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Abstract. A typical vibration signal of fault bearing is composed of periodic repetitive transient 
impulses, multiple vibration disturbance and background noise. Variational mode decomposition 
(VMD) represents a potential tool for analyzing such signals. However, the reasonable selection 
of VMD algorithm parameters hinders its application in mechanical signal processing to a certain 
extent. According to the specific characteristics of rolling bearing fault signal, the composite 
dimensionless index is constructed as the objective function to ensure the optimal decomposition 
of VMD. To further enhance the fault characteristics, the tunable Q-factor wavelet transform 
(TQWT) along with sparse code shrinkage is proposed to denoise the modal components 
containing periodic impulses, which further highlights the impulses and improves the sparseness 
of fault signal. Simulation and experimental signal analysis verify the effectiveness and reliability 
of this method. The results show that the use of optimized VMD and TQWT based sparse code 
shrinkage dramatically sharpens the impulses from the mixed signal with noise interference and 
increases the sparseness to a level. 
Keywords: rolling bearing, fault diagnosis, optimized variational mode decomposition, tunable 
Q-factor wavelet transform, sparse code shrinkage. 

1. Introduction 

Rolling bearing is the core of almost every rotating machine. As a common fault source, they 
have been widely concerned in the field of vibration analysis. Typically, an undamaged bearing 
generates a steady state vibration, but a fault in any elements of it can change the condition and 
produce noticeable vibration impulses [1-2]. A successful diagnosis method should be able to 
isolate the impulse response caused by defects. So far, many different technologies have been 
proposed to monitor and diagnose rolling bearing fault, such as Wavelet transform (WT) [3-5], 
Empirical mode decomposition (EMD) [6], Spectral kurtosis (SK) [7-8], Cyclostationary analysis 
[9-10], Minimum entropy deconvolution (MED) [11], Blind filters [12], etc. Meanwhile, some 
new systems and fault identification methods for vibration analysis increasingly attract the 
scholars’ attention [13-18]. Those works also achieved good performances in bearing fault 
recognition through designing hierarchical architectures and combining various domain 
representations. However, how to match the local oscillation attenuation characteristics of impulse 
signal and represent vibration signal sparsely to ensure the accuracy of fault detection is still a 
challenge in the diagnosis field. There are many reasons for this problem, including the complexity 
of bearing contact motion, weak dynamic response, aliasing variability, multi-source coupling, 
mechanical structure filtering and service condition uncertainty. Consequently, we propose a 
novel hybrid approach of optimized VMD and TQWT based sparse code shrinkage to reduce noise 
interference, extract impulse feature and enhance signal sparsity.  

Unlike EMD, Dragomiretskiy et al. presented a new variational method, which decomposes a 
signal into a set of band-limited intrinsic mode functions, called variational mode decomposition 
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(VMD) [19]. As soon as VMD is put forward, it has attracted a lot of attention in the field of 
mechanical fault diagnosis, because of its equivalent filtering characteristics and noise robustness. 
However, the two key parameters of VMD, i.e., decomposition level and quadratic penalty factor, 
need to be defined in advance, resulting in suboptimal decomposition performance. Although 
some researches mainly focus on the adaptive parameters determination, due to the complexity of 
rolling bearing fault signals, the problem of optimal parameters selection remains to be solved. To 
make up for the deficiency of single feature in VMD parameters optimization, we try to use 
multi-parameters fusion method to construct composite feature, so as to obtain the optimal mode 
decomposition and corresponding component. 

In addition to the background noise, the large discrete frequency interference caused by the 
other mechanical parts often confuses and misleads the detection process. Therefore, it is 
necessary to further purify the fault signal and realize the sparse representation of weak transient 
impulse characteristics. The tunable Q-factor wavelet transform (TQWT) proposed by Selesnick 
is a new over complete wavelet transform, which constructs wavelets in frequency domain, and 
the optimal matching can be achieved for the characteristic signal components with specific 
oscillation behavior [20]. Meanwhile, TQWT has the advantage of fast implementation using 
radix-2 FFTs. Luo and He provided a deep and detailed analysis of TQWT including the filter 
bank, decomposition level, Q factor and parameter influence [21-22]. Based on TQWT, Selesnick 
further proposed resonance-based sparse signal decomposition (RSSD) [23], which decomposes 
the high resonance and low resonance components according to the signal resonance properties. 
Cai proposed redundant dictionary construction based on TQWT for sparse representation of 
gearbox vibration signal and studied the sparsity-enhanced signal decomposition method based 
on signal different morphologies property [24-25]. Zhang and Yu studied the multi-fault diagnosis 
of gearbox based on RSSD and comb filter [26].  

In this article, a new TQWT based sparse code shrinkage method is proposed, which can well 
match the damped oscillation mode of bearing fault signal and enhance the transient impulse 
characteristics. For the adaptive parameter selection, the cross-correlation coefficient is employed 
to optimize the Q factor and decomposition scale to ensure the matching and sparse representation 
of bearing fault signal. The impulses, which are contained in the optimal component of the 
optimized VMD, are then enhanced using the TQWT based sparse code shrinkage method, which 
effectively matches the specific damped oscillation behavior, clarifies the impulses and spares 
representation fault signal. 

This article is organized as follows. Section 2 reviews the basic theory of VMD and introduces 
the optimized VMD. In Section 3, the implementation of TQWT based sparse code shrinkage is 
given in detail. In Section 4, we provide simulation experiments to verify the effectiveness of the 
proposed method. Section 5 presents analysis of actual vibration signal from a bearing with outer 
and inner race fault, which demonstrates the enhancement of weak impulse signal by using 
optimized VMD and TQWT based sparse code shrinkage. Finally, some conclusions are drawn in 
Section 6. 

2. Optimized VMD 

2.1. Theoretical basis of VMD 

As a non-recursive signal decomposition method, VMD has its solid theoretical foundation, 
which is the generalization of classical Wiener filter in multiple adaptive frequency bands. VMD 
decomposes the input signal into a series of sub-modes 𝑢  with specific sparse characteristics. In 
frequency domain, the bandwidth of each sub-mode 𝑢  is compact near the frequency center, and 
the bandwidth is estimated by the 𝐿  norm of the gradient. The resulting constrained variational 
problem is the following [19]: 
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𝐦𝐢𝐧𝒖𝒌 , 𝝎𝒌 𝝏𝒕 𝜹 𝒕 + 𝒋𝝅𝒕 ∗ 𝒖𝒌 𝒕 𝒆 𝒋𝝎𝒌𝒕 𝟐
𝟐

𝒌 ,
𝒔. 𝒕. 𝒖𝒌 𝒕 = 𝒇𝒌 ,  (1) 

where 𝑢 = 𝑢 ,𝑢 , …𝑢  and 𝜔 = 𝜔 ,𝜔 , …𝜔  are the set of sub-modes and their center 
frequencies, respectively. Equally, 𝛿 𝑡  is the impulse function and 𝑘 is the decomposition level. 

In VMD algorithm, the quadratic penalty factor 𝛼 and Lagrange multiplication operator 𝜆 are 
introduced to solve the constrained variational problem. The quadratic penalty factor can ensure 
the reconstruction accuracy of the signal, and the Lagrange multiplication operator can ensure the 
accurate execution of the constraints. The enhanced Lagrangian operator 𝐿 can be described as 
[19]: 

𝑳 𝒖𝒌 , 𝝎𝒌 ,𝝀 : = 𝜶 𝝏𝒕 𝜹 𝒕 + 𝒋𝝅𝒕 ∗ 𝒖𝒌 𝒕 𝒆 𝒋𝝎𝒌𝒕 𝟐
𝟐

𝒌  

       + 𝒇 𝒕 − 𝒖𝒌 𝒕𝒌 𝟐
𝟐 + 𝝀 𝒕 ,𝒇 𝒕 − 𝒖𝒌 𝒕𝒌 . (2) 

The original minimization problem Eq. (1) is transformed into problem Eq. (2), which is 
solved by alternate direction method of multipliers (ADMM). Firstly, the number of 
decomposition modes is determined, and the sub-modes 𝑢 , the corresponding center frequency 𝜔  and Lagrange operator 𝜆  are initialized. Then, the sub-mode 𝑢  and the center 
frequency𝜔 are updated by Eq. (3) and Eq. (4), respectively: 

𝒖𝒌𝒏 𝟏 𝝎 ← 𝒇 𝝎 − ∑ 𝒖𝒊𝒏 𝟏 𝝎 − ∑ 𝒖𝒊𝒏 𝝎 + 𝝀𝒏 𝝎 /𝟐𝒊 𝒌𝒊 𝒌 𝟏 + 𝟐𝜶 𝝎 −𝝎𝒌𝒏 𝟐 , (3) 

𝝎𝒌𝒏 𝟏 ← 𝝎 𝒖𝒌𝒏 𝟏 𝝎 𝟐𝒅𝝎𝟎 𝒖𝒌𝒏 𝟏 𝝎 𝟐𝒅𝝎𝟎 . (4) 

The Lagrange operator is updated by Eq. (5): 

𝝀𝒏 𝟏 𝝎 ← 𝝀𝒏 𝝎 + 𝝉 𝒇 𝝎 − 𝒖𝒌𝒏 𝟏 𝝎𝒌 , (5) 

where 𝜏 denotes the tolerance parameter of noise. 
While the following convergence condition is satisfied, the iteration is terminated: 𝒖𝒌𝒏 𝟏 − 𝒖𝒌𝒏 𝟐𝟐𝒖𝒌𝒏 𝟐𝟐𝒌  < 𝜺, (6) 

where 𝜀 is the convergence error. The noise tolerance 𝜏 and convergence error 𝜀 have little 
influence on the decomposition result, so the default values are usually used. 

2.2. Parameter optimization method 

As a parametric signal decomposition method, VMD involves two key parameters, which have 
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a crucial impact on the decomposition results. A key parameter is the decomposition level 𝑘. If 
decomposition level is too large or too small, it is not conducive to the signal decomposition, thus 
affecting the recognition accuracy of information features. Another key parameter is penalty factor 𝛼. The penalty factor determines the bandwidth of each mode component. To obtain the impulse 
characteristics of bearing fault as much as possible, we synthesize multiple dimensionless indexes 
to form a composite characteristic index, so as to optimize and screen two key parameters. In other 
words, the largest average composite index of mode components corresponds to two key 
parameters of optimization. Three dimensionless indexes are selected, which are kurtosis 𝐾, peak 
factor 𝑃 and margin factor 𝑀. These three dimensionless indexes measure the impulse 
characteristics from different aspects, and can well obtain the optimal mode decomposition of the 
VMD. To maintain the balance between indicators and increase the comparability, we use the 
relative ratio to construct the composite index 𝐶: 

𝐶 = 𝐾𝐾 / + 𝑃𝑃 / + 𝑀𝑀 / , (7)

where 𝐾 , 𝑃  and 𝑀  are the corresponding indexes of VMD decomposition components, and 𝐾, 𝑃 and 𝑀 are the corresponding indexes of original signal respectively. 
After the optimization parameters are determined, the sensitive component of VMD is then 

judged according to the kurtosis maximization criterion. It is easy to see that the extracted sensitive 
component contains more bearing fault information, which is conducive to the subsequent impulse 
feature enhancement. 

3. TQWT and sparse code shrinkage algorithm 

3.1. Tunable Q-factor wavelet transform 

According to the above analysis, the optimized VMD can adaptively extract the mode 
components with more impulse information, but the extracted impulse will still contain a lot of 
noise interference. It is well known that impulse signal has non-Gaussian statistical characteristics, 
while noise in vibration signal is generally considered as Gaussian distribution. Therefore, a new 
TQWT based sparse code shrinkage algorithm is proposed for sparse representation of the mode 
component to further highlight the periodic impulses. 

The difference between TQWT and dyadic wavelet transform is that TQWT realizes 𝑄-factor 
adjustment and redundant operation by iterating filter banks through low pass scale factor 𝛼 and 
high pass scale factor 𝛽, shown in Fig. 1. This design concept can not only extract the oscillation 
mode, but also obtain the detailed characteristics, which is very suitable for matching the 
attenuation oscillation mode of rolling bearing fault signal. 
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b) Synthesis filter bank 

Fig. 1. Analysis and synthesis filter bank for the tunable-Q wavelet transform 

TQWT directly designates quality factor 𝑄 and redundancy factor 𝑟 to design wavelet, which 
further increases the flexibility of quality factor selection and makes wavelet acquisition more 
convenient. After 𝑄 and 𝑟 are selected, 𝛼 and 𝛽 can be obtained by [20]: 
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𝛽 = 21 + 𝑄 ,      𝛼 = 1 − 𝛽𝑟 . (8)

The expressions of low pass filter and high pass filter are as follows: 

⎩⎪⎨
⎪⎧𝐿 𝜔 = 1,      |𝜔| ≤ 1 − 𝛽 𝜋,𝐿 𝜔 = 𝜃 𝜔 + 𝛽 − 1 𝜋𝛼 + 𝛽 − 1 ,        1 − 𝛽 𝜋 < |𝜔| < 𝛼𝜋,𝐿 𝜔 = 0,        𝛼𝜋 ≤ |𝜔| ≤ 𝜋,  (9)

𝐺 𝜔 = 0,        |𝜔| ≤ 1 − 𝛽 𝜋,𝐺 𝜔 = 𝜃 𝛼𝜋 − 𝜔𝛼 + 𝛽 − 1 ,         1 − 𝛽 𝜋 < |𝜔| < 𝛼𝜋,𝐺 𝜔 = 1,          𝛼𝜋 ≤ |𝜔| ≤ 𝜋,  (10)

where 𝜃 𝜔 = 0.5 1 + cos𝜔 √2 − cos𝜔, |𝜔| ≤ 𝜋. 
Furthermore, the decomposition level 𝐽 is limited by the length of the signal 𝑁. Their relation 

can be expressed as: 

𝐽 ≤ log 𝛽𝑁8log 1𝛼 . (11)

When 0 < 𝛼 ≤ 1, the input signal is set as 𝑋 𝜔 , and the low-scale filtering characteristic of 
the corresponding output signal 𝑌 𝜔  is expressed as follows: 𝑌 𝜔 = 𝑋 𝛼𝜔 ,     |𝜔| ≤ 𝜋. (12)

If 𝛼 ≥ 1: 𝑌 𝜔 = 𝑋 𝛼𝜔 ,     |𝜔| ≤ 𝜋 𝛼⁄ ,0,      𝜋 𝛼⁄ < |𝜔| ≤ 𝜋.  (13)

For the high scale, when 0 < 𝛽 ≤ 1, the filtering characteristic is given by: 𝑌 𝜔 = 𝑋 𝛽𝜔 + 1 − 𝛽 𝜋 ,     0 < 𝜔 < 𝜋,𝑋 𝛽𝜔 − 1 − 𝛽 𝜋 ,     − 𝜋 < 𝜔 < 0. (14)

If 𝛽 ≥ 1: 

𝑌 𝜔 = 𝑋 𝛽𝜔 + 1 − 𝛽 𝜋 ,     1 − 1 𝛽⁄ 𝜋 < 𝜔 < 𝜋,𝑋 𝛽𝜔 − 1 − 𝛽 𝜋 ,     − 𝜋 < 𝜔 < − 1 − 1 𝛽⁄ 𝜋,0,                                       |𝜔| < 1 − 1 𝛽⁄ 𝜋.  (15)

According to the frequency domain characteristics of high-low-pass filter and its subsequent 
high-low-pass scale transformation, combining with the iterative operation of the basic filter banks 
under the multi-scale decomposition, the equivalent frequency response function for the 𝑗th stage 
is given by [20]: 

𝐿 𝜔 = 𝐿 𝜔𝛼 ,     |𝜔| ≤ 𝛼 𝜋 ,0,      𝛼 𝜋 < |𝜔| < 𝜋,  (16)
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𝐺 𝜔 = 𝐺 𝜔𝛼 𝐿 𝜔𝛼 ,       1 − 𝛽 𝛼 𝜋 < |𝜔| ≤ 𝛼 𝜋 ,0,       |𝜔| ≤ 𝜋.  (17)

3.2. Sparse code shrinkage 

The SCS algorithm [27] proposed by Hyvarinen uses the statistical characteristics of non-
Gaussian components to get the threshold shrinkage function, and denoises the measured signal 
by removing the noise with the same or similar frequency as the target signal. The sparse 
representation of bearing vibration signal can be realized by SCS algorithm, because the fault-
generated impulse is strongly non-Gaussian in statistical characteristic. Actually, the local damage 
vibration signal of rolling bearing is characterized by Non-Gaussian property, repetitive transient 
impulse waveform and typical sparseness. 

Assume 𝑥  is the original fault signal and 𝑣 is Gaussian noise of zero mean and variance 𝜎 , 
then the observed signal 𝑥 is given by: 𝑥 = 𝑥 + 𝑣. (18)

To represent a sparse distribution, Hyvarinen proposes the following probability density 
function of a sparse signal [27]: 

𝑝 𝑥 = 12𝑑 𝛼 + 2 𝛼 𝛼 + 1 /2 /𝛼 𝛼 + 1 /2 + 𝑥 /𝑑 , (19)

where 𝑑 is the standard deviation of fault impulse signal 𝑥  and 𝛼 is a parameter controlling the 
sparseness of the probability density function. In this article, we set 𝛼 = 0.1 to adapt bearing fault 
feature extraction [5]. 

For the sparse signal with this distribution, the following thresholding rule can be obtained 
according to the maximum likelihood principle [27]: 

𝑥 = 𝑠𝑖𝑔𝑛 𝑥 max 0, |𝑥| − 𝑎𝑑2 + 12 |𝑥| + 𝑎𝑑 − 4𝜎 𝛼 + 3 , (20)

where 𝑎 = 𝛼 𝛼 + 1 /2, 𝜎 is the standard deviation of the noise, and 𝑥  is set to zero in the case 
that the square root in above equation is imaginary. The SCS algorithm is used as TQWT threshold 
and the noise standard deviation is estimated for each scale [28-29]: 𝜎 = 𝑚𝑎𝑑/0.6745, (21)

where 𝑚𝑎𝑑 denotes the median absolute deviation of wavelet coefficients. 
Assume 𝑥 is zero mean, for 𝑥 and 𝑣 are uncorrelated, the standard deviation 𝑑 of 𝑥  can be 

estimated by [28-29]: 𝑑 = 𝜎 − 𝜎 . (22)

It is worth noting that the standard deviation 𝑑 needs to be calculated separately on each 
wavelet scale. 

3.3. Adaptive sparse representation 

As a new explicit wavelet construction theory in frequency domain, TQWT has the advantages 
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of matching specific oscillation behavior of signal components and fast implementation by FFT 
algorithm. SCS is a useful tool for signal sparse representation. Naturally, the TQWT along with 
SCS can efficiently implement multi-scale sparse decomposition of dynamic signals.  

For TQWT, as mentioned before, three parameters need to be determined: the 𝑄-factor, the 
decomposition level 𝐽 and redundancy 𝑟. The specified value of the redundancy must satisfy that 𝑟 > 1. In this work, the redundancy 𝑟 is set to 3 by considering the translation invariance and 
complex calculations. The decomposition level 𝐽 only affects the frequency domain 
decomposition performance in low frequency region. Too many decomposition levels will lead to 
high computational cost, and may lead to excessive decomposition or redundant decomposition 
of fault characteristic frequency band information. The selection of 𝐽 should meet the requirements 
of Eq. (11). 𝑄 is an important parameter, which directly affects the extent of wavelet sustained 
oscillation. We know that the bearing fault signal has local attenuation oscillation behavior. 
Therefore, the selection of 𝑄 has an important influence on matching the bearing fault signal.  

The signal processed by TQWT based sparse code shrink has obvious sparsity, and the periodic 
impulse characteristics are significantly enhanced. Since cross-correlation coefficient directly 
reflects the similarity of two signals, it is utilized to adaptively determine 𝑄 and 𝐽. 
Cross-correlation coefficient 𝐶 is formulated as: 

𝐶 = ∑ 𝑢 𝑛 − 𝑢 𝑥 𝑛 − �̅�∑ 𝑢 𝑛 − 𝑢 𝑥 𝑛 − �̅� / , (23)

where 𝑥 𝑛  is the TQWT reconstruction signal in optimization process, and 𝑢 𝑛  is the sensitive 
component of optimized VMD. 

The higher the degree of similarity and matching between the two signals is, the greater the 𝐶 
value is. In general, 𝐶 can not only ensure that the detected impulses are not lost, but also ensure 
that the local attenuation oscillation waveform matches well. Therefore, the maximized 𝐶 is 
selected as the optimization objective, and the defect occurrence can be effectively judged through 
the analysis of the time domain waveform and envelope spectrum under these parameters. 

4. Simulation experiment 

The schematic diagram of the optimized VMD and TQWT based sparse code shrinkage 
method is shown in Fig. 2. In this section, a signal is used to simulate the fault signal generated 
by bearing local damage fault to analyze the performance of the proposed method. The mixed 
signal 𝑥 𝑡  consists of three parts: periodic impulse signal 𝐻 𝑡 , periodic interference component 𝑠 𝑡  and white noise 𝑛 𝑡 . The simulated signal is described below: 𝑥 𝑡 = 𝐻 𝑡 + 𝑠 𝑡 + 𝑛 𝑡 ,𝐻 𝑡 = 𝐴 ℎ 𝑡 − 1 𝑓 − 𝜆⁄ ,ℎ 𝑡 = 𝑒 sin 2𝜋500𝑡 ,𝑠 𝑡 = sin 2𝜋15𝑡 + sin 2𝜋30𝑡 ,𝑛 𝑡 = 𝑟𝑎𝑛𝑑 𝑛 ,

 (24)

where 𝑓 = 10 Hz is impulse interval frequency. 𝐴  and 𝜆  respectively represent the amplitude 
and phase of the impulse signal, and the sampling frequency is set to 2000 Hz. 

The time waveform and envelope spectrum of the simulated signal are shown in Fig. 3. 
Obviously, the impulse components are submerged in strong noise, and it is difficult to find the 
conspicuous features relevant to periodic impulses. The envelope spectrum is also covered by 
noise, and most of the spectrum lines are very weak except the 20 Hz spectrum line. Fig. 4 shows 
the decomposition results of optimized VMD (𝑘 = 5 and 𝛼 = 500), and 𝑈  is automatically selected 



THE ENHANCEMENT OF FAULT DETECTION FOR ROLLING BEARING VIA OPTIMIZED VMD AND TQWT BASED SPARSE CODE SHRINKAGE.  
YUAN XING, ZHANG HUIJIE, LIU HUI 

460 JOURNAL OF VIBROENGINEERING. MAY 2022, VOLUME 24, ISSUE 3  

as the sensitive component according to the kurtosis criterion. As observed in Fig. 5, the periodic 
transients are clearly revealed by using TQWT (𝑄 = 1.5 and 𝐽 = 6) based sparse code shrinkage 
method. The periodic impulses are very obvious, and the impulse period 𝑇 can be easily identified 
by the waveform. Meanwhile, the proposed method achieves better performance in envelope 
spectrum. It can be seen that the comprehensive use of optimized VMD and TQWT based sparse 
code shrinkage has good reliability and feasibility in sparse enhancement and weak impulse 
feature extraction. 

C

( ) ( ) ( )2 21max 0, 4 3
2 2f

x ad
x sign x x ad σ α

 − 
= + + − + 

 


Q J

C

 
Fig. 2. Flow chart of the proposed method 

 
Fig. 3. The simulation signal and envelope spectrum: a) periodic impulse signal; b) envelope spectrum  

of periodic impulse signal; c) mixed signal; d) envelope spectrum of mixed signal 
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Fig. 4. Decomposition components of the optimized VMD 

 
Fig. 5. Processing results by TQWT based sparse code shrinkage:  

a) time domain waveform, b) envelope spectrum 

5. Experimental verification and comparative studies 

5.1. Experimental verification 

The test rig (ABLT-1A) is shown in Fig. 6. ABLT-1A can test four bearings at a time. Four 
bearings are installed on one shaft. The four test bearings are type 6309. The rotation speed is kept 
constant at 3000 r/min. The vibration signal is measured by the probe sensor directly contacting 
the bearing outer race, and the sampling frequency is 48K. The structural parameters of 6309 are 
as follows: pitch diameter – 72.5 mm, ball diameter – 17.462 mm, ball number – 8. Thus, the fault 
frequencies of outer race and inner race are 𝑓 = 151.829 Hz and 𝑓 = 248.171 Hz, respectively. 

Due to the large noise in test process, the vibration signals are disordered, and the impulse 
characteristic signals are almost completely submerged, so the useful fault information cannot be 
obtained. The proposed optimized VMD (𝑘 = 3 and 𝛼 = 200) approach is applied to decompose 
outer race fault signal from the noisy observation, as shown in Fig. 7. According to kurtosis 
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criterion, 𝑈  is automatically identified as sensitive component.  

 
Fig. 6. ABLT-1A test rig 

 
Fig. 7. Outer race fault signal and decomposition components of the optimized VMD 

 
Fig. 8. Processing results by TQWT based sparse code shrinkage: a) time domain waveform,  

b) envelope spectrum, c) envelope spectrum of original signal 
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Furthermore, the processing results by using TQWT (𝑄 = 1.8 and 𝐽 = 9) based sparse code 
shrinkage is illustrated in Fig. 8(a) and (b). It can be observed that the useful fault features of outer 
race can be detected clearly. As expected, the repeated impulse period 1/𝑓𝑜 are clearly revealed 
and the fault frequency 𝑓  and its harmonic components 2𝑓 , 3𝑓 , 4𝑓 , 5𝑓  are also clearly displayed 
in envelope spectrum. Although the envelope spectrum of original signal shows significant 
magnitude at fault frequency 𝑓 , many harmonic components are lost, which is disadvantageous 
to fault identification, as displayed in Fig. 8(c). 

 
Fig. 9. Inner race fault signal and decomposition components of the optimized VMD 

 
Fig. 10. Processing results by TQWT based sparse code shrinkage:  

a) time domain waveform, b) envelope spectrum, c) envelope spectrum of original signal 
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The proposed approach is adopted to analyze inner race fault signal. Inner race fault signal and 
decomposition components of the optimized VMD (𝑘 = 4 and 𝛼 = 200) are illustrated in Fig. 9. 
Similarly, U3 is automatically identified as sensitive component. The processing results by TQWT 
(𝑄 = 2.6 and 𝐽 = 6) based sparse code shrinkage are displayed in Fig. 10. It can be seen that the 
result is sparse and has periodic structure. It should be noted that when there is a fault on the inner 
race surface, the fault frequency 𝑓  will be modulated by the rotating frequency 𝑓  because the 
damage area is rotating with the rotating shaft. This phenomenon is well reflected in Fig. 10(a) 
and 10(b), which may improve the accuracy of decisions in fault detection. Nevertheless, it is not 
easy to get useful fault information through envelope spectrum directly as shown in Fig. 10(c). 

From the above experimental signal analysis results, it can be seen that the proposed approach 
is an effective tool for sparse enhancement and weak impulse extraction. 

5.2. Comparative studies 

As one of the powerful tools for detecting cyclostationarity signals, spectral correlation can 
effectively identify the periodic impulses caused by local damage of rolling bearings [7-9]. Fig. 11 
illustrates the processing results of the spectral correlation. Although the fault frequency of outer 
race can be identified in the enhanced envelope spectrum, the effect is far from satisfactory 
because the harmonic components of fault frequency are not well reflected. In fact, due to the 
influence of the noisy working environment, the vibration transmission path and the variation of 
workload, the periodic impulses in vibration signals are overwhelmed by heavy background noise, 
which makes it difficult to effectively extract the impulse features.  

 
Fig. 11. Processing results of vibration signal by Fast-SC 

 
Fig. 12. Processing results of vibration signal by MED 
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In addition, the MED method [11] is also used to process the vibration signal, and the 
processing results obtained are shown in Fig. 12. Although there is a rich literature by using the 
MED, its use is still limited for machine condition monitoring and fault diagnosis because the 
MED is prone to detect dominant impulses, which are usually unrelated with the information of 
interest. It can be observed that Fig. 12 can only clearly display the fault frequency of outer race; 
and it is difficult to distinguish the harmonic components of fault frequency from background 
noise similar to spectral correlation. 

Through the above comparative analysis, it is found that compared with the spectral correlation 
and MED, the presented method can increase the accuracy of periodic impulse features extraction 
and is beneficial to the fault diagnosis of rolling bearing. 

6. Conclusions 

Periodic impulse often carries important information about the running state of rolling 
bearings. This article investigates novel weak impulse extraction techniques that utilize the 
optimized VMD and TQWT based sparse code shrinkage to accurately recover the useful 
transients. A composite dimensionless index suitable for revealing impulse signal is constructed 
to guide the adaptive decomposition of VMD. Then, the sensitive component is selected according 
to the kurtosis criterion. Further, the proposed approach exploits sparse code shrinkage in the 
tunable Q-factor wavelet domain. In general, the proposed approach can preserve the oscillatory 
behavior of useful transients while still promote the periodic impulse sparsity. 

The reliability and feasibility of the described approach are verified by simulation and test 
data. The results demonstrate that the described approach can extract weak impulse and sparsely 
represent rolling bearing fault features. 
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