗ ቌ 𝑎଴𝜋ଶ𝑚ଶ ൫1 − 𝑒ି൫గమ௠మ௧൯൯ + 𝑎ଵ𝜋ସ𝑚ସ ൫𝜋ଶ𝑚ଶ𝑡 − 1 + 𝑒ି൫గమ௠మ௧൯൯
+ 𝑎ଶ𝜋ଶ𝑚ଶ ቆ𝑡ଶ − 2𝑡𝜋ଶ𝑚ଶ + 2𝜋ସ𝑚ସ ∗ ൫1 − 𝑒ି൫గమ௠మ௧൯൯ቇ
+ 𝑎ଷ ቆ 𝑡ଷ𝜋ଶ𝑚ଶ − 3𝜋ଶ𝑚ଶ ∗ ቆ 𝑡ଶ𝜋ଶ𝑚ଶ − 2𝑡𝜋ସ𝑚ସ + 2𝜋଺𝑚଺ቇ + 6 ∗ 𝑒ି൫గమ௠మ௧൯𝜋଼𝑚଼ ቇቍ. 

(10)

The case 𝑁 = 2 can be considered as a special case 𝑁 = 3 with 𝑎ଷ = 0.  
The problem is solved using RBF – network on the identification interval 𝑡 ∈ [0: 0.02: 1ሿ with 

the following data 𝑘 = 2, 𝛽 = 2 taking into account measurement errors distributed according to 
the normal law with standard deviation 𝛿 = 0-15 %. 

Some results of solving the problem are presented in Figs. 3-6. 
The figures show the change in the configuration of the temperature discrepancy with an 

increase in the intensity of the interference when searching for solutions in the class of functions 𝑁 = 3. With no interference (Fig. 3(a)) alternating extrema are present on the curve 𝑇଴(𝑥∗, 𝑡)– 𝑇ெ൫𝑥∗, 𝑡,Δ(ଷ)൯, and the error in approximating the temperature field is less than 1 %. With an 
increase in the level of measurement error, the curve of the temperature residual is distorted 
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(Fig. 3(b)), which leads to an increase in the approximation error. A similar situation is when  𝑁 = 2 and 𝑁 = 3 (Fig. 4, 5). In the general case, the solution in the class of functions with the 
number 𝑁 = 3 allows us to obtain greater accuracy than with 𝑁 = 2 both for approximating the 
temperature (Fig. 4(a), 5(a)) and for identifying the unknown function – the heat flux density 
(Fig. 4(b), 5(b)), but in each case the results based on the analysis of random processes using 
neural networks may differ. At the same time, there is no unambiguous relationship between the 
error 𝑇଴(𝑥∗, 𝑡)-𝑇ெ൫𝑥∗, 𝑡,Δ(ே)൯ and 𝑞଴(𝑡)–𝑞൫𝑡,Δ(ே)൯ as in most cases, this happens when using 
deterministic algorithms [8]-[11]. 

 
a) 

 
b) 

Fig. 3. The error 𝜀 (்ଷ) = 𝑇଴(𝑥∗, 𝑡) − 𝑇ெ൫𝑥∗, 𝑡,Δ(ଷ)൯ in the approximation  
of the temperature field at 𝑁 = 3 in a) the absence of interference (𝛿 = 0 %) and  

b) its action 1 − 𝛿 = 2 %; 2 − 𝛿 = 5 %; 3 − 𝛿 = 10 % 

 
a) 

 
b) 

Fig. 4. a) Error 𝜀 (்ே) = 𝑇଴(𝑥∗, 𝑡) − 𝑇ெ൫𝑥∗, 𝑡,Δ(ே)൯ in approximating the temperature dependence and  
b) error 𝜀௤(ே) =  𝑞଴(𝑡) − 𝑞൫𝑡,Δ(ே)൯ of reconstruction of the identified characteristic at 𝛿 = 2 %:  

1 – 𝑁 = 2; 2 – 𝑁 = 3 

With an increase in the level of perturbation, the configuration of the temperature field error 
changes, which leads to a decrease in the accuracy of the temperature approximation and the 
identified function. This dependence has an ambiguous character for the restoration of both the 
state function and the desired characteristic. Artificial intelligence methods ensure the accuracy 
of solving the problem, acceptable for engineering calculations (Fig. 6), in the selected range of 
measurement error with a given input information. 
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a) 

 
b) 

Fig. 5. a) Fitting error 𝜀 (்ே) = 𝑇଴(𝑥∗, 𝑡) − 𝑇ெ൫𝑥∗, 𝑡,Δ(ே)൯ and b) departure 𝜀௤(ே) = 𝑞଴(𝑡) − 𝑞൫𝑡,Δ(ே)൯  
in approximating the desired effect at 𝛿 = 15 %: 1 – 𝑁 = 2; 2 – 𝑁 = 3 

 
Fig. 6. Comparison of the solution obtained with the experimental  

temperature 1 – 𝑇∗(𝑡), 𝛿 = 15 %; 2 – 𝑇ெ൫𝑥∗, 𝑡,Δ(ଷ)൯, 𝑁 = 3 

6. Conclusions 

In this paper, using the example of the boundary value inverse problem of heat conduction, an 
approach to solving inverse problems of mathematical physics is presented, which combines the 
advantages of the exact analytical method, which is the basis for the identification of objects with 
distributed parameters on a compact set of polynomial functions, and artificial intelligence 
methods that allow processing large amounts of data and used for solving the problem of 
parametric optimization in conditions of perturbation of input information. The results obtained 
confirm the possibility of using neural networks in solving the problem of parametric optimization 
using the example of the inverse heat conductivity problem. The effectiveness of the results 
obtained depends on the level of measurement error and the specified values of the boundaries of 
the intervals of the probable change in the parameters. 

To improve the accuracy of the solution, it is necessary to increase the degree 𝑁  of the 
approximating polynomial and, accordingly, the dimension of the sought vector of parameters Δ(𝑁), each of which 𝑎௜, 𝑖 = 0,𝑁തതതതത under data uncertainty is set on a certain admissible interval. 
With an increase of the number 𝑁, the complexity and cumbersomeness of the neural network 
rapidly occurs. Moreover, some a priori information about the technological limitations of the 
device or process under study must be known for the adequate parameter setting. 

The computational complexity of the proposed approach is associated with a large volume of 
processed data with an increase in the number of estimated parameters, which requires significant 
computing resources and time. These requirements are necessary only at the stage of training the 
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neural network. The trained neural network is versatile and can be used repeatedly in the study of 
typical heat conduction processes. 
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