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Abstract. In this work, effect of fin tip temperature on the rate of heat transfer and thermal 
efficiency of a rectangular convective-radiative fin with temperature-dependent thermal 
conductivity is analyzed using differential transformation method. The results of the power series 
solutions are verified numerically, and very good agreements are established. Also, the symbolic 
solutions are used to examine the effects of the conductive-convective and nonlinear thermal 
conductivity parameters on the thermal performance of the passive device. It is found that when 
the nonlinear thermal conductivity parameter increases, the fin tip temperature increases. 
However, the temperature at the tip of the fin decreases as the conductive-convective parameter 
increases. The thermal efficiency of the fin increases as the fin tip temperature and nonlinear 
thermal conductivity parameters are augmented but an increase conductive-convective parameter 
causes the fin tip temperature and the thermal efficiency of the extended surface to reduce.  An 
increase in the conductive-convective parameter causes decrease the temperature distribution and 
thermal efficiency in the passive device. However, the efficiency of the fin increases as the 
nonlinear thermal conductivity parameter increases. When nonlinear thermal conductivity and 
conductive-convective parameters increase, the rate of heat transfer at the fin base increases. The 
developed analytical solutions provide a good platform for the nonlinear thermal analysis of the 
fin and proper design of the extended surfaces in thermal systems. 
Keywords: analytical solution, rectangular fin, fin tip temperature, differential transform method. 

Nomenclature 𝐴  Fin cross sectional area, m2 𝐵  Magnetic field intensity, Tesla or kg/sec2Amp 𝑐  Specific heat capacity, J/kgK ℎ Coefficient of convective heat transfer, W/m2K 𝐽  Conduction current intensity, A 𝑘 Fin thermal conductivity, W/mK 𝑘  Fin thermal conductivity at the base temperature, W/mK 𝐿 Fin length, M 𝑀  Adimensional convective parameter 𝑁  Adimensional radiation parameter 𝑃 Fin perimeter, m 𝑡 Time, sec 𝑇 Fin temperature, K 𝑇  Ambient temperature, K 𝑇  Fin temperature at the base, K 
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𝑥 Fin axial distance, m 𝑋 Adimensional fin length 𝛿 Fin thickness , m 𝜃 Adimensional temperature 𝜃  Adimensional temperature at the fin base 𝜌 Fin material density, kg/m3 𝜎 Stefan-Boltzmann constant, W/m2K4 𝜎 Electrical conductivity, Ω-1m-1 or sec2Amp2/kgm3 

1. Introduction 

The enhancements of heat transfer by the use of fins in thermal and electronic systems serve 
the prime purpose of effective cooling of the engineering and industrial equipment [1]. Such an 
important applications has provoked so many research works [2-18], just to mention a few. In the 
bid of theoretical investigations, the thermal damage problems and heat transfer enhancement by 
the extended surfaces, the controlling thermal models of the passive devices are always nonlinear. 
Although, there are various approximate analytical and numerical solutions that have been used 
to solve the thermal problems [6-26], the quest for further studies is increasing demanded. In a 
recent work, Darvishi et al. [27] studied steady state thermal performance in convective-radiative 
porous radial fin while in the same year, Hoshyar [28] adopted homotopy perturbation method to 
developed series solution to steady state thermal performance longitudinal porous fins with 
variable internal heat generation. In the following year, Sobamowo [29] applied Galerkin’s 
method of weighted residual to some simple but highly accurate analytical solutions for thermal 
performance of rectangular fin with variable internal heat generation and thermal conductivity. 
Also, with the use of various approximate analytical methods, the effects of magnetic field on the 
steady state thermal performance of solid and porous fins were explored by Hashar et al. [30], 
Oguntala et al. [31], Patel and Meher [32]. Additionally, Sobamowo [33] examined the optimum 
design and thermal performance of a cooling fin under convective and radiative heat transfer using 
finite element method.  

The review of the past studies shows that the analytical study of nonlinear transient heat 
transfer analysis in extended surfaces have not extensively been presented in literature. Moreover, 
the obvious advantages of generating analytical solutions to the nonlinear problems are very much 
important. Such solutions provide proper physical insights and effective predictions of the thermal 
performance of the extended surface. Also, the analytical approach of differential transformation 
method reduces the complex mathematical analysis, high computational cost and time. Additional 
to the best of the authors’ knowledge, the exploration of the effect of fin tip temperature on the 
rate of heat transfer and thermal efficiency of a fin has not been presented in literature. Therefore, 
the present work applies differential transformation method to examine the effect of temperature 
at the tip of the fin on the rate of heat transfer and thermal efficiency of a rectangular convective 
fin with temperature-dependent thermal conductivity. Also, the symbolic solutions are used to 
examine the effects of the conductive-convective and nonlinear thermal conductivity parameters 
on the thermal performance of the passive device. 

2. Problem formulation 

Consider a longitudinal straight fin with variable thermal conductivity and exposed on both 
faces to a convective-radiative environment at temperature 𝑇  and heat transfer co-efficient ℎ as 
in Fig. 1. Assuming that the extended surface isotropic, homogeneous and with constant 
thermo-physical properties. It is taken that the heat transfer is one-dimensional along the length 
of the fin. The prime surface is perfectly in thermal contact with the base of the fin and there is no 
heat gain or loss through the tip of the fin. 

Thermal energy equation based on model assumptions is expressed as: 
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𝑑𝑑𝑥 𝑘 𝑇 𝑑𝑇𝑑𝑥 − ℎ𝑃𝐴 𝑇 − 𝑇 − 𝜎𝜀𝑃𝐴 𝑇 − 𝑇 0, (1)

where the temperature-dependent thermal conductivity is expressed as a linear law: 𝑘 𝑇 𝑘 1 𝛾 𝑇 − 𝑇 . (2)

 
Fig. 1. Schematic of longitudinal fin 

Therefore, Eq. (1) can be written as: 𝑑𝑑𝑥 𝑘 1 𝛾 𝑇 − 𝑇 𝑑𝑇𝑑𝑥 − ℎ𝑃𝐴 𝑇 − 𝑇 − 𝜎𝜀𝑃𝐴 𝑇 − 𝑇 0. (3)

The boundary conditions are: 

𝑥 0,    𝜕𝑇𝜕𝑥 0, (4)𝑥 𝐿,    𝑇 𝑇 . (5)

When negligible temperature difference exists between fin base and fin tip, the term 𝑇  in 
Eq. (3) could be expressed as a linear function of temperature as: 𝑇 𝑇 4𝑇 𝑇 − 𝑇 6𝑇 𝑇 − 𝑇 . . .≅ 4𝑇 𝑇 − 3𝑇 . (6)

On substituting Eq. (6) into Eq. (3), we have: 𝑑𝑑𝑥 1 𝛾 𝑇 − 𝑇 𝑑𝑇𝑑𝑥 − ℎ𝑃 𝑇 − 𝑇𝑘 𝐴 − 4𝜎𝜀𝑃𝑇 𝑇 − 𝑇𝑘 𝐴 0. (7)

On introducing the following dimensionless parameters in Eq. (8) into Eq. (7): 

𝑋 𝑥𝐿 ,   𝜃 𝑇 − 𝑇𝑇 − 𝑇 ,   𝑁 𝑃ℎ𝐿𝐴 𝑘 ,   𝑁𝑟 4𝜎𝜀𝑃𝑇 𝐿𝐴 𝑘 ,    𝛽 𝛾 𝑇 − 𝑇 , (8)

we arrived at the dimensionless forms of the governing as follows: 𝑑𝑑𝑋 1 𝛽𝜃 𝑑𝜃𝑑𝑋 − 𝑁 𝑁𝑟 𝜃 0. (9)

On expanding Eq. (9), we have: 𝜕 𝜃𝜕𝑋 𝛽𝜃 𝜕 𝜃𝜕𝑋 𝛽 𝜕𝜃𝜕𝑋 − 𝑁 𝑁𝑟 𝜃 0, (10)
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and the dimensionless boundary conditions are: 

𝑋 = 0,    𝑑𝜃𝑑𝑋 = 0, (11)𝑋 = 1,    𝜃 = 1. (12)

3. Method of solution: differential transform method 

The above governing differential equation is highly nonlinear, and such nonlinearity imposes 
some difficulties in the development of exact analytical method to generate closed form solution 
for the equation. Therefore, in this work, differential transformation method is used. The 
differential transformation method maps a governing equation into an algebraic domain and then 
obtain an inversion using a series summation method. This approximate analytical method 
generates solution with the controlling parameters adequately conserved. 

The basic definitions of the method can be found in Moradi et al. [19]. However, the 
differential transformations of some functions are presented as follow: 

1. If 𝑧(𝑥) = 𝑢(𝑥) ± 𝑣(𝑥), then 𝑍(𝑘) = 𝑈(𝑘) ± 𝑉(𝑘) for all 𝑘 ≥ 0. 
2. If 𝑧(𝑥) = 𝛼𝑢(𝑥), then 𝑍(𝑘) = 𝛼𝑈(𝑘). 
3. If 𝑧(𝑥) = , then 𝑍(𝑘) = (𝑘 + 1)𝑈(𝑘 + 1). 

4. If 𝑧(𝑥) = , then 𝑍(𝑘) = (𝑘 + 1)(𝑘 + 2)𝑈(𝑘 + 2). 

5. 𝑧(𝑥) = , then 𝑍(𝑘) = (𝑘 + 1)(𝑘 + 2)(𝑘 + 3). . . (𝑘 + 𝑛)𝑈(𝑘 + 𝑛). 
6. If 𝑧(𝑥) = 𝑢(𝑥)𝑣(𝑥), then 𝑍(𝑘) = ∑ 𝑈[𝑙]𝑉[𝑘 − 𝑙]. 
7. If 𝑧(𝑥) = 𝑢 (𝑥), then 𝑍(𝑘) = ∑ 𝑈[𝑙]𝑈[𝑘 − 𝑙]. 
8. If 𝑧(𝑥) = 𝑢(𝑥)𝑣(𝑥)𝑤(𝑥), then 𝑍(𝑘) = ∑ ∑ 𝑈[𝑙]𝑉[𝑝]𝑊[𝑘 − 𝑙 − 𝑝]. 
9. If 𝑧(𝑥) = 𝑢 (𝑥), then 𝑍(𝑘) = ∑ ∑ 𝑈[𝑙]𝑈[𝑝]𝑈[𝑘 − 𝑙 − 𝑝]. 
10. If 𝑧(𝑥) = 𝑢 (𝑥), then 𝑍(𝑘) = ∑ 𝑈 [𝑙]𝑈[𝑘 − 𝑙]. 
11. 𝑧(𝑥) = 𝑢(𝑥) ( ), then 𝑍(𝑘) = ∑ 𝑈(𝑙)(𝑘 − 𝑙 + 1)𝑈(𝑘 − 𝑙 + 1). 

12. 𝑧(𝑥) = 𝑢 (𝑥) ( ), then 𝑍(𝑘) = ∑ ∑ 𝑈[𝑙]𝑈[𝑝][𝑘 − 𝑙 − 𝑝 + 1]𝑈[𝑘 − 𝑙 − 𝑝 + 1]. 
13. If 𝑧(𝑥) = ( ) , then 𝑍(𝑘) = ∑ (𝑙 + 1)𝑈[𝑙 + 1](𝑘 − 𝑙 + 1)𝑈[𝑘 − 𝑙 + 1]. 
14. If 𝑧(𝑥) = ( ) ( ), then 𝑍(𝑘) = ∑ (𝑙 + 1)𝑈[𝑙 + 1](𝑘 − 𝑙 + 1)𝑉[𝑘 − 𝑙 + 1]. 
15. 𝑧(𝑥) = 𝑥 ( , ), then 𝑍(𝑘) = ∑ 𝛿[𝑙 − 𝑚](𝑘 − 𝑙 + 2)(𝑘 − 𝑙 + 1)𝑈(𝑘 − 𝑙 + 2). 

16. 𝑧(𝑥) = 𝑥 ( ), then 𝑍(𝑘,ℎ) = ∑ 𝛿[𝑙 − 𝑚](𝑘 − 𝑙 + 𝑛)(𝑘 − 𝑙 + 𝑛 − 1). . . (𝑘 − 𝑙 +1)𝑈(𝑘 − 𝑙 + 𝑛). 
17. 𝑧(𝑥) = 𝑥 , then 𝑍(𝑘) = 𝛿(𝑘 −𝑚) = 1,    𝑘 = 𝑚0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 

4. Solution of the nonlinear differential transformation method  

The differential transform of the dimensionless governing of equation in Eq. (10) is: 

(𝑘 + 1)(𝑘 + 2)𝜃(𝑘 + 2) + 𝛽 𝜃(𝑙)(𝑘 − 𝑙 + 1)𝜃(𝑘 − 𝑙 + 1) 
      +𝛽 (𝑙 + 1)𝜃[𝑙 + 1](𝑘 − 𝑙 + 1)𝜃[𝑘 − 𝑙 + 1] − (𝑁 + 𝑁𝑟)𝜃[𝑘] = 0. (13)
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Which can be simplified further as: 

(𝑘 + 1)(𝑘 + 2)𝜃(𝑘 + 2) + 𝛽 𝜃(𝑙)(𝑘 − 𝑙 + 1)𝜃(𝑘 − 𝑙 + 1) 
      +𝛽 (𝑙 + 1)𝜃[𝑙 + 1](𝑘 − 𝑙 + 1)𝜃[𝑘 − 𝑙 + 1] − (𝑁 + 𝑁𝑟)𝜃[𝑘] = 0 = 0, (14)

where: 𝛿(𝑘) = 1,    𝑘 = 0,0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (15)

From the boundary conditions, one can write differential transforms: 𝜃[0] = 𝜆, 𝜃[1] = 0. 
From the differential transform of the governing equation, we have: 

𝜃[2] = (𝑁 + 𝑁𝑟)𝜆2(1 + 𝛽𝜆) , 𝜃[3] = 0, 𝜃[4] = (𝑁 + 𝑁𝑟) 𝜆(1 − 2𝛽𝜆)24(1 + 𝛽𝜆) , 𝜃[5] = 0, 𝜃[6] = (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆) , 𝜃[7] = 0, 𝜃[8] = (𝑁 + 𝑁𝑟) 𝜆(1 − 7𝛽𝜆 + 60𝛽 𝜆 − 896𝛽 𝜆 )40320(1 + 𝛽𝜆) , 𝜃[9] = 0, 𝜃[10] = (𝑁 + 𝑁𝑟) 𝜆(1 − 332𝛽𝜆 + 7812𝛽 𝜆 − 39896𝛽 𝜆 + 51184𝛽 𝜆 )3628800(1 + 𝛽𝜆) , 𝜃[11] = 0. 
From the definition of DTM, we have the solution of: 

𝜃[𝑋] = 𝜆 + (𝑁𝑐 + 𝑁𝑟)𝜆2(1 + 𝛽𝜆) 𝑋 + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆) 𝑋        + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆) 𝑋        + (𝑁 + 𝑁𝑟) 𝜆(1 − 7𝛽𝜆 + 60𝛽 𝜆 − 896𝛽 𝜆 )40320(1 + 𝛽𝜆) 𝑋        + (𝑁 + 𝑁𝑟) 𝜆(1 − 332𝛽𝜆 + 7812𝛽 𝜆 − 39896𝛽 𝜆 + 51184𝛽 𝜆 )3628800(1 + 𝛽𝜆) 𝑋 +. . ., 
(16)

where, the constant 𝜆 is determined from the terminal boundary conditions as: 
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𝜃[1] = 𝜆 + (𝑁 + 𝑁𝑟)𝜆2(1 + 𝛽𝜆) + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆)        + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆)        + (𝑁 + 𝑁𝑟) 𝜆(1 − 7𝛽𝜆 + 60𝛽 𝜆 − 896𝛽 𝜆 )40320(1 + 𝛽𝜆)        + (𝑁 + 𝑁𝑟) 𝜆(1 − 332𝛽𝜆 + 7812𝛽 𝜆 − 39896𝛽 𝜆 + 51184𝛽 𝜆 )3628800(1 + 𝛽𝜆) +. . . +. . . = 1. 
(17)

5. Heat transfer rate in the fin 

The rate of heat transfer through the fin is given as: 

𝑞 = 𝑘(𝑇)𝐴 𝑑𝑇𝑑𝑥. (18)

The dimensionless heat transfer rate is given as: 

𝑞 = 𝑞𝐿𝑘𝐴 (𝑇 − 𝑇 ) = (1 + 𝛽𝜃) 𝑑𝜃𝑑𝑋. (19)

Substituting Eq. (16) into Eq. (19), we have: 𝑞 = 𝑞𝐿𝐴 𝑘(𝑇 − 𝑇 )= 1 + 𝛽 𝜆 + (𝑁 + 𝑁𝑟)𝜆2(1 + 𝛽𝜆) 𝑋 + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆) 𝑋        + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆) 𝑋        + (𝑁 + 𝑁𝑟) 𝜆(1 − 7𝛽𝜆 + 60𝛽 𝜆 − 896𝛽 𝜆 )40320(1 + 𝛽𝜆) 𝑋        + (𝑁 + 𝑁𝑟) 𝜆(1 − 332𝛽𝜆 + 7812𝛽 𝜆 − 39896𝛽 𝜆 + 51184𝛽 𝜆 )3628800(1 + 𝛽𝜆) 𝑋 +. . .  
      × (𝑁 + 𝑁𝑟)𝜆(1 + 𝛽𝜆) 𝑋 + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )180(1 + 𝛽𝜆) 𝑋  
      + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )120(1 + 𝛽𝜆) 𝑋        + (𝑁 + 𝑁𝑟) 𝜆(1 − 7𝛽𝜆 + 60𝛽 𝜆 − 896𝛽 𝜆 )5040(1 + 𝛽𝜆) 𝑋        + (𝑁 + 𝑁𝑟) 𝜆(1 − 332𝛽𝜆 + 7812𝛽 𝜆 − 39896𝛽 𝜆 + 51184𝛽 𝜆 )362880(1 + 𝛽𝜆) 𝑋 +. . . . 

(20)

The rate of heat transfer at the base of the fin 𝑋 = 1: 
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𝑞 | = (1 + 𝛽𝜃) 𝑑𝜃𝑑𝑋= 1 + 𝛽 𝜆 + (𝑁 + 𝑁𝑟)𝜆2(1 + 𝛽𝜆) + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆)        + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆)        + (𝑁 + 𝑁𝑟) 𝜆(1 − 7𝛽𝜆 + 60𝛽 𝜆 − 896𝛽 𝜆 )40320(1 + 𝛽𝜆)        + (𝑁 + 𝑁𝑟) 𝜆(1 − 332𝛽𝜆 + 7812𝛽 𝜆 − 39896𝛽 𝜆 + 51184𝛽 𝜆 )3628800(1 + 𝛽𝜆) +. . .  
      × (𝑁 + 𝑁𝑟)𝜆(1 + 𝛽𝜆) + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )180(1 + 𝛽𝜆)  
      + (𝑁 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )120(1 + 𝛽𝜆)        + (𝑁 + 𝑁𝑟) 𝜆(1 − 7𝛽𝜆 + 60𝛽 𝜆 − 896𝛽 𝜆 )5040(1 + 𝛽𝜆)        + (𝑁 + 𝑁𝑟) 𝜆(1 − 332𝛽𝜆 + 7812𝛽 𝜆 − 39896𝛽 𝜆 + 51184𝛽 𝜆 )362880(1 + 𝛽𝜆) +. . . . 

(21)

6. Thermal efficiency of the fin 

The quantity of heat dissipated form the fin can be written as: 

𝑄 = [𝑃ℎ(𝑇 − 𝑇 ) + 𝜎𝑃𝜀(𝑇 − 𝑇 )]𝑑𝑥. (22)

The maximum heat dissipated form the fin can be expressed as: 𝑄 = 𝑃ℎ𝐿(𝑇 − 𝑇 ) + +𝜎𝑃𝐿𝜀(𝑇 − 𝑇 ). (23)

Therefore, the thermal efficiency of the fin is given as: 

𝜂 = 𝑄𝑄 = (𝑃ℎ(𝑇 − 𝑇 ) + 𝜎𝑃𝜀(𝑇 − 𝑇 ))𝑑𝑥𝑃ℎ𝐿(𝑇 − 𝑇 ) + 𝜎𝑃𝐿𝜀(𝑇 − 𝑇 ) . (24)

After applying Eqs. (6) and (8) to Eq. (24), the thermal efficiency of the fin can be expressed 
in dimensionless form as: 

𝜂 = 𝜃𝑑 𝑋. (25)

On substituting Eq. (16) into Eq. (25), after integrating the resulting equation, we have: 
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𝜂 = 𝜆 + 13 (𝑁𝑐 + 𝑁𝑟)𝜆2(1 + 𝛽𝜆) + 15 (𝑁𝑐 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆)  + 17 (𝑁𝑐 + 𝑁𝑟) 𝜆(1 − 16𝛽𝜆 + 28𝛽 𝜆 )720(1 + 𝛽𝜆)  + 19 (𝑁𝑐 + 𝑁𝑟) 𝜆(1 − 7𝛽𝜆 + 60𝛽 𝜆 − 896𝛽 𝜆 )40320(1 + 𝛽𝜆)  + 111 (𝑁𝑐 + 𝑁𝑟) 𝜆(1 − 332𝛽𝜆 + 7812𝛽 𝜆 − 39896𝛽 𝜆 + 51184𝛽 𝜆 )3628800(1 + 𝛽𝜆) +. … 
(26)

In order to verify the results of the present work, the nonlinear model was also solved 
numerically using finite difference method. The finite difference scheme for the nonlinear thermal 
model in Eq. (10) is: 𝜃 − 2𝜃 + 𝜃2Δ 𝑋 + 𝛽(𝜃 ) 𝜃 − 2𝜃 + 𝜃2Δ 𝑋 + 𝛽 𝜃 − 𝜃2Δ𝑋 − (𝑁 + 𝑁𝑟)𝜃 = 0. (27)

While for the boundary conditions are: 𝜃 − 𝜃2Δ𝑋 = 0    ⇒      𝜃 = 𝜃 , 𝜃 = 1. (28)

From Eq. (19), the finite difference of the rate of heat transfer from the fin can be written as: 𝑞 = (1 + 𝛽𝜃 ) 𝜃 − 𝜃Δ𝑋 . (29)

From Eq. (25), one can write the finite difference of the thermal efficiency as: 

𝜂 = 𝜃 . (30)

7. Results and discussion 

The developed power series solutions which are presented in the previous section are simulated 
with the aid of MATHEMATICA. Also, the symbolic solutions are used to examine the effects of 
the conductive-convective and nonlinear thermal conductivity parameters on the thermal 
performance of the passive device as shown in Figs. 2-6. However, Table 1 shows the comparison 
of the results of the results of DTM and FDM. It shows that DTM provides good agreements with 
the results of the numerical method. 

Table 1. Comparison of results 𝑋 FDM DTM |FDM-DTM| 
0.0000 0.867912 0.867912 0.000000 
0.2000 0. 872763 0.872762 0.000001 
0.4000 0.887512 0.887511 0.000001 
0.6000 0.912773 0.912772 0.000001 
0.8000 0.949668 0.949668 0.000000 
1.0000 1.000000 1.000000 0.000000 

The effects of conductive-convective and nonlinear thermal conductivity parameters on the tip 
temperature of the fin are shown in Table 2. It is shown that when the nonlinear thermal 
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conductivity parameter increases, the fin tip temperature also increases. However, the fin tip 
temperature decreases as the conductive-convective parameter increases.  

Table 2. Effects of nonlinear thermal conductivity and  
convective parameters on the dimensionless tip temperature  𝑁 𝛽 𝜆 (Tip temperature) 

1 –0.2 0.60417 
1 0.0 0.64805 
1 0.4 0.71605 
1 0.8 0.76438 
1 1.2 0.79964 
1 1 0.78333 
1 2 0.84673 
2 –0.2 0.23687 
2 0.0 0.26580 
2 0.4 0.32443 
2 0.8 0.38078 
2 1.2 0.43268 
2 1 0.40743 
2 2 0.51961 
3 –0.2 0.08812 
3 0.0 0.09934 
3 0.4 0.12613 
3 0.8 0.15387 
3 1.2 0.18456 
3 1 0.16840 
3 2 0.25000 
4 –0.2 0.03301 
4 0.0 0.03667 
4 0.4 0.04723 
4 0.8 0.06123 
4 1.2 0.07136 
4 1 0.06702 
4 2 0.08987 

Tables 3 depict the impacts of fin tip temperature, conductive-convective and nonlinear 
thermal conductivity parameters on the thermal efficiency of the rectangular fin. The table shows 
that the thermal efficiency of the fin increases as the fin tip temperature and nonlinear thermal 
conductivity parameters are augmented. However, an increase conductive-convective parameter 
causes the fin tip temperature and the thermal efficiency of the fin to reduce. 

Table 3. Effects of nonlinear thermal conductivity and convective parameters  
on the dimensionless tip temperature and efficiency for 𝛽 = –0.2 to 0.2 𝑁 𝛽 = −0.2 𝛽 = 0.0  𝛽 = 0.2  𝛼 𝜂 𝛼 𝜂 𝛼 𝜂 
1 0.60417 0.544452 0.64805 0.590776 0.68501 0.629962 
2 0.23687 0.249533 0.26580 0.276327 0.29528 0.302383 
3 0.08812 0.156813 0.09934 0.170802 0.11227 0.186138 
4 0.03306 0.118420 0.03667 0.125771 0.04133 0.135573 
5 0.01254 0.096811 0.01358 0.100752 0.01492 0.106018 
6 0.00483 0.083083 0.00510 0.085161 0.00542 0.087526 
7 0.00190 0.073960 0.00196 0.074685 0.00203 0.075718 
8 0.00077 0.067905 0.00078 0.067624 0.00070 0.052991 
9 0.00032 0.063126 0.00032 0.063083 0.00033 0.064163 
10 0.00014 0.059395 0.00014 0.058893 0.00014 0.060066 
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Table 4. Effects of nonlinear thermal conductivity and convective parameters  
on the dimensionless tip temperature and efficiency for 𝛽 = 0 to 0.8 𝑁 𝛽 = 0.0 𝛽 = 0.4  𝛽 = 0.8  𝛼 𝜂 𝛼 𝜂 𝛼 𝜂 

1.0 0.64805 0.59078 0.71605 0.66318 0.76438 0.71579 
1.5 0.42510 0.39208 0.49878 0.45963 0.56102 0.51685 
2.0 0.26580 0.27633 0.32443 0.32710 0.38078 0.37346 
2.5 0.16308 0.21064 0.20379 0.24852 0.24578 0.28284 
3.0 0.09934 0.17080 0.12613 0.20113 0.15387 0.22605 
3.5 0.06037 0.14451 0.07756 0.17036 0.09617 0.19184 
4.0 0.03667 0.12577 0.04723 0.14770 0.06123 0.17233 
4.5 0.02230 0.11177 0.02831 0.12904 0.03904 0.15866 
5.0 0.01358 0.10075 0.01672 0.11318 0.02351 0.14096 
5.5 0.00830 0.09206 0.00983 0.10033 0.01295 0.11797 
6.0 0.00510 0.08516 0.00581 0.09030 0.00704 0.09962 
6.5 0.00315 0.07941 0.00347 0.08245 0.00396 0.08767 
7.0 0.00196 0.07469 0.00211 0.07693 0.00230 0.07933 
7.5 0.00123 0.07077 0.00130 0.07244 0.00138 0.07387 
8.0 0.00078 0.06762 0.00081 0.06843 0.00084 0.06865 
8.5 0.00050 0.06505 0.00051 0.06465 0.00053 0.06640 
9.0 0.00032 0.06308 0.00033 0.06310 0.00033 0.06101 
9.5 0.00021 0.05973 0.00022 0.06397 0.00022 0.06240 

10.0 0.00014 0.05889 0.00014 0.05790 0.00014 0.05691 
 

 
a) 𝛽 = 0 

 
b) 𝛽 = 1 

Fig. 2. Effect of conductive-convective on the temperature distribution in the fin 

The effects of conductive-convective parameter on the temperature distribution in the fin is 
shown in Figs. 2(a) and 2(b). It is shown that as the conductive-convective parameter increases, 
the fin temperature distribution in the passive device decreases which mean that the heat transfer 
rate through the fin is augmented and hence, the fin thermal efficiency is improved. This is 
because, as the convective heat transfer increases, there is more effective convective cooling 
which consequently lowers the temperatures in the fin. By extension, it could be stated that 
increasing in the values of conductive-convective parameter produces a decrease in the value of 
the fin efficiency. However, the efficiency of the fin increases as the nonlinear thermal 
conductivity parameter increases. It should be noted that the profile has steepest temperature 
gradient at lower value of the conduction-convection term, but its much higher value gotten from 
the lower value of thermal conductivity than the other values of convective parameter in the 
profiles produces a lower heat-transfer rate. This shows that the thermal performance or efficiency 
of the fin is favoured at low values of convective parameter since the aim (high effective use of 
the fin) is to minimize the temperature decrease along the fin length, where the best possible 
scenario is when 𝑇 = 𝑇  everywhere. It must be pointed out that a small value of 𝑁  correspond 
to a relatively short and thick fins of poor thermal conductivity and high value of 𝑁  implies a 
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long fin or fin with low value of thermal conductivity. Since, the thermal performance or 
efficiency of the fin is favoured at low values of convective fin parameter, very long fins are to be 
avoided in practice. 

 
a) 𝑁 = 1 

 
b) 𝑁 = 2 

 
c) 𝑁 = 3 

 
d) 𝑁 = 4 

Fig. 3. Effect of nonlinear thermal conductivity on the temperature distribution in the fin 

 
a) 𝛽 = 0 

 
b) 𝛽 = 1 

 
c) 𝛽 = 2 

Fig. 4. Effect of conductive-convective on the rate of heat transfer in the fin 
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Figs. 3(a)-3(d) present the influence of the effect of nonlinear thermal conductivity paramter 
on temperature distributions in the fin. It should be noted that the positive value of the nonlinear 
thermal conductivity parameter implies fin materials whose thermal conductivity increases with 
increase in temperature while the negative value of the nonlinear thermal conductivity parameter 
corresponds to fin materials whose thermal conductivity decreases with increase in temperature. 
It can be inferred that the heat transfer rate through the fin increases as the nonlinear thermal 
conductivity parameter increases. This effect is as a result of the fact that the fin is able to transfer 
more heat due to increased thermal conductivity of the fin as the nonlinear thermal conductivity 
parameter increases. 

 
a) 𝑁 = 1 

 
b) 𝑁 = 2 

 
c) 𝑁 = 3 

 
d) 𝑁 = 4 

Fig. 5. Effect of nonlinear thermal conductivity on the rate of heat transfer in the fin 

 
a)  

 
b) 

Fig. 6. Effect of nonlinear thermal conductivity on the efficiency in the fin 

The influence of the nonlinear thermal conductivity and conductive-convective parameters on 
the rate of heat transfer at the base of the rectangular fin is shown in Figs. 4(a)-4(c) and 5(a)-5(d). 
The figure presents that the as nonlinear thermal conductivity and conductive-convective 
parameters increase, the rate of heat transfer at the fin base increases. This is due to the fact when 
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the nonlinear thermal conductivity and conductive-convective parameters increase, the ability of 
the fin material to conduct heat to the fin base increases. When the nonlinear thermal conductivity 
parameter increases, the temperature-dependent thermal conductivity of the fin material becomes 
more sensitive to the fin temperature which causes an increase in the heat transfer rate in the fin. 

Fig. 6(a)-6(b) show the impact of the nonlinear thermal conductivity and 
conductive-convective parameters on the thermal efficiency of the longitudinal fin. From the 
figure, it is depicted that when the nonlinear thermal conductivity is increased, the thermal 
efficiency of the fin increases but an increase in the conductive-convective parameters causes the 
thermal efficiency of the fin to decrease. 

8. Conclusions 

In this work, effect of temperature at the tip of the fin on the rate of heat transfer and thermal 
efficiency of a rectangular convective fin with temperature-dependent thermal conductivity is 
analyzed using differential transformation method. The results of the approximate analytical 
solutions are verified numerically, and very good agreements are established. Also, the symbolic 
solutions are used for further parametric studies and the following results were established:  

1) When the nonlinear thermal conductivity parameter increases, the fin tip temperature 
increases. However, the fin tip temperature decreases as the conductive-convective parameter 
increases.  

2) The thermal efficiency of the fin increases as the fin tip temperature and nonlinear thermal 
conductivity parameters are augmented but an increase conductive-convective parameter causes 
the fin tip temperature and the thermal efficiency of the fin to reduce.  

3) An increase in the conductive-convective parameter causes decrease the temperature 
distribution and thermal efficiency in the passive device. However, the efficiency of the fin 
increases as the nonlinear thermal conductivity parameter increases.  

4) When nonlinear thermal conductivity and conductive-convective parameters increase, the 
rate of heat transfer at the fin base increases.  

The developed analytical solution has given some physical insight into the thermal 
performance of the extended surfaces. The parametric study provides a good platform for proper 
design of the radiating fin for heat transfer enhancement in thermal systems. 
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