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Abstract. The strain comparison of a pressure vessel made of HSLA 15CDV6 in a cylindrical 
shell membrane region in a pressure test is discussed in this paper. Non-linear finite element 
analysis (FEA) of thin-walled cylindrical pressure vessels has been carried out using ANSYS. 
Hoop strain obtained from FEA is not compared well with the pressure test data at the membrane 
location of the cylindrical shell where the strain gauge is mounted. So to explain the reasons for 
the difference in strains at the membrane region, the profile of the cylindrical shell at strain gauge 
region has been measured. The 3D FEA of the cylindrical region with the measured profile is 
performed. It is found that with measured profile the FEA is giving the strain close to measured 
strain in the hoop direction. This leads to the increase in strain and stress as having been 
demonstrated through mathematical modeling in the deviated profiles variations of cylindrical 
shells. Therefore, the stresses in the deviated region are greater than those that would exist in an 
undeviated cylindrical shell, which reduces the margin of safety with respect to the yield strength 
of the material and causes stress concentration. The details of the stress analysis carried out 
including the effect of measured 3D profile variation are discussed in this paper. 
Keywords: pressure vessel, HSLA steel, stress analysis, strain comparison, FEA. 

1. Introduction 

The common shapes of pressure vessels have the form of spheres, cylinders, cones, ellipsoids, 
composites. Cylindrical pressure vessels are used in various technological fields such as power or 
chemical engineering [1], marine [2], nuclear technology [3], rocket motor case manufacturing, 
and production of many weapon systems [4] and pipelines carrying hazardous products [5], 
storage barrels, railway or car cisterns and in non-industrial applications.  

A profile deviation such as waviness/dent in a pressure vessel or pipe is a region where the 
radius of curvature of the wall differs from the average radius of the pressure vessel or pipe. If this 
region is of the same dimensions as the radius of the vessel and the change in curvature is small, 
the profile may be classified as an out of roundness in the pressurized structure. When the region 
is small and the curvature changes sign, the profile is severe. This type of imperfections in 
pressurized structures (pipes or pressure vessels) up to 𝑑 𝐷⁄  = 24 percent [6], where d is the depth 
of the dent root and 𝐷 is the pipe diameter, there is only a negligible effect on the pressure to 
rupture the pipe. This is relevant to ductile pipes which fail by plastic yielding. Internally 
pressurized shells having profile variations i.e. waviness or dent types of imperfections have a 
stress concentration effect [7]. The level of the stress raiser is determined by the stress 
concentration factor (SCF), which is introduced for typical geometry and shape changes or 
discontinuities [8]. The profile deviation types imperfections are susceptible to thin cylindrical 
shell buckling under compressive loads [9]. In pipe flow [10] cause the degree of turbulence in 
the flow regime, head loss difference, and pressure drop for gas flow in a not round cross-section 
of diameter due to the presence of profile variation. Cylindrical shells under internal pressure, 
associated with profile deviations/waviness/dents type’s imperfections or defects can degrade 
in-service performance due to stress concentrations.  

https://crossmark.crossref.org/dialog/?doi=10.21595/lger.2021.22163&domain=pdf&date_stamp=2021-12-23
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The profile type of deviation (waviness) in the purely cylindrical region may occur during 
manufacture (rolling and heat treatment of sheets), shipping, or in-service operation. There are so 
many types of defects in pressure vessel manufacturing such as profile variation, waviness, kink, 
dent, ovality or noncircularity, weld mismatch, weld porosity, grinding below parent material, and 
weld shrinkage, etc. All types of manufacturing errors have a different way to analyze and inspect. 
Here, there will not be a unique way to generalize these problems. So one can attempt this type of 
deviation through finite element modeling to salvage the hardware for operational purposes. If we 
reject the hardware without checking its acceptability, it will become a compromise between the 
cost and time spent on designing. 

Advances were made to the material used in their fabrication such as HSLA 15CDV6 steel in 
pressure vessel design having a nominal composition of 0.15C-1.25Cr-1Mo-0.25V [11], [12]. 
HSLA 15CDV6 steel is one of the high-strength materials being commonly used for the 
fabrication of various pressurized structures like rocket motor cases, storage tanks, gas bottles, 
etc. The prediction of failure pressure that a pressure vessel with a cylindrical shell can withstand 
is an important aspect of the design of pressure vessels. The design adequacy and performance, of 
this HSLA steel, have been looked into through hydro-burst pressure testing of motor cases [11]. 
Yielding of material and failure occurs when some functional stress or strain is exceeded. In fact, 
the geometric mismatch is inevitable and it may result from manufacturing errors. Failures in 
pressure vessels are happened due to poor quality control fabrication, improper or insufficient 
fabrication procedures including welding, heat treatment, or forming methods. Elastic stress in 
pressure vessels having a mismatch in circumferential seam weld joint [13], longitudinal seam or 
long-seam (LS) joint [4], presence of weld sinkage [14], and estimation of mismatch to compare 
the test strain [15] have been studied. 

This paper shows the effect of profile variation in the membrane region of the thin cylindrical 
shell which causes strain difference between numerical modeling of the cylindrical portion of 
pressure vessel and experimental tests with the application of strain-gauge measurements. To 
elucidate, the actual profile in the cylindrical region is measured. Including the measured 3D 
profile variation, a finite element model is generated using ANSYS FEA and non linear (NL) 
analysis has been performed. The stress/strain results are presented away from profile variation 
(cylindrical shell without waviness/kink) and near profile variation with waviness in the 
cylindrical shell. It has been found that with modeling actual profile the strain obtained from FEA 
compared well with test data. It is observed that the deviations of the pressure vessel profile may 
lead to a significant increase of the von Mises (effective) stresses. As the literature has been gone 
through, there is not adequate research on the profile mismatch on the cylindrical shell with FEA 
of the pressure vessel reported. Because of no existence of analytical solutions for such profile 
deviated structures, numerical FE modeling, and analysis is the common practice in designing. 
This makes this study an original one in the pressure vessel design/analysis and FEA-ANSYS 
field. The novelty of the paper lies in the demonstration of the 3D modeling of a complex profile 
of pressure vessel in FEM, estimation of strain from FEA, comparison of strain with test data, 
estimation of stress from measured strain through experimental stress analysis, assessing the 
impact (stress concentration factor) of the defect on its stress state, and find its adequacy 
comparing the effective stress at profile variation/strain gauge location with the strength of the 
material. 

This problem is a process of modeling the exact geometry in finite elements with available 
measured geometrical data. So no regularities of generalized conclusions could establish the defect 
on its stress state due to the non-availability of enough data. So, in future research, with available 
data for another type of geometries with a similar type of defects, can be taken up and generalized. 
However, this paper will be informative for researchers/field engineers working in the pressure 
vessel design field, as an example study about the requirement of quality of fabrication and its 
effect on hardware for industrial operation purposes.  
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2. Stresses in a thin cylindrical shell 

A pressure vessel is said to be thin walled when (𝑅 𝑡⁄  ≥ 10; 𝑅 is radius and t is thickness of 
shell). These vessels are referred to as membranes and the associated stresses resulting from the 
internal or external pressure are called membrane stresses. These membrane stresses are tension 
or compression stresses in nature. The distribution of normal stress on a plane perpendicular to 
the vessel surface is basically uniform throughout vessel thickness. The membrane/ wall is 
assumed to be offered no resistance to bending. If the wall offers resistance to bending, there will 
be bending stresses in addition to membrane stresses. 

In complicated vessel shapes subjected to internal pressure, the simple membrane-stress 
concepts do not enough to give adequate information of the true stress state. The examples that 
cause varying stress distributions in the vessel are (i) types of heads closing the vessel, (ii) effects 
of supports, (iii) variations in thickness and cross-section, (iv) nozzles, (v) external attachments, 
and (vi) self-weight, wind, and seismic. The above examples cause deviations from a true 
membrane shape and develop bending in the vessel wall.  

In pressure vessels subjected to internal /external pressure, stresses are built in the shell wall. 
This is in state of is triaxial stress field and the three main stresses are: (i) 𝜎௅ ൌ longitudinal / 
meridional stress, (ii) 𝜎௛ ൌ circumferential / Hoop stress, and (iii) 𝜎௥ ൌ radial stress. The normal 
stresses σ resulting from the contained pressure in a pressure vessel can be related to the pressure 
(𝑝) by seeing a free body diagram (section A-A) as shown in Fig. 1. These stresses are called 
membrane stress [16]. The stress acting parallel to the axis of the cylinder and normal to its 
circumference is called longitudinal stress 𝜎௟௢௡௚. The stress acting parallel to the circumference 
of cylinder is called hoop stress 𝜎௛௢௢௣. The radial stress in direct stress, which is a result of the 
pressure acting directly on the wall. In thin-walled vessels, radial stress is very small compared to 
the hoop and meridional stress is generally ignored. Thus, it assumes in analysis a biaxial state of 
the stress field.  

 
Fig. 1. Stresses in cylindrical pressure vessel [17] 

Hoop stress: 𝜎ଵ ൌ  𝜎ு ൌ  𝑝𝑅𝑡 . (1)

Meridional stress: 𝜎ଶ ൌ 𝜎௅ ൌ  𝑝𝑅2𝑡 . (2)

The distortion energy theory (von Mises’s theory) considers failure to have occurred when the 
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distortion energy accumulated in the component under stress reaches the elastic limit as 
determined by the distortion energy in a uniaxial tension test. It states that yielding will take place 
when: ሺ𝜎ଵ–𝜎ଶሻଶ − ሺ𝜎ଶ–𝜎ଷሻଶ − ሺ𝜎ଷ–𝜎ଵሻଶ ൌ 2𝜎௬ଶ. (3)

For the biaxial consideration, The von Mises’s stress (effective stress) can be written as: 𝜎௘ ൌ ඥ𝜎ଵଶ ൅ 𝜎ଶଶ − 𝜎ଵ ∗ 𝜎ଶ. (4)

3. Finite element analysis 

3.1. Geometry of cylindrical shell and profile measurement 

The geometry of the HSLA steel cylindrical configuration of the tank is 𝑑௜ ൌ 688 mm;  𝑡 ൌ 6 mm. The 3D profile is measured in both hoop and meridional directions in an area of 
230 mm (in the circumferential direction)×250 mm (in the axial direction), around the strain 
gauge, where strain in the hoop direction was found a large difference in the cylindrical region as 
compared to membrane strain. Fig. 2 shows the measured profile variation foot print in a 
230 mm×250 mm area. It is found from the measured profile that the strain gauge location in a 
cylindrical location having kink in profile with waviness. 

 
Fig. 2. Measured profile of cylindrical pressure vessel 

3.2. Material: HSLA 15CDV6 steel 

The material properties to be specified for the analysis are (i) Young’s modulus,  𝐸 ൌ 206010 MPa, (ii) Poisson’s ratio = 0.3, (iii) Stress-Strain curve (uniaxial) with 𝜎௬௦ = 834 
MPa; 𝜎௨௟௧ = 981MPa. 

The material property data for the analysis in software is from the stress strain curve of the 
material. Stress-strain curve is generated from tensile tests and represented through empirical 
relations. It is well known that a linear Hooke’s law cannot describe the behavior of most material 
under all strains. The inverse Ramberg-Osgood Eq. (5) of [19], [11] is used to represent the stress 
(𝜎) – strain (𝜀) curve of the material. This curve would assure us of the existence of some function 
of strain 𝜀 describing stress 𝜎, which is necessary for predicting the behavior of materials and 
structures. 

The inverse Ramberg-Osgood equation represented the stress (𝜎) – strain (𝜀) curve of the 
material as follows: 

𝜎 ൌ 𝐸𝜀 ൜1 ൅ ൬ 𝜀𝜀଴൰௡ೃൠିଵ௡ೃ . (5)
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It can be obtained from Eq. (5): 

ቆ𝐸𝜀௬௦𝜎௬௦ ቇ௡ೃ − ൬𝜀௬௦𝜀଴ ൰௡ೃ = 1, (6)

where the strain at 0.2 % proof stress (𝜎௬௦) level: 𝜀௬௦ = 0.002 + 𝜎௬௦𝐸 . (7)

For the above specified material properties, the material constants in Eq. (1) are found to be: 𝜀଴ = 0.0047 and 𝑛ோ = 2.72). 
In the above equation, the parameters as described in the paper utilizes the standard Young’s 

Modulus for 𝐸 and strength of material and calculates material constants 𝜀଴ and 𝑛ோ (parameter 
defining the shape of the nonlinear stress-strain relationship). The stress strain data generated from 
the relation Eq. (5) is supplied as a material property to the ANSYS software package to carry out 
non-linear analysis. 

3.3. Loads 

Uniform internal pressure 11.772 MPa (120 ksc) is applied inside of cylindrical shell.  

3.4. Finite element modeling  

No analytical formulae can be established for profile deviated geometry type problems. The 
only way is to solve by properly modeling it in finite elements to capture the exact realistic 
behavior. An extensive 3D FE model is made using the extracted coordinates through profile 
measurement at and around the hoop strain difference location (defect location). Along with the 
defect location, a sufficient generic cylindrical region and a transition region which patches both 
the defect and generic regions is generated to simulate the realistic boundary conditions (Fig. 3).  

 
a) 

 
b) 

 
c) 

Fig. 3. a) FE model of measured profile of cylindrical pressure vessel  
with generic cylindrical shell b) measured profile of cylindrical  

shell (230 mm×250 mm), c) a small region of profile showing waviness / kink 

Entire geometry meshes with 8 noded Brick elements. Two elements across thickness are 
idealized. Model is constrained in the axial direction at one axial surface and on the other axial 



CYLINDRICAL SHELL PRESSURE VESSEL PROFILE VARIATION FOOTPRINT IN STRAIN COMPARISON OF TEST DATA WITH NUMERICAL ANALYSIS.  
CHITARANJAN PANY 

96 LIQUID AND GASEOUS ENERGY RESOURCES. DECEMBER 2021, VOLUME 1, ISSUE 2  

surface, the theoretical longitudinal stress is applied to simulate the closed end condition. The 
symmetry boundary condition is applied on both the circumferential free surfaces.  

Internal pressure corresponding to a pressure of 120 ksc (11.772 MPa) is applied all along the 
inner surface. Non-linear material properties were generated based on the minimum guaranteed 
0.2 % PS and UTS of the material properties (0.2 % proof strength = 834 MPa & ultimate tensile 
strength = 981 MPa). Geometric and material (using Eq. (5)) non-linear analyses were carried out 
using ANSYS finite element software [18]. This makes the study of this mathematical model of 
great significance to the comprehending and foretelling of materials behavior. 

4. Experimental stress analysis 

Keil and Benning [20] procedure used for the calculation of stresses from the measured strains. 
The stress components (𝜎ଵ and 𝜎ଶ) for the measured strains (𝜀ଵ and 𝜀ଶ) at the critical locations are 
evaluated from: 𝜎௜ = 𝜎ଷ + 2𝜇ሺ𝜀௜ − 𝜀ଷሻ,    𝑖 =  1, 2. (8)

Here subscripts 1, 2, and 3 refer to the meridional, hoop and radial directions of the steel tank. 
When the vessel is subjected to the internal pressure (𝑝), the stress normal to the surface or the 
radial stress (𝜎ଷ) is, at inner surface: 𝜎ଷ = −𝑝, (9)

and at outer surface: 𝜎ଷ = 0, (9a)

The radial strain (𝜀ଷ) not possible to measure can be obtained from: 

𝜀ଷ = 𝜎ଷ − 𝜆ሺ𝜀ଵ + 𝜀ଶሻ𝜆 + 2𝜇 . (10)

The Lame’s coefficients (𝜆 and 𝜇) are: 𝜆 = 𝐸𝜈൫ሺ1 + 𝜈ሻሺ1 − 2𝜈ሻ൯, (11)𝜇 = 𝐸2ሺ1 + 𝜈ሻ. (12)

Within elastic range, the stress components (𝜎ଵ and 𝜎ଶ) for the measured strains (𝜀ଵ and 𝜀ଶ) at 
the applied pressure (𝑝) can be obtained from Eq. (8-12), using the material constants 𝐸 and 𝜈. To 
carry out elasto-plastic stress analysis, an equivalent strain (𝜀௘௙௙) is determined from: 

𝜀௘௙௙ = 1√2(1 + 𝜈)ඥ(𝜀ଵ − 𝜀ଶ)ଶ + (𝜀ଶ − 𝜀ଷ)ଶ + (𝜀ଷ − 𝜀ଵ)ଶ. (13)

The stress (𝜎௘௙௙) corresponding to the strain (𝜀௘௙௙) is obtained from Eq. (5). The secant 
modulus (𝐸௦) and the secant Poisson’s ratio (𝜈௦) are: 𝐸௦ = 𝜎௘௙௙𝜀௘௙௙ , (14)
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𝜈௦ = 12 − ൬12 − 𝜈൰𝐸௦𝐸 . (15)

Replacing 𝐸 and 𝜈 by 𝐸௦ and 𝜈௦ in Eq. (8-12), one can get the principal stresses (𝜎ଵ and 𝜎ଶ) 
for the measured strains (𝜀ଵ and 𝜀  ଶ ). The following iterative process is considered to evaluate 𝐸௦ 
and 𝜈௦. Initially, 𝜈௦ is assumed as 𝜈 and obtain 𝜀௘௙௙ from Eq. (13) for the measured strains (𝜀ଵ and 𝜀ଶ) at the applied pressure (𝑝). Later on 𝜎௘௙௙ corresponding to 𝜀௘௙௙ is found from Eq. (5). These 
values are substituted in Eqs. (14-15) to obtain 𝐸௦ and 𝜈௦. This iterative process is continued until 𝜎௘௙௙ attains a converged value. Using the secant modulus (𝐸௦) and the secant Poisson’s ratio (𝜈௦) 
for the measured strains (𝜀ଵ and 𝜀ଶ), the respective principal stresses (𝜎ଵ and 𝜎ଶ) are obtained from 
Eq. (8-12). 

5. Results and discussion 

A finite element model is generated using ANSYS FEA including the measured 3D profile 
variation, and non-linear (NL) analysis has been performed. The results away from profile 
deviation (cylindrical shell without waviness or kink) and near profile deviation with a waviness 
in cylindrical shell are shown. The values of membrane meridional stress (343 MPa), hoop stress 
(690 MPa) and effective stress (597.5 MPa) noted away from the defect region (in the generic 
cylindrical region) matches closely with the theoretically expected values (hoop stress = 686 MPa, 
meridional stress = 343 MPa and effective stress = 594 MPa) which validates the loads and 
boundary conditions. Hoop stress, meridional stress, and effective stress variations are plotted in 
Figs. 4-6 respectively. The margin of safety with respect to yield strength of the material is 
[(834/597.5) –1.0] = 0.395. 

The longitudinal stress, hoop stress, and internal pressure were determined from equations of 
generalized Hooke’s law for stress and strain. The meridional strain (𝜀௅ = 667 microstrain) and 
hoop strain (𝜀ு = 2833 microstrain) are found. These strains compared well with FEA having 
meridional strain (𝜀௅ = 674 microstrain) and hoop strain (𝜀ு = 2894 microstrain). The hoop and 
meridional strain plots are shown in Fig. 7 and Fig. 8 respectively. The results are also presented 
in Table 1. So the analytical strain mates closely with FEA. 

The elastic strains (𝜀ு and 𝜀௅) of the external surface of the cylindrical shell were determined 
through strain gages attached to the surface and connected to a strain indicator. The measured 
strain in the hoop direction is found to be 3955 microstrains. So, there is a large difference of 
around 1061 microstrain is observed in hoop direction as compared to analytical/FEA values of 
2894 microstrain. 

 
Fig. 4. Hoop stress (MPa) in the cylindrical shell 

away from defect region 

 
Fig. 5. Meridional stress (MPa) in the cylindrical shell 

away from defect region 
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Fig. 6. Effective stress (MPa) in the cylindrical shell 

away from defect region 

 
Fig. 7. Hoop strain (2894 microstrain) in the 

cylindrical shell away from defect region 
  

 
Fig. 8. Meridional strain (674 microstrain) in the 

cylindrical shell away from defect region 

 
Fig. 9. The maximum hoop strain (3980 

microstrain) in cylindrical shell near the defect 
location  

 
Fig. 10. Maximum effective stress (MPa) in cylindrical shell near defect region 
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Table 1. Stress and strain in the cylindrical shell without defect in profile  
(Bracket values are from analytical formulae). Meri. (Meridional); Eff. ( Effective) 

Thickness 
in mm 

Hoop micro 
strain 

(analytical) 

Meridional 
micro strain 
(analytical) 

Hoop micro 
strain (FEA) 

Meridional 
micro strain 

(FEA) 

Hoop 
stress 
(MPa) 

Meri. 
stress 
(MPa) 

Eff. stress 
(MPa) 

6 2833 667 2894 674 690 
(686) 

343 
(343) 597.5(594) 

To find out the reason behind the strain difference, the profile of the cylindrical shell is 
modeled in Ansys. The corresponding hoop strain contour is shown in Fig. 9. The hoop strain is 
found at the waviness/dent or defect location is found to be 3980 microstrains and compared well 
with test hoop strain of 3955. 

Experimental methods are useful for the correctness of the analytical or computational  
analysis. Usually, stress cannot be measured directly, and hence most experimental methods serve 
to measure strains by bonding the strain gauges to the surface of the structure under test. For the 
calculation of stresses from the measured strains, Keil & Benning [20] have described the 
analytical method for which Rao [19] suggests a simplified step that can be easily coded on a 
digital computer or Microsoft XL sheet. This approach (experimental stress analysis) was 
successfully applied to estimate stress from measured strain [11], [15]. 

The effective stress calculated based on the experimental stress analysis procedure is found to 
be 696.6 MPa. This stress is compared well with effective stress found by modeling the profile of 
cylindrical shells. The effective stress is found at the waviness/defect region of 683.9 MPa. The 
comparison is presented in Table 2. The margin of safety with respect to yield strength of the 
material is [(834/696.3) –1.0] = 0.19. This shows a positive margin against the yield strength of 
the material and meets the acceptance criteria. However, the margin safety is reduced from 0.395 
to 0.19 due to the presence of profile variation. It may be noted that without profile deviation the 
effective stress at the strain gauge location would have been 597.5 MPa. So there is around a 
99 MPa stress increase is there due to a change in profile. So there is an SCF of 1.16 is exist due 
to the presence of profile variation in the cylindrical shells. 

Table 2. Stress and strain in the cylindrical shell with waviness or kink/defect profile 

Description Thickness 
in mm 

Hoop micro 
strain 

Meridional 
micro strain 

Hoop stress 
(MPa) 

Meri. stress 
(MPa) 

Eff. Stress 
(MPa) 

Test 6 3955 726 803.4* 368.2* 696.6* 
FEA 6 3980 743 790.7** 344.1** 683.9** 

*Results obtained from present experimental stress analysis 
**Results obtained from present NL FEA 

6. Conclusions 

This paper shows the effect of profile variation in the membrane region of the thin cylindrical 
shell which causes strain difference between FEA and test. The experimental tests with the 
application of strain-gauge measurements and numerical modeling of the pressure vessel are 
conducted. Non-linear finite element analyses were carried out including the effects of 3D profile 
variation at the cylindrical shell region having fabrication deviation (waviness/kink). Based on 
mathematical modeling profile variation the numerical hoop strain is simulated is compared well 
with test data. This demonstrates that strain can be compared with modeling an exact geometry. 
This is a difficult problem in terms of modeling the profile of cylindrical shells in FEM. Once 
modeling is done appropriately, the results are derived from FEA and compared well with test 
data. Non-linear stresses in both hoop and meridional directions are extracted at the defect or strain 
difference location and compared with analytical stress based on experimental stress analysis on 
the measured strain. Further, it is found that due to presence of profile deviation causes additional 
bending stress. So it works out that the membrane region which supposes to give exact closed-form 
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results can deviate from exact results due to the presence of profile variation. It will create bending 
in addition to the membrane which will cause stress or strain differences. The estimated stress 
from measured strain is found adequate margin by comparing the yield strength of material. This 
problem is a process of modeling the exact geometry in finite elements with available measured 
geometrical data. So no regularities of generalized conclusions could establish due to non-
availability of enough data. However, the results can be used as a demonstration of the 3D 
modeling of the profile of pressure vessel for assessing the impact (stress concentration factor, 
reduction of margin of safety) of the defect on its stress state and its acceptance procedure for use 
in operational purposes of aerospace, chemical, oil & gas pipeline industries, etc., to avoid 
detrimental effects.  
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