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Abstract. Due to its high precision, productivity, and surface quality, computer numerical control 
turning (CNC) is a desirable processing tool in the traditional processing area. CNC machining 
procedures have a huge number of process parameters, making it challenging to find the best 
combination of parameters for increased accuracy. In this research work, the Taguchi method and 
ANOVA were used to study the effects of CNC machining parameters in EN8 steel turning: 
Surface roughness (Ra) value of component affected due to cutting speed, depth of cut and feed 
rate. Three-level three-parameter experimental design, using Minitab 17 software using L9 
orthogonal array, using coated carbide insert cutting tools, using signal-to-noise ratio (S/N) to 
study the performance characteristics of EN8 steel turning. In this study, statistical approaches 
such as the signal-to-noise ratio (S/N ratio) and analysis of variance (ANOVA) were used to 
explore the effects of cutting speed, depth of cut, and feed rate on surface roughness. Nature-
inspired algorithms play a vital role in solving real life. In this study, the bat algorithm can be used 
to predict the optimal surface value (Ra) and process parameters. Verify the results by conducting 
confirmation experiments. The current research shows that the feed rate is the most important 
factor affecting the surface roughness (Ra) of EN8 steel turning. 
Keywords: CNC machining, Taguchi, analysis of variance (ANOVA), bat optimization algorithm. 

1. Introduction 

Modern precision manufacturing requires extremely high dimensional accuracy and surface 
finish. Even if it is not a skilled operator, if not impossible, it is difficult to achieve such a 
performance manually. When possible, it will take more time due to frequent dimensional 
measurements to prevent overcutting. Therefore, it is obvious that in modern manufacturing, CNC 
control will replace manual lathe machines. The development of computer numerical control 
(CNC) machines has also made it possible to automate the machining process, and can flexibly 
handle the production of small and medium batches of parts. This led to the development of 
computer-based automatic machine tool controls, also known as numerical control (NC) systems. 
To optimise the surface roughness (RA) in CNC machining of EN8 steel, the proposed new 
methodology combines two methodologies. EN8 steel was chosen for the study because it has a 
wide range of applications, making it important to improve its quality. The experiments and 
analysis designed by Taguchi are used to analyze the process parameters that affect Ra [1]. 
Mathematical relationships have been developed to correlate input process parameters and surface 
roughness values. Now a days modern trending technique of optimization are being used on to 
real life problems for getting the output in optimal way. In this research paper also a modern and 
effective optimization method which is a bio-inspired method is used to optimize the parameters. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jmai.2021.22148&domain=pdf&date_stamp=2021-08-11
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The parameters in this research which are responsible for surface roughness and which are 
considered are Machine speed, Feed rate and depth of cut. 

Nowadays, nature-inspired and biological-inspired algorithms are more effective in solving 
real-life problems. An optimization problem is proposed and optimized using the bat optimization 
algorithm. Nowadays, there are many evolutionary and Bat inspired optimization algorithms 
available, such as Grey Wolf Optimizer (GWO) [2], Particle Swarm Optimization (PSO) [3], Ant 
Colony Optimization (ACO) [4], Grasshopper Optimization Algorithm (GOA) [5], Firefly 
Algorithm (FA) [6], Salp Swarm Algorithm (SSA) [7], Cuckoo Search Algorithm (CS) [8], 
Genetic Algorithm (GA) [9], etc. Socially inspired algorithms such as Cohort Intelligence (CI) 
[10] and ideology algorithm [11] are also algorithms that help find the best parameters for the 
problem. Bat-inspired algorithms [12] have their own set of benefits and functions, which are 
explored in the following sections. 

1.1. Major parameters which Influence the process 

The most important performance indicators in CNC machining are the surface finish value and 
material removal rate. They depend on machining parameters such as cutting speed, feed rate, 
depth of cut, tool workpiece material, tool geometry and coolant conditions. These parameters 
have a great influence on the turning input parameters, and these parameters will greatly affect the 
response variables. In CNC turning, various response variables such as surface roughness, material 
removal rate, chipping method, etc. participate [13, 14]. 

1.2. Surface roughness (𝑹𝒂) 

Surface roughness is usually used in short as roughness only, which is a factor of surface 
texture. It is quantified by the deviation of the normal vector direction of the real surface from its 
ideal form. If these deviations are large, the surface will be rough; otherwise, the surface will 
become rough. The surface is smooth if they are little. Roughness is commonly defined in surface 
metrology as the high-frequency and short-wave components of the measured surface [15, 16]. In 
practice, however, knowing the amplitude and frequency at the same time is frequently required 
to verify that the surface is acceptable for a given function. Roughness is a key factor in 
influencing how actual objects behave [17, 18]. 

2. Methodology 

Experiments were performed using the Taguchi experimental design, which involved 3 input 
parameters and a performance index as an improved surface roughness (RA Analyze the impact 
of input factors on RA and identify other important parameters. Regression analysis was used to 
create the mathematical model. A bat heuristic optimization algorithm is used to solve an issue. 
The process parameters were chosen after a thorough review of the literature, and upper and lower 
limits were established. Compare the optimization results with Taguchi's signal-to-noise ratio 
analysis. The whole methodology and process for the research work is plotted in the graphical 
form which is presented in Fig. 1. 

2.1. Selection of Work piece material and their properties 

EN8 carbon steel is a common medium carbon and medium tensile steel, and its strength is 
higher than that of low carbon steel and medium hardened carbon steel. EN8 carbon steel can be 
easily machined under any circumstances. EN8 steel is usually used in an untreated state [19, 20]. 
However, EN8 steel can be further surface hardened through an induction process to produce 
components with higher wear resistance [21, 22]. The EN8 steel material in the form of heat 
treatment has a good uniform metallurgical structure and consistent machining performance. The 
purpose of this study is to use the response surface method to develop a theoretical model of 
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surface roughness on EN8 steel using main cutting parameters (such as cutting speed, feed rate 
and depth of cut). EN8 steel has a good homogenous metallurgical structure, consistent machining 
performance, and good tensile strength after heat treatment [23, 24]. EN8 is commonly utilized in 
a wide range of traditional engineering applications. Tables 1 and 2 indicate the chemical 
composition and physical parameters of the specified EN8 steel. 

 
Fig. 1. Methodology layout of the research 

Table 1. Properties of EN8 
Parameter Specific value 
Hardness 201.0-255.0 BHN 

Proof Stress (0.2 %) 450.0 N/mm2 
Elongation 16.0 % 
Yield stress 465.0 N/mm2 

Density 7.870 gm/cm3 
Maximum stress 850.0 N/mm2 
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Table 2. Chemical properties of EN8 steel 
Elements Standard value Observed value 

C%-CARBON 0.35-0.45 0.40 
SI%-SILICON 0.050-0.35 0.20 

MN%-MANGANESE 0.60-1.00 0.74 
P%-PHOSPHORUS 0.060 max. 0.023 

S%-SULPHUR 0.060 max. 0.020 

2.2. Selection of cutting tool materials 

Cutting tools must have three properties in order to generate high-quality products: hardness, 
toughness, and wear resistance. Choose the carbide-coated tool to cut the selected work piece 
[25, 26]. Table 3 gives the specifications of the selected tools, and Table 4 mentions the insert 
specifications. 

Table 3. Cutting tool specification TNMG Insert 
Tool type Manufacturer Designation Code Geometry Grade 

Carbide tool KORLOY TNMG 160404 VF CC115 

Table 4. Insert specifications 

Insert type Code Length of the 
insert in mm 

Thickness of 
insert in mm Radius of insert 

TNMG is a triangular insert 160404 16 04 0.4 

2.3. Machine tool and Surface Roughness Ra Measurement Apparatus used 

On the CNC machine tool, the turning operation is performed on the specified work piece EN8 
steel bar. The specifications of the CNC machine tool are similar to the Fanuc bi-Mate TD CNC 
system, the number of workstations is 8, the chuck size is 169 mm, and the spindle speed range is 
45-4500 rpm. Roughness is usually a good predictor of the performance of mechanical parts, 
because surface irregularities may form cracks or corroded nucleation sites. Roughness is a 
measure of surface texture. It is quantified by the vertical deviation of the actual surface from its 
ideal form. In the trials, a digital surface tester was utilized to measure surface roughness Ra and 
a digital weighing machine was utilized to measure metal removal rate. SURFTEST, S. J. 210, 
sr.no: 178-561-02A, MITUTOYO MECH, an experimental device for the surface roughness tester 
of JAPAN. 

2.4. Design of experiments 

Designers can use Design of Experiments (DOE) technology to determine the individual 
influences and interactions of various aspects that can affect the outcome of any design. DOE also 
gives a comprehensive understanding of the interactions between design parts, assisting in the 
transformation of any conventional design into a trustworthy one. In the design stage, the 
following introduces the selection of workpiece materials, machine tools, inserts, process and 
performance parameters, and the program selected for optimization. 

2.5. Turning parameters selected with different levels 

In turning operations performed in CNC Lathe, 3 process parameters are used: cutting speed 𝐶௦, which is spindle speed (in rpm), feed “𝐹” (in mm/rev), and depth of cut DOC (in mm). It is 
crucial for reaching the desired degree of output quality. The different parameter levels are listed 
in Table 5. 
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Table 5. Levels of turning process parameters 
Process parameters 1 2 3 

Spindle speed (m/min) 200 250 290 
Depth of cut (mm) 0.5 0.8 1.2 

Feed (mm/rev) 0.1 0.2 0.3 

As a result, these cutting process parameters and their associated levels for machining EN8 
steel are chosen based on preliminary testing, literature reviews, and catalogues provided by 
cutting tool manufacturers. 

2.6. Orthogonal array and experimental factors 

The Taguchi technique begins with the selection of a suitable orthogonal array. Table 6 
displays the L9 (3 3) orthogonal array, which is a standardized experimental design based on 
Taguchi. The basic design uses up to three control factors, of which three levels are used for 
cutting speed 𝐶௦, cutting depth 𝐷௖ and feed 𝐹. A total of 9 experimental runs must be performed, 
using the control factors shown in Table 6 Horizontal combination. Table 6 shows the parameters 
that were chosen, as well as the codes and values that were utilized in the Table 6 Research on 
Taguchi parameter design. The dependent variable is called the response variable. 

Table 6. Control factor and levels 
Experiment No. Speed Feed rate Depth of cut 

1 200.0 0.10 0.50 
2 200.0 0.20 0.80 
3 200.0 0.30 1.20 
4 250.0 0.10 0.50 
5 250.0 0.20 0.80 
6 250.0 0.30 1.20 
7 290.0 0.10 0.50 
8 290.0 0.20 0.80 
9 290.0 0.30 1.20 

The purpose of the experiment is to examine how turning factors affect EN8 steel surface 
roughness and material removal rate. Taguchi's orthogonal array was utilized to create the 
experiment, lowering the number of trials. The experiment is carried out using the three factors of 
the L9 orthogonal array’s three levels. 

3. Bat inspired algorithm 

3.1. Echolocation technique of Bats. 

“Bats are fascinating animals. They are the only winged mammals with advanced features of 
echolocation. It is estimated that there are about 1,000 different species, accounting for about 
one-fifth of all mammalian species. They vary in size, from small bumblebee bats (about 1.5-2 g) 
to giant bats with a wingspan of about 2 m and weighing about 1 kg. The length of the forearm of 
a bat is usually about 2.2-11 cm. Most bats use echolocation to some extent. Among all species, 
microbat is a famous example. Micro bats widely use echolocation, while giant bats do not. Most 
bats are carnivorous” [12]. 

Bats use sonar called echolocation to detect prey, avoid obstacles and find gaps in the dark. 
These bats emit very large pulses and hear echoes from surrounding objects. These pulses have 
different characteristics and may depend on their type and their hunting strategy. Most bats use 
short-frequency modulation signals to scan approximately octaves, while other bats usually use 
constant-frequency signals for echolocation.  



PROCESS PARAMETERS OPTIMIZATION BY BAT INSPIRED ALGORITHM OF CNC TURNING ON EN8 STEEL FOR PREDICTION OF SURFACE 
ROUGHNESS. CHAITANYA GIRISH BURANDE, OMKAR K. KULKARNI, SAMIDHA JAWADE, G. M. KAKANDIKAR 

78 JOURNAL OF MECHATRONICS AND ARTIFICIAL INTELLIGENCE IN ENGINEERING. DECEMBER 2021, VOLUME 2, ISSUE 2  

“Their signal bandwidth varies from species to species, and is usually increased by using more 
harmonics. Each pulse lasts only a few thousandths of a second (up to about 8-10 milliseconds). 
However, the frequency is constant, usually in the range of 25-150 kHz. The typical frequency 
range of most bat species is 25-100 kHz, but some species can emit higher frequencies up to 
150 kHz. Each ultrasonic pulse usually lasts 5 to 20 milliseconds, and microbats emit about 10 to 
20 such sound pulses per second” [12]. When looking for prey, when they are flying near the prey, 
the pulse emission speed may be as high as 200 pulses per second. Such a short sound represents 
the powerful ability of bats to process signals. According to research, the integration time of bat 
ears is typically around 300-400 milliseconds. Because sound travels at 340 m/s in air, the 
wavelength l of an ultrasonic wave bursting at a constant frequency 𝑓 equals 𝑣/𝑓. This is the 
standard 2-14 mm zoom range. The frequency range is 25 to 150 kHz. This wavelength is the 
same as the size of the prey. Surprisingly, the transmitted pulse can be as high as 110 dB. 
Fortunately, they are in the ultrasound zone. The loudness varies from the maximum loudness 
when looking for prey to the quiet base when looking for prey. The range of motion of such short 
pulses is usually a few meters, depending on the actual frequency. Mini bats can avoid small 
obstacles, such as small human hair. Studies have shown that bats use the time delay of echo 
emission and detection, the time difference between ears, and changes in echo loudness to create 
a three-dimensional scene around them. “It can detect the distance and direction of the target, the 
type of prey, and even the moving speed of prey such as small insects. Indeed, research shows that 
bats seem to be able to distinguish targets by Doppler effect changes caused by the flapping rate 
of target insects. Obviously, some bats have good eyesight, and most bats have a very sensitive 
sense of smell. In fact, they use a combination of all senses to effectively detect prey and maximize 
smooth navigation” [12]. However, we are only interested in echolocation and related behaviors 
here. This echolocation behavior of bats can be formulated to associate it with the objective 
function to be optimized, so that new optimization algorithms can be formulated. The rest of this 
white paper explains BA’s core concept before delving into its implementation and 
comparison [12]. 

3.2. Bat algorithm  

By idealizing certain echolocation characteristics of bats, you can develop algorithms or BA 
inspired by different bats. For simplicity, please use the following approximation or idealization 
rules. “All bats use echolocation to sense distance and magically “recognize” the difference 
between prey/prey and the background barrier. Bats fly randomly at position 𝑥௜ at speed 𝑣௜, fixed 
frequency 𝑓௠௜௡ , and change wavelength 𝑙  and loudness 𝐴଴  to find prey. The wavelength (or 
frequency) of the emitted pulse can be automatically adjusted according to the proximity of the 
target, and the pulse emission rate r can be adjusted within the range of [0 1] [12]. Loudness may 
be measured in a variety of ways, but we’ll suppose that it ranges from a big (positive) 𝐴଴ to the 
lowest constant number.” [12]. 

Another obvious simplification method is not to use ray tracing to estimate the time delay and 
3D terrain. For computational geometry applications, this may be a good feature, but for 
multi-dimensional, it is computationally very expensive, so we will not use it. We employ the 
following approximations in addition to these reduced assumptions for ease of usage. Generally, 
the frequency f in the range of [𝑓௠௜௡, 𝑓௠௔௫] corresponds to the wavelength range [𝑙௠௜௡, 𝑙௠௔௫]. For 
example, the frequency range of [20, 500 kHz] corresponds to the wavelength range of 0.7 to 
17 mm. Any wavelength can also be used for easy implementation to solve specific problems. In 
practice, you may modify the range by changing the wavelength (or frequency). The detectable 
range (or maximum wavelength) should be chosen to fit the target field’s size and then adjusted 
downwards. The range is very small. Moreover, it is not always necessary to use the wavelength 
itself. Alternatively, you can alter the frequency while maintaining the wavelength 𝑙 constant. This 
is due to the fact that 𝑙 and 𝑓 are connected, as 𝑙௙ is a constant. We shall employ the following 
approaches during the implementation phase. We can simplify by assuming that 𝑓 is in the range 
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[0, 𝑓௠௔௫]. Higher frequencies, we know, have shorter wavelengths and propagation distances. A 
few metres is common for bats. The pulse frequency is merely [0, 1]. Where 0 denotes no pulses 
at all and 1 denotes the greatest rate of pulse emission. Fig. 2 indicates the step by step process of 
Bat algorithm and it’s process. The fundamental BA stages can be represented as the pseudo code 
Fig. 3 using these approximations and idealizations. 

 
Fig. 2. Flow chart of Bat algorithm [12] 

3.3. Velocity and position vectors of virtual bats  

Virtual bats are used to create a realistic environment. The 𝑓௜  indicates the function value 
which is indicated by Eq. (1). In the 𝑑-dimensional search space, you must specify rules for 
updating location 𝑥௜ and velocity 𝑣௜ as seen in Eq. (2). At time step 𝑡, the new solution 𝑥௜௧ and 
velocity 𝑣௜௧ are provided by: 𝑓௜  ൌ  𝑓௠௜௡ ൅  ሺ𝑓௠௔௫  −  𝑓௠௔௫ ሻ𝛽, (1)
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𝑣௜௧  =  𝑣௜௧ିଵ  +  ሺ𝑥௜௧  −  𝑥∗ሻ𝑓௜ . (2)𝑥௜௧  =  𝑥௜௧ିଵ  +  𝑣௜௧ . (3)

where 𝛽  [0, 1] is a random vector produced from a uniform distribution among them. After 
evaluating all answers across all 𝑛 bats, 𝑥∗ is the current global best position (solution) which is 
indicated in Eq. (3). We may utilize 𝑓௜ (or 𝐼 to alter the speed change while adjusting other factors 𝐼  (or 𝑓௜ ), depending on the type of concern, because the product 𝑖𝑓௜  is the speed increment. 
According to the domain size of the problem of interest, we’ll use 𝑓௠௜௡ = 0 and 𝑓௠௔௫ = 100 in 
our implementation. Initially, each bat was given a frequency based on [𝑓௠௜௡, 𝑓௠௔௫]” [12], which 
was determined at random. Once a solution is chosen from the current best solutions for the local 
search section, a local random walk will be utilized to produce a new solution for each bat as 
shown in Eq. (4): 𝑥௡௘௪  =  𝑥௢௟ௗ  +  𝜀 𝐴௧, (4)

where 𝜀 ∈ [–1 1] is a random number, and 𝐴௧ is the average loudness of all bats in this time step. 
The update of the speed and position of the bat is somewhat similar to the process in the standard 
particle swarm optimization, because it actually controls the speed and range of the movement of 
the swarm particles. To a certain extent, BA can be seen as a balanced combination of standard 
particle swarm optimization and dense local search controlled by loudness and pulse rate [12]. 

 
Fig. 3. Pseudo code of Bat algorithm 

3.4. Variations of loudness and pulse emission  

In addition, as the iteration progresses, the loudness 𝐴௜  as seen in Eq. (5) and the pulse 
emission rate 𝑟௜  must be updated accordingly. Since once the bat finds its prey, the loudness 
usually decreases, as the rate of pulse emission rises, the loudness may be set to any setting that is 
appropriate. We can take 𝐴଴ = 100 and 𝐴௠௜௡ = 1 as examples. We may alternatively use 𝐴଴ = 1 
and 𝐴௠௜௡ = 0 for convenience, assuming that 𝐴௠௜௡ = 0 indicates that the bat has just identified 
its prey and has momentarily ceased producing any noises as per the Eq. (5) [12]. Now we have: 𝐴௜௧ାଵ  =  𝛼 𝐴௜௧,     𝑟௜௧ାଵ  =  𝑟௜଴ሾ1 −  expሺ−𝛾𝑡ሻሿ, (5)

where 𝑎 and 𝑔 are constants. In fact, a is similar to the cooling factor of the cooling plan in 
simulated annealing. For any 0, 𝑎, 1, 0, 𝑔, we have:  
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𝐴௜௧  ⟶  0, 𝑟௜௧  →  𝑟௜଴,   𝑡 → ∞. (6)

“In simple cases, we can use 𝑎 = 𝑔, while in simulation we have actually used 𝑎 = 𝑔 = 0.9. 
The choice of parameters requires some experimentation. Initially, each bat should have a different 
loudness and pulse emission rate value, which can be achieved by randomization. For example, 
the initial loudness 𝐴௜଴ can usually be [1 2], and the initial emissivity 𝑟௜଴ can be about zero, if used, 
it can be any value 𝑟ఌ଴ [0 1]. Only when new solutions are improved, their loudness and emissivity 
will be updated, which means that these bats are moving towards the best solution” [12]. 

4. Result analysis and discussion 

4.1. Mean value of surface roughness 

Table 7 depicts the whole factorial design of the experiment with independent process 
parameters, including the response variable's level and assessed roughness value. In addition, we 
also found the average roughness. 

Table 7. L9 Taguchi orthogonal array design layout matrix and experimental 
Exp No Cutting speed Feed rate Depth of cut Ra1 Ra2 Ra3 Ra4 Mean Ra 

1 200 0.1 0.5 1.272 1.758 1.240 1.207 1.3692 
2 200 0.2 0.8 4.371 4.062 4.327 4.479 4.3097 
3 200 0.3 1.2 9.936 9.622 10.358 10.095 10.0027 
4 250 0.1 0.5 1.289 1.252 1.254 1.488 1.3207 
5 250 0.2 0.8 4.088 3.648 4.180 4.357 4.0682 
6 250 0.3 1.2 10.432 10.498 9.297 9.642 9.9672 
7 290 0.1 0.5 1.314 1.667 1.424 1.308 1.3109 
8 290 0.2 0.8 3.661 3.554 3.559 3.705 3.5697 
9 290 0.3 1.2 9.030 9.108 9.389 9.832 9.3397 

4.2. Values of the signal-to-noise ratio 

Table 8 demonstrates that the total service factor, or surface roughness 𝑅௔ , is essentially 
constant across all levels of cutting speed 𝐶௦ and cutting depth DOC, however it is unclear if the 
quality of the surface roughness 𝑅௔ diminishes as the feed speed rises. The third level’s cutting 
speed = 290 m/min, the second level’s cutting depth = 0.5 mm, and the first level’s feed = 0.1 mm 
offer the greatest overall practical value. According to the primary effect diagram of the mean 
value, the feed is the most significant regulating element influencing the performance 
characteristics of the surface roughness 𝑅௔. 

Table 8. Response table for signal to noise ratios 
Level Speed Feed DOC 

1 –11.807 –2.747 –11.251 
2 –11.525 –11.977 –11.504 
3 –11.185 –19.794 –11.762 

DELTA 0.622 17.046 0.511 
RANK 2 1 3 

4.3. Application of analysis of variance (ANOVA) 

To assess the suitability of the created model, the analysis of variance (ANOVA) approach 
was applied. The results of fitting linear regression equations are provided in the form of analysis 
of variance to assess the significance of each model coefficient (ANOVA). 

Table 7 shows the findings of the experiment, which were examined using analysis of variance 
(ANOVA) to find the factors that had a significant impact on the performance indicators. The 
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ANOVA results with surface roughness 𝑅௔ are shown in Table 9. The table’s last column displays 
the present contributions of major sources of overall change, as well as the degree of effect they 
have on the outcomes. 

Table 9. Analysis of variance 
Source DF Adj SS Adj MS F-Value P-Value 
Speed 1 0.288 0.288 0.27 0.623 
Feed 1 105.769 105.769 100.43 0.000 
Doc 1 0.063 0.063 0.06 0.817 
Error 5 5.266 1.053   
Total 8 111.386    

4.4. Regression analysis 

Multiple linear regressions was used to predict the link between the factors of cutting speed 𝐶௦, cutting depth 𝐷௖, and feed 𝐹, as well as the performance measurement surface roughness 𝑅௔. 
The final regression model in terms of the encoding parameters of the following parameters is 
denoted:  
Surface Roughness (𝑅௔) = –6.290 – 0.00528, Cutting Speed – 67.7, Feed rate + 31.38 DOC. 

5. Results and discussion 

Performing a verification experiment is the last step that is crucial to a robust design methodology. 
The conformation experiment is carried out under the best control factors. The third-level cutting 
speed 𝐶௦ =  290 rpm, the second-level cutting depth 𝐷௖ =  0.5 mm, and the first-level feed  𝐹 =  0.1 mm/min are the optimal control factors. Calculate the signal-to-noise ratio for this 
condition using the surface roughness value. Table 10 displays these figures. The Bat heuristic 
algorithm is used to solve the formulated optimization issue, and the result is achieved and 
compared to the S/N ratio result. The bat algorithm code was run on Matlab version 2020 with 
machine specification as 4 GB ram and i5 processor. The graph representation the optimization 
obtained from the bat algorithm is shown in Fig. 4. 

 
Fig. 4. Optimum answer obtained from Bat algorithm 

Table 10. Result table 
Parameter Result from S/N ratio Optimized result from bat 

Speed 290 289 
Feed 0.1 0.11 

Depth of cut 0.5 0.56 
Surface roughness 1.3109 1.28 
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6. Conclusions 

The current work involves determining the optimal settings of single parameter optimization 
and multi-response optimization process parameters for machining on CNC machine tools of EN8 
steel based on the Taguchi method and Bat-inspired algorithm. The advantage of Taguchi method 
in simplifying experiments is effectively used in the design and analysis of surface quality in this 
study. The experimental test results demonstrate that the feed speed has the greatest influence on 
the surface roughness 𝑅௔  of EN8 steel during the CNC turning process. The quality of the 
machined surface decreases as the feed and speed increases. The bat-inspired algorithm solves the 
same problem and obtains the best result. The minimum surface roughness (𝑅௔) reaching 1.302 
corresponds to: cutting speed 𝐶௦ = 290 m/min depth of cut, 𝐷௖ = 0.5 mm/rev and feed = 0.1 mm. 
The surface roughness obtained from the bat-inspired algorithm is 1.28 (mm). Since the surface 
roughness should be minimized, the bat algorithm improves the surface roughness by 3 %. 
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