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Abstract. The dynamics of the gun drilling process is analyzed in this paper. The tool shank is 
modeled as long straight beam vibrating in transverse direction under action of cutting forces. 
Axial force component is expressed as proportional to cutting thickness, which is determined as 
nonlinear function of beam transverse deflection with time delay. Nonlinear equations of motion 
of the drilling shank are derived. The stability diagram of the system dynamics was determined. 
The bifurcation analysis of nonlinear differential delay equations by means of multiple scale 
method was performed. The obtained results were verified by numerical integration of nonlinear 
equations. The influence of cutting conditions on system stability and chatter amplitude was 
observed. 
Keywords: gundrilling, chatter, nonlinear dynamics. 

1. Introduction 

Long straight holes are usually produced by means of a special drilling tool. This efficient 
process is widely used in the automotive industry to drill deep holes in cylinder heads, crankshafts, 
fuel pump housings, turbine blades and etc. Gundrilling is the mostly used method of deep small 
hole machining. Gun drill has asymmetrical single edge tool design with long straight tube of 
asymmetrical cross-section with a typical reachable diameter range of 0.5 mm up to 40 mm and 
length-to-diameter- ratios up to 𝐿/𝐷 = 400 (in special applications even 𝐿/𝐷 = 900 [1]). The 
method is widely applied in machining small deep holes as it provides a good straightness and 
high quality of machined surface due to its self-guiding action [2]. Optimal drill performance in 
gundrilling is achieved when the combination of the cutting speed, feed rate, tool geometry, 
carbide grade, and coolant parameters are selected properly depending upon the work material, 
deep-hole tool machine conditions, and the quality requirements to the drilled holes. Due to low 
flexural stiffness of gun drill shank lateral vibrations of high magnitude could be excited during 
the machining. Excessive vibrations are detrimental to finish surface quality and may damage the 
tool. Therefore, it is important to predict in advance regimes with chatter vibrations. The 
regenerative mechanism is the main source of chatter vibrations. And it requires that time-delayed 
terms in model equations should be taken into account. The same mechanism emerges not only in 
drilling [3-5], but in milling [6], boring etc. The comprehensive review of present state of deep 
hole drilling modeling was given in [1]. Most authors modeled drill shank using the reduced single 
degree of freedom system. In this paper gun drill is considered as flexible continuous beam loaded 
with eccentrically applied cutting force. The new approach allows considering the influence of 
lateral vibrations on the dynamics of the gun drilling system. The multiple scale method is applied 
for nonlinear vibrations analysis. Stability diagram was constructed and bifurcation diagrams were 
obtained by multi-scale expansion. The nonlinear behavior of system in vicinity of stability 
borders was analyzed by using numerical integration of nonlinear equation. 

2. Model of gun drilling system  

Gun drill shank is modeled as long slender beam using Euler-Bernoulli beam theory. The beam 
axial line is supposed to be straight line in undeformed state. Schematic of gun drilling process is 
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presented on Fig. 1. Usually gun drill rests upon intermediate supports, but we suppose that 
clearance in these supports is large enough, so that these supports are not taken into consideration. 
Therefore, for the sake of simplicity we assume, that gun drilling shank as simply supported beam.  

 
Fig. 1. Scheme of gun drilling process. 

Gun drill tool has asymmetric cutting edge design, components of cutting force are shown in 
Fig. 2(a). In-plane component of cutting force (𝐹௣௟) is balanced by guiding pads, while tangential 
component of force leads to torque loading upon gun drill.  

Axial component of cutting force is applied with eccentricity – 𝑒. Therefore, beam is loaded 
with axial force and bending moment. The mathematical model is presented in Fig. 2(b).  

 
a) Loading conditions of gun drill cutting edge 

 
b) Drawing of mathematical model  

of gun drilling system 
Fig. 2. Loading conditions of gun drill cutting edge and drawing  

of mathematical model of gun drilling system 

Nonlinear partial differential equation of beam vibration in plane of minimal rigidity were 
derived in [7] as: 

𝑚଴ 𝜕ଶ𝑤𝜕𝑡ଶ + 𝐸𝐼 𝜕ସ𝑤𝜕𝑠ସ + 𝐹௔ 𝜕ଶ𝑤𝜕𝑠ଶ = −𝐸𝐼 𝜕𝜕𝑠 ൭𝜕ଷ𝑤𝜕𝑠ଷ ൬𝜕𝑤𝜕𝑠 ൰ଶ + ቆ𝜕ଶ𝑤𝜕𝑠ଶ ቇଶ 𝜕𝑤𝜕𝑠൱ 
        + 12𝑚଴ ቊ𝜕𝑤𝜕𝑠 න 𝜕ଶ𝜕𝑡ଶ ቈන ൬𝜕𝑤𝜕𝑠 ൰ଶ 𝑑𝑠௦

଴ ቉ 𝑑𝑠௅
௦ ቋ − 32𝐹௔ ൬𝜕𝑤𝜕𝑠 ൰ଶ 𝜕ଶ𝑤𝜕𝑠ଶ + 𝑀௕𝛿ᇱሺ𝑠 − 𝐿ሻ, (1)

where 𝑤 – lateral displacement of beam axis, 𝑡 – time, 𝑠 – axial coordinate, 𝑚଴ – mass of unit 
length, 𝐸𝐼 – flexural stiffness of the beam, 𝐹௔ – axial force acting at the beam end, 𝑀௕ – bending 
moment, due to cutting force eccentricity, 𝛿 – Dirac function, 𝐿 – length of the beam. Deflection 
in other plane and torsion are ignored. 

Chatter vibrations occur due to regenerative mechanism as the vibrating tool cutting edge 
interacts with the surface left by edge at its previous pass [8, 9]. To model this phenomenon we 
assume, that cutting force is proportional to the uncut chip thickness ℎ, which is dependent upon 
axial position of the cutting edge at instant moment and time delayed by period of workpiece 
rotation 𝑇: 𝐹௔ = −𝐾௖ℎ,    𝑀௕ = −𝑒௬𝐾௖ℎ,          ℎ = 𝑎 + 𝑢ሺ𝐿, 𝑡ሻ − 𝑢ሺ𝐿, 𝑡 − 𝑇ሻ, (2)
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where 𝐾௖ – cutting coefficient, 𝑒௬ – eccentricity of the applied cutting force, ℎ – chip thickness, 𝑎 
– feed, 𝑇 – delay equal to work piece rotation period, 𝑢 – axial displacement. 

Axial displacement of the beam end is expressed nonlinearly through lateral displacement as: 

𝑢ሺ𝐿, 𝑡ሻ = −න 12 ൬𝜕𝑤𝜕𝑠 ൰ଶ 𝑑𝑠௅
଴ . (3)

Under such loading transverse vibrations arise and it leads to axial deflection of tool tip and 
therefore varying uncut chip thickness and forces [10]. Various models of tool vibrations under 
drilling were analyzed by authors in [8, 11, 12]. Chatter vibrations in these papers are explained 
due to axial or axial-torsional deformation of tool. However, for gun drill with high  
length-to-diameter ratio flexural vibrations are more significant and are analyzed in the paper. 

The equations of flexural-torsional tool vibration under finite tool shank deflection were 
analyzed in [9]. It was shown that chatter vibration occurs in vicinity of lower eigenfrequency 
with eigenmode corresponding to this frequency.  

Equations of motion in nondimensional form were obtained [7], following nondimensional 
variables and parameters were introduced: 𝑤෥ = 𝑤𝐿 ,      𝑠̃ = 𝑠𝐿 𝑒௬෦ =  𝑒௬𝐿 ,      𝑎෤ =  𝑎𝐿 ,      𝑡̃ = 𝜔଴𝑡,      𝑇෨ = 𝑇𝜔଴,      
𝜔଴ = ඨ 𝐸𝐼𝜌𝐴𝐿ସ ,      𝐾௖෪ = 𝐾௖𝐿ଷ𝐸𝐼 . (4)

Here and after we omit all tildes and use nondimensional variables only. 
Next, we discretize system equations by means of Galerkin method using first flexural mode 

in plane of minimal flexural rigidity. We also add viscous damping to take into account dissipation 
of energy [7]: 𝑤ሺ𝑠, 𝑡ሻ = 𝑥ሺ𝑡ሻ sinሺ𝜋𝑠ሻ, 𝑥ሷ + 2𝑑𝑥ሶ + 𝑝଴ଶ𝑥 = −𝑏଴ሺ𝑥ଶ − 𝑥ௗଶሻ𝑥 − 𝑏ଵሺ𝑥ሶ ଶ + 𝑥𝑥ሷሻ𝑥 − 𝑏ଶ𝑥ଷ + 𝑏ଷ − 𝑏ସሺ𝑥ଶ − 𝑥ௗଶሻ, (5)

where: 

𝑝଴ଶ = 𝜋ସ ൬1 − 𝐾௖𝑎𝜋ଶ ൰ ,     𝑏଴ = 14𝐾௖𝜋ସ,      𝑏ଵ = 𝜋ଷ2 ൬𝜋3 − 38𝜋൰ ,     𝑏ଶ = 𝜋଺2 − 38𝜋ସ𝐾௖𝑎, 𝑏ଷ = 2𝜋𝐾௖𝑒௬𝑎,     𝑏ସ =  𝜋ଷ𝐾௖𝑒௬2 , (6)

𝑥ௗ = 𝑥(𝑡 − 𝑇) – time-delayed variable value, 𝑑 – damping coefficient. 
Further we will study the effect of nonlinear regenerative mechanism for chatter vibrations 

excitation, thus we simplify equations by neglecting terms corresponding the geometrical 
nonlinearity of the system, except for terms, which are associated with determining axial 
displacement and loading containing the delayed functions. This could be done due to the fact, 
that usually cutting coefficient is much higher compared to other terms and are highly responsible 
for chatter vibration excitation. The geometrical nonlinearity consideration leads to nonsignificant 
variation of chatter stability borders.  

After such assumptions we get: 

𝑥ሷ + 2𝑑𝑥ሶ + ቆ𝜋ସ − 𝜋ଶ𝐾௖(𝑎 − 𝜋ଶ4 𝑥ଶ + 𝜋ଶ4 𝑥ௗଶ)ቇ𝑥 = 2𝜋𝐾௖𝑒௬ ቆ𝑎 − 𝜋ଶ4 𝑥ଶ + 𝜋ଶ4 𝑥ௗଶቇ. (7)
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Term 2𝜋𝐾௖𝑒௬𝑎 represents constant component of bending moment, which defines the static 
deflection 𝑥௦௧. To study dynamic displacement near the equilibrium position, we rewrite equation 
of motion in vicinity of bent equilibrium state for dynamic component of beam deflection 𝑥 as 
follows: 𝑥ሷ + 2𝑑𝑥ሶ + 𝑝଴ଶ𝑥 + 𝑘ଵ(𝑥 − 𝑥ௗ) + 𝑎ଵ(𝑥ଶ − 𝑥ௗଶ) + 𝑎ଶ𝑥(𝑥 − 𝑥ௗ) + 𝑎ଷ𝑥(𝑥ଶ − 𝑥ௗଶ) = 0, (8)

where: 

𝑘ଵ = 𝜋ସ2 𝐾௖𝑥௦௧ଶ + 𝜋ଷ𝐾௖𝑒௬𝑥௦௧, 𝑎ଵ = 𝜋ଷ2 𝐾௖𝑒௬ + 𝜋ସ4 𝐾௖𝑥௦௧ , 𝑎ଶ = 𝜋ସ2 𝐾௖𝑥௦௧ , 𝑎ଷ = 𝜋ସ4 𝐾௖,      𝑥௦௧ = 2𝜋𝐾௖𝑒௬𝑎𝑝଴ଶ . (9)

The Eq. (8) feature concludes in existence of time delay variables in linear and nonlinear terms, 
that requires stability analysis and investigation of stationary regimes of linearized equation, and 
self-vibrations analysis near the border of stability. 

3. Numerical analysis 

3.1. Stability of linearized equation 

First, we perform linear stability analysis via 𝐷-decomposition technique in domain of system 
parameters (coordinates 𝑇 − 𝐾௖). Linearized Eq. (8) reads as followed: 𝑥ሷ + 2𝑑𝑥ሶ + 𝑝଴ଶ𝑥 + 𝑘ଵ(𝑥 − 𝑥ௗ) = 0. (10)

To find stability boundaries, we express unknown variable in exponential form. After 
separating real and imaginary term we get system of transcendental equations: −𝜔ଶ + 𝑝଴ଶ + 𝑘ଵ(1 − cos(𝜔𝑇)) = 0,      2𝑑𝜔 + 𝑘ଵ sin(𝜔𝑇) = 0. (11)

Solving these equations in respect to 𝜔 , 𝑇  for different values of 𝐾௖  we obtain classical 
periodically altering regions of stability and instability (Fig. 3). Values of parameters used in this 
paper are 𝑑 = 0.0493, 𝑒௬ = 6.17𝑒ିଷ, 𝑎 = 1.67 𝑒ିସ. 

The behavior of the system in vicinity of stability borders is of great interest. Bifurcation 
analysis of the dynamical system requires analysis of full nonlinear Eq. (8). 

 
Fig. 3. Stability diagram of linearized system. A and B – regions where bifurcation analysis is performed 

3.2. Nonlinear analysis 

To investigate dynamic behavior after stability loss we perform bifurcation analysis of 
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nonlinear differential delay equations by means of multiple scale method [13]. We introduce time, 
variable and time delay as:  𝑑𝑑𝑡 = 𝜕𝜕𝑇଴ + 𝜀 𝜕𝜕𝑇ଵ + 𝜀ଶ 𝜕𝜕𝑇ଶ, (12)𝑥 = 𝜀𝑥ଵ(𝑇଴,𝑇ଵ,𝑇ଶ) + 𝜀ଶ𝑥ଶ(𝑇଴,𝑇ଵ,𝑇ଶ) + 𝜀ଷ𝑥ଷ(𝑇଴,𝑇ଵ,𝑇ଶ), (13)𝑇 = 𝑇௖௥ + 𝜀𝜏ଵ + 𝜀ଶ𝜏ଶ, (14)

where 𝑇௖௥ – critical delay corresponding to stability boundary. 
The delayed variable is expanded as: 𝑥௜(𝑡 − 𝑇) = 𝑥௜(𝑇଴ − 𝑇,𝑇ଵ − 𝜀𝑇,𝑇ଶ − 𝜀ଶ𝑇) = 𝑥௜ௗ + 𝜀(−𝑇௖௥𝐷ଵ𝑥௜ௗ − 𝜏ଵ𝐷଴𝑥௜ௗ) + ⋯     +𝜀ଶ ൬−𝑇௖௥𝐷ଶ𝑥௜ௗ − 𝜏ଵ𝐷ଵ𝑥௜ௗ − 𝜏ଶ𝐷଴𝑥௜ௗ + 12 (𝑇௖௥ଶ𝐷ଵ,ଵ𝑥௜ௗ + 2𝑇௖௥𝜏ଵ𝐷଴,ଵ𝑥௜ௗ + 𝜏ଵ𝐷଴,଴𝑥௜ௗ)൰, (15)

where 𝐷௜ = డడ்೔, 𝐷௜,௝ = డమడ்೔డ்ೕ,  𝑥௜ௗ = 𝑥௜(𝑇଴ − 𝑇௖௥ ,𝑇ଵ,𝑇ଶ). 

Substituting Eqs. (12)-(15) and equating the same terms of power ε, the following partial 
differential equations are obtained: 𝜀ଵ: 𝐷଴,଴𝑥ଵ + 2𝑑𝐷଴𝑥ଵ + 𝑘𝑥ଵ + 𝑘ଵ(𝑥ଵ − 𝑥ଵௗ) = 0, (16)𝜀ଶ: 𝐷଴,଴𝑥ଶ + 2𝑑𝐷଴𝑥ଶ + 𝑘𝑥ଶ + 𝑘ଵ(𝑥ଶ − 𝑥ଶௗ) = ⋯     = −2𝐷଴,ଵ𝑥ଵ − 2𝑑𝐷ଵ𝑥ଵ − 𝑘ଵ(𝑇௖௥𝐷ଵ𝑥ଵௗ + 𝜏ଵ𝐷଴𝑥ଵௗ) − 𝑎ଵ(𝑥ଵଶ − 𝑥ଵௗଶ) − 𝑎ଶ𝑥ଵ(𝑥ଵ − 𝑥ଵௗ), (17)𝜀ଷ: 𝐷଴,଴𝑥ଷ + 2𝑑𝐷଴𝑥ଷ + 𝑘𝑥ଷ + 𝑘ଵ(𝑥ଷ − 𝑥ଷௗ) = ⋯      = −2𝐷଴,ଵ𝑥ଶ − 2𝐷଴,ଶ𝑥ଵ − 𝐷ଵ,ଵ𝑥ଵ − 2𝑑𝐷ଵ𝑥ଶ − 2𝑑𝐷ଶ𝑥ଵ − 𝑘ଵ𝑒𝑥𝑝𝑟ଵ − 𝑒𝑥𝑝𝑟ଶ, (18)𝑒𝑥𝑝𝑟ଵ = 𝑇௖௥𝐷ଶ𝑥ଵௗ + 𝜏ଵ𝐷ଵ𝑥ଵௗ + 𝜏ଶ𝐷଴𝑥ଵௗ − 12 ൫𝑇௖௥ଶ𝐷ଵ,ଵ𝑥ଵௗ + 2𝑇௖௥𝜏ଵ𝐷଴,ଵ𝑥ଵௗ + 𝜏ଵ𝐷଴,଴𝑥ଵௗ൯     +⋯+ 𝑇௖௥𝐷ଵ𝑥ଶௗ + 𝜏ଵ𝐷଴𝑥ଶௗ , (19)𝑒𝑥𝑝𝑟ଶ = 2𝑎ଵ൫𝑥ଵ𝑥ଶ − 𝑥ଵௗ𝑥ଶௗ + 𝑥ଵௗ(𝑇௖௥𝐷ଵ𝑥ଵௗ + 𝜏ଵ𝐷଴𝑥ଵௗ)൯ + ⋯     +𝑎ଶ൫𝑥ଵ(𝑥ଶ − 𝑥ଶௗ + 𝑇௖௥𝐷ଵ𝑥ଵௗ + 𝜏ଵ𝐷଴𝑥ଵௗ) + 𝑥ଶ(𝑥ଵ − 𝑥ଵௗ)൯ + 𝑎ଷ𝑥ଵ(𝑥ଵଶ − 𝑥ଵௗଶ). (20)

General solution of first equation is written as: 𝑥ଵ = 𝐴(𝑇ଵ,𝑇ଶ) cos(𝜔𝑇଴) + 𝐵(𝑇ଵ,𝑇ଶ) sin(𝜔𝑇଴). (21)
Quadratic terms do not introduce secular terms in second approximation, therefore 𝜏ଵ = 0, and 𝐴 , 𝐵  are independent of time-scale 𝑇ଵ . However, quadratic terms still contribute to third 

approximation equations. Second approximation has a form: 𝑥ଶ = 𝐴ଶ(𝑇ଵ) 𝑐𝑜𝑠(2𝜔𝑇଴) + 𝐵ଶ(𝑇ଵ) 𝑠𝑖𝑛(2𝜔𝑇଴) + 𝐶ଶ(𝑇ଵ), (22)

where 𝐴ଶ, 𝐵ଶ, 𝐶ଶ – coefficients, which are expressed in terms of 𝐴, 𝐵.  
After elimination of secular terms in third approximation we get first order differential 

equations in respect to unknowns 𝐴(𝑇ଶ), 𝐵(𝑇ଶ). 
It is convenient to introduce solution of equations in polar form: 𝐴(𝑇ଶ) = 𝐶(𝑇ଶ)cos𝜑(𝑇ଶ),𝐵(𝑇ଶ) = 𝐶(𝑇ଶ)sin𝜑(𝑇ଶ), (23)

where 𝐶, 𝜑 – amplitude and phase.  
Eliminating 𝜑 from equations we get differential equation for amplitude 𝐶. To find limit cycle 

amplitude we assume, that డడ మ் 𝐶 = 0. As a result we will derive the algebraic equation for limit 
cycle amplitude 𝐶 calculation. Resulting equation has a form: 
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𝑓(𝜔,𝑇௖௥ ,𝑑,𝑝଴,𝑎ଵ,𝑎ଶ,𝑎ଷ)𝐴ଶ = 𝑔(𝜔,𝑇௖௥ ,𝑑,𝑝଴,𝑎ଵ,𝑎ଶ,𝑎ଷ)𝜏ଶ. (24)

Obtained functions 𝑓 and 𝑔 are quite cumbersome and are not presented here. All algebraic 
manipulations were performed in Matlab Symbolic toolbox. 

The system behavior in the vicinity of the bifurcation point has been studied in order to analyze 
the nature of Andronov-Hopf bifurcation with respect to system parameters variation. Here we 
vary delay parameter, which corresponds to rotational velocity of gundrill.  

Bifurcation diagram for two regions in the vicinity of the stability border. (Fig. 3, regions A, 
B) have been analyzed by means of asymptotic method. Amplitudes of limit cycle vs parameter T 
in Fig. 6 are presented. To verify results obtained by asymptotic method we perform numerical 
time integration of Eq. (8) using implicit scheme with iterations. Examples of resulting 
displacement time histories and its Fourier spectrum are shown in Figs. 4-5. Amplitudes of steady 
motion, obtained by numerical integration are compared with the results of asymptotic method. 
Bifurcation diagrams for two cases determined by two methods in Fig. 6 are presented. 

 
a) Time history for 𝑥 

 
b) Fourier spectrum of steady motion 

Fig. 4. Time history for 𝑥 and Fourier spectrum of steady motion. Parameters: 𝐾௖ = 8000, 𝑇 = 7.2433 

 
a) Time history for 𝑥 

 
b) Fourier spectrum of steady motion 

Fig. 5. Time history for 𝑥 and Fourier spectrum of steady motion. Parameters: 𝐾௖ = 9000, 𝑇 = 7.9261 

Results obtained by asymptotic method are found to be in good agreement with results 
obtained by numerical integration.  

 
a) Zone A, 𝐾௖ = 8000, 𝑇௖௥ = 7.2258 

 
b) Zone B, 𝐾௖ = 9000, 𝑇௖௥ = 7.9061 

Fig. 6. Bifurcation diagram determined by asymptotic analysis and numerical integration 



MODELING OF CHATTER VIBRATIONS IN GUN DRILLING PROCESS.  
SERGEY VORONOV, IVAN PLESHCHEEV 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 25 

4. Conclusions 

In this paper nonlinear model of chatter vibrations of gundrilling tool is presented. Stability 
diagram of the linearized system was obtained. The relative cutting speed is the main critical 
parameter which effects on process stability. Post-critical behavior after stability loss was 
analyzed by means of method of multiple scales. The bifurcation diagrams of the dimensionless 
cutting speed (speed of detail rotation) influence on chatter vibration amplitude were determined. 
The results of numerical simulation and the nonlinear equation asymptotic solution showed good 
agreement. Presented model could be used for stability analysis and for prediction of amplitudes 
of chatter in unstable zone. The results of modeling can be exploited in industry for optimal cutting 
conditions determination. 
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