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Abstract. The failures of rolling bearings usually cause the breakdown of rotating machinery. 
Therefore, bearing fault diagnosis is receiving more and more attentions. In this paper, a new 
coding-statistic feature is proposed for bearing fault diagnosis. Firstly, a waveform coding matrix 
(WCM) is drawn from each signal using a coding algorithm then a statistical feature is extracted 
from the WCM with a pre-defined dictionary. Secondly, all statistical features are processed using 
two-dimensional principal component analysis (2DPCA) to reduce redundant information and 
dimensionality. Finally, a nearest neighbor classifier (NNC) is employed to classify the bearing 
faults. Two bearing fault classification problems are utilized to demonstrate the effectiveness of 
the proposed scheme. Experimental results show that an excellent performance could be 
accomplished with the proposed scheme. 
Keywords: bearing, fault diagnosis, waveform coding, coding-statistic feature. 

1. Introduction 

Rolling bearings, as the extremely essential support components in rotating machinery, are 
most widely used in industrial machines. Their failures may generally result in machine 
breakdowns, and even casualties [1]. Hence, it is essential to diagnose their faults accurately and 
rapidly, especially for industrial site. 

In general, three procedures are commonly included in bearing fault diagnosis. The first is to 
collect monitoring data with sensors. The second is to process the acquired signals to extract 
sensitive features related to the bearing health state. And the third is to diagnose bearing health 
conditions and/or locate the corresponding faults. The aforementioned fault features are usually 
extracted from raw signals in time domain, frequency domain and time-frequency domain. Time 
domain analysis is directly analyzed base on the time waveform of the vibration signals to extract 
features such as root-mean-square amplitude, skewness, kurtosis etc. [2]. Frequency domain 
analysis is often conducted with transforming vibration signals into frequency domain via fast 
Fourier transform to extract features such as cepstrum, Hilbert envelope spectrum analysis etc. 
[3], [4]. Time-frequency features are usually abstracted by means of short time Fourier transform 
[5], empirical mode decomposition [6], Wigner-Ville distribution [7], wavelet analysis [8], HHT 
time-frequency analysis, and high order spectral analysis [9]. However, the efficiency of the 
extraction process is of great importance for real-time diagnosis. Hence, more attentions should 
be focused on the phase of feature extraction for fault diagnosis. 

Once the characteristics are extracted, bearing health state can be identified with assistance 
from one or more classifiers, such as distance classifiers, artificial neural networks (ANNs), 
support vector machines (SVMs) and so on. For example, Liu et al. [10] performed bearing fault 
diagnosis with LS-SVM and Empirical Mode Decomposition. Yang et al [11] conducted fault 
diagnosis of rolling bearing based on SVMs and fractal dimension. Sreejith et al. [12] employed 
time-domain features and neural networks for bearing fault diagnosis. And deep learning 
algorithm are utilized for fault diagnosis of rotating machine for the past few years [13], [14]. In 
general, artificial intelligence (AI) approaches, like ANNs and SVMs, may show an improved 
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performance over other approaches. But in practice, however, it’s not easy to apply AI techniques 
to provide effective decision support due to their expensive computations. Considered their 
shortcomings, a simple classifier, nearest neighbor classifier (NNC), is employed in this study to 
classify the health states of bearings. 

In this paper, a novel feature extraction method is proposed based on a coding strategy. First, 
a waveform coding matrix (WCM) is drawn from the time discrete series using a coding technique 
to capture the signal structures, and a coding-statistic feature is acquired from WCM with a 
pre-defined dictionary. Then two-dimensional principal component analysis (2DPCA) is 
employed to process these statistical features so that the redundancy and dimensionality of raw 
features could be rejected and reduced. Finally, an NNC is applied to classify the bearing faults. 
The main contributions of this work are to propose a new feature derived directly from time 
domain signal to interpret the health state of rolling bearings, and to perform fault diagnosis with 
2DPCA and NNC. 

The remainder of this paper is organized as follows. Section 2 presents the process of feature 
extraction using a coding strategy and statistical analysis in detail. Section 3 is dedicated to 
elaborating the proposed fault diagnosis scheme. And Section 4 provides the experimental 
validation with simulation and real data. Then lastly, the conclusions are presented in Section 5 
together with possible future work. 

2. Coding-statistic feature extraction 

In this paper, a numeric coding technique is introduced to draw the information structures of 
collected signals at the feature extraction procedure. Suppose that the discrete time signal is  𝑥 = [𝑥ଵ, 𝑥ଶ,⋯ , 𝑥௅ିଵ, 𝑥௅], where 𝐿 represents the length of 𝑥, then the process of the proposed 
feature extraction can be summarized as follows. 

Step 1: Perform zero-mean and normalization processing. In order to eliminate the influence 
of the mean and to meet the requirements of discrete coding, the discrete time series are first 
centered to have mean 0 and scaled to have standard deviation 1 according to standardized 𝑧-scores algorithm, and then normalized with min-max normalization method as described in 
Eq. (1): 

𝑥𝑛𝑜𝑟𝑚(𝑖) = 2 × 𝑥(𝑖) − min(𝑥)max(𝑥) − min(𝑥) − 1, (1)

where 𝑖 = 1,2,⋯ , 𝐿, and 𝑚𝑎𝑥(𝑥), 𝑚𝑖𝑛(𝑥) denote the maximum and minimum of 𝑥 
respectively. In particular, the maximum and minimum, i.e. 𝑚𝑎𝑥(𝑥) and 𝑚𝑖𝑛(𝑥), should be 
calculated through current encoded signals when applying online monitoring system. That is, they 
are computed from the new series which are obtained by splicing the repetitive points what 
acquired last time with the new collected discrete ones. In practice, they can be specified manually 
and empirically. Finally, the discrete time series are normalized as values between –1 and 1. 

Step 2: Encode 𝑥௡௢௥௠ as integers using 2௡-level quantization. Uniform quantization considers 
the number range of equal divisions for creating region segments. In order to capture the structure 
of the time-domain waveform, uniform quantization is employed in this study, and the 
corresponding function “uencode” available in Matlab software has been used for this purpose. 
The syntax for this function is presented as “𝑦 = uencode (𝑢, 𝑛)”, where u is the normalized series 
in previous step and 𝑛 denotes the number of levels for quantization and n must be an integer 
between 2 and 32 (inclusive). In general, the value of n is recommended to specify between 7 and 
12. The quantization rules are: 

(1) If the input 𝑢 is less than –1, the value of the output of “uencode” is 0. 
(2) If the input 𝑢 is greater than 1, the value of the output of “uencode” is 2௡ − 1. 
(3) The elements of the output y are unsigned integers with magnitudes in the range  

[0, 2௡ − 1]. 
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Finally, 𝑥௡௢௥௠ can be encoded to integer values by applying 2௡-level quantization as follows: 𝑌 = 𝑢𝑒𝑛𝑐𝑜𝑑𝑒(𝑥௡௢௥௠,𝑛) + 1, (2)

where adding “1” is to ensure the minimum element of 𝑌 is one so as to generate the WCM in 
next step. 

Step 3: Calculate the waveform coding matrix (WCM). Since the result of uniform 
quantization is obtained in step 2, the WCM can be constructed as 𝐹 ∈ 𝑅ଶ೙×௅ by labeling its 
elements with “0” or “1”. The labeling rule is: label the element of 𝐹 as “1” at the location of the 
quantization output of 𝑥௡௢௥௠(𝑖); otherwise, label the element of 𝐹 as “0”. 

 
Fig. 1. Technological process of the proposed feature extraction 

Step 4: Feature extraction through statistical analysis with a pre-defined dictionary. In order to 
perform feature extraction with the WCM of 𝑥, a dictionary 𝑫 is predefined as Eq. (3) at the very 
start: 

Zero-mean and normalization processing

 Vibration signal： ],,,,[)( 121 LL xxxxnx −= 

Step 1: Encode x(i) as integers using 2n-level quantization.
Y = uencode (x, n) + 1;        % encode x as integer using 2n-level quantization. 

Step 2: Calculate the waveform coding of x.
M = zeros(L, 2n);       % n represents the encoding bits.
For i = 1 to L

M(i, Y(i)) = 1;
End
F = M';       % F is the waveform coding  of x.

Step 3: Feature extraction through statistical analysis with a pre-defined dictionary.
(1) Dictionary construction

where                            represents a word in the dictionary D.
(2) For each row of F, calculate the total number of                             as the 
corresponding vector of V.

                    , where                                             , 

and      denotes the non-overlapping emergence times of      in the jth row of F.
Finally, the coding-statistic feature V is constructed.
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𝐃 =
⎣⎢⎢
⎢⎢⎢
⎡0 0 ⋯ 0 00 0 ⋯ 0 10 0 ⋯ 1 0⋮ ⋮ ⋮ ⋮ ⋮1 1 ⋯ 0 11 1 ⋯ 1 01 1 ⋯ 1 1⎦⎥⎥

⎥⎥⎥
⎤
ଶ೘×௠

=
⎣⎢⎢
⎢⎢⎢
⎡ 𝐷ଵ𝐷ଶ𝐷ଷ𝐷ଶ೘ିଶ𝐷ଶ೘ିଵ𝐷ଶ೘ ⎦⎥⎥

⎥⎥⎥
⎤
, (3)

where 𝐷௜ (𝑖 = 1,2,⋯ , 2௠) stands for a word in dictionary 𝐃 with length 𝑚. Afterward, the total 
number of each word 𝐷௜ in every row of 𝐅 is calculated, and then arranged in a statistical matrix 𝑉௝  (𝑗 = 1,2,⋯ , 2௡), each element of which denotes the non-overlapping emergence times of 𝐷௜. 
A coding-statistic feature 𝐕 is constructed through the statistical analysis of 𝐅 with the pre-defined 
dictionary 𝐃 in the end. 

The detailed step descriptions are presented in Fig. 1. As illustrated in Fig. 1, the calculation 
efficiency of the proposed coding form can be highlighted due to its omitting for the repetitive 
segments, especially for real-time condition monitoring system. 

Next, the online computing process of the WCM is depicted with a simple parameter setting 
and the statistical feature extraction is illustrated intuitively. Fig. 2 gives an example of real-time 
waveform coding in condition monitoring system. Here, the sample length is set to 𝐿 = 18, and 
the quantization parameter is set to 𝑛 = 4. 

 
Fig. 2. An example of online waveform coding in condition monitoring system 

In the beginning, the waveform coding of signal acquired at time 𝑡ଵ is performed to obtain the 
first WCM. While collecting the second coding sample at time 𝑡ଶ, these parts marked with grey 
box, which belong to repetitive calculations, cannot be encoded to reduce computational burden. 
Hence, only those parts whose elements are marked as pink, are calculated via waveform coding 
algorithm. Eventually the second waveform coding is obtained by combining the repeated coding 
ones with the new coding ones. From the computing process, it can be seen that the computation 
complexity is reduced thanks to this manipulation. 

In the stage of statistical feature extraction, for simplicity, the length of word in pre-defined 
dictionary is set to 𝑚 = 3. Then the dictionary 𝐃 is determined as follows: 

0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
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𝐃 =
⎣⎢⎢
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⎢⎡0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1⎦⎥⎥

⎥⎥⎥
⎥⎤

ଶయ×ଷ
=
⎣⎢⎢
⎢⎢⎢
⎢⎡𝐷ଵ𝐷ଶ𝐷ଷ𝐷ସ𝐷ହ𝐷଺𝐷଻𝐷଼⎦⎥⎥

⎥⎥⎥
⎥⎤, (4)

where 𝐷ଵ – 𝐷଼ denote the words in dictionary 𝐃. 
To illustrate the generating process of the statistical feature intuitively, the feature extraction 

process is presented in detail using the WCM at time 𝑡ଵ shown in Fig. 2. The WCM at time 𝑡ଵ is 
denoted as follows: 

𝐅 =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

. (5)

For example, the calculating process of the first row of 𝐅 in Eq. (5) can be denoted as: 𝐹ଵ = [0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0]. (6)

Then the feature extraction can be performed with the dictionary defined in Eq. (4). The 
calculating process of the feature for 𝐹ଵ is illustrated in Fig. 3. 

 
Fig. 3. The feature extracting process of the 1st row of 𝐅 (i.e. 𝐹ଵ) 

Finally, with the words 𝐷ଵ – 𝐷଼ in dictionary 𝐃, statistical feature 𝐕 at time 𝑡ଵ can be obtained 

1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0F =   
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using counting for certain word occurrence on each row of 𝐅 presented in Eq. (5). The calculated 
feature 𝐕 is shown in Eq. (7). 

From the calculation process of feature extraction, it can be emphasized that the length of the 
sliding window (𝐿) can be assigned to a larger size to contain more structure information about 
the analyzed object in real applications. Nevertheless, a high computational efficiency will be still 
retained for condition monitoring: 

𝑽 =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡4 0 0 1 1 0 0 04 0 1 0 1 0 0 06 0 0 0 0 0 0 04 2 0 0 0 0 0 06 0 0 0 0 0 0 04 0 1 0 1 0 0 06 0 0 0 0 0 0 04 0 1 0 1 0 0 06 0 0 0 0 0 0 06 0 0 0 0 0 0 05 1 0 0 0 0 0 06 0 0 0 0 0 0 05 0 0 0 1 0 0 06 0 0 0 0 0 0 04 1 1 0 0 0 0 04 1 0 0 0 0 1 0⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

. (7)

In subsequent section, the fault diagnosis scheme using the derived statistical features will be 
presented combined with 2DPCA and NNC. 

3. The proposed fault diagnosis scheme 

3.1. A description of 2DPCA 

Two-dimensional principal component analysis (2DPCA), as a powerful tool for processing 
two-dimension data, was developed for image representation [15], and recently was found to be 
used in fault diagnosis of rotating machinery [16]. In 2DPCA, the global scatter matrix is 
constructed and analyzed, and usually its largest partial eigenvalues are employed to calculate the 
projection base. Finally, all original features are projected into eigenspace to obtain the 
dimension-decreased information (or called sensitive features). The principle of 2DPCA can be 
concluded as follows. 

Suppose that there are 𝑀 two-dimensional samples, and the sample is denoted as 𝐴௝,  (𝑗 = 1,2,⋯ ,𝑀) herein 𝐴௝ ∈ 𝑅௪×௛. The global scatter matrix 𝐺 is first computed as: 

𝐺 = 1𝑀෍ (𝐴௝ − 𝐴̅ெ௝ୀଵ )்൫𝐴௝ − 𝐴̅൯ ∈ 𝑅௛×௛, (8)

where 𝐴 = ଵெ∑ 𝐴௝ெ௝ୀଵ  is the mean matrix, and (•) ் represents the transposition operation. 
Then the eigenvalues and eigenvectors of 𝐺 is derived by solving: 𝐺𝑢 = 𝜆𝑢. (9)

Sorting 𝜆௞ (𝑘 = 1,2,⋯ ,ℎ) in decreasing order, the eigenvalues can be denoted as: 𝜆୫ୟ୶ଵ ≥ 𝜆୫ୟ୶ଵ ≥ ⋯ ≥ 𝜆୫ୟ୶௛ , (10)
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and the eigenvectors can be denoted according to Eq. (10) as: 𝐮 = ሼ𝑢୫ୟ୶ଵ 𝑢୫ୟ୶ଶ ⋯ 𝑢୫ୟ୶௛ ሽ. (11)

Before determining the optimal projection axes to be applied to perform dimensionality 
reduction, an eigenvector selecting criterion is introduced here: ∑ 𝜆୫ୟ୶௝ௗ௝ୀଵ∑ 𝜆୫ୟ୶௝௛௝ୀଵ ≥ 𝛾, (12)

where 𝛾 is the selecting threshold, and it is specified as 𝛾 = 90 % in this study. 
According to Eq. (12), the optimal projection coordinate can be constructed as below: 𝐔 = ሼ𝑢୫ୟ୶ଵ 𝑢୫ୟ୶ଶ ⋯ 𝑢୫ୟ୶ௗ ሽ. (13)

For a given sample 𝐁 ∈ 𝑅௪×௛, it can be transformed with the above derived coordinate as: 𝐘 = 𝐁𝐔 ∈ 𝑅௪×ௗ . (14)

Finally, the eigen matrix of 𝐁 can be evaluated as 𝐘. More detailed descriptions about 2DPCA 
can be discovered in Ref. [15].  

3.2. NNC-based classification 

After reducing the dimension of the features, an NNC, a nearest Frobenius distance classifier, 
is applied to construct the state recognition model. Here, the distance between a projected test 
sample, 𝐓 ∈ 𝑅௪×ௗ and a projected base sample 𝐄 ∈ 𝑅௪×ௗ, is measured with Frobenius norm as: 𝑑(𝐓,𝐄) = ‖𝐓 − 𝐄‖ி, (15)

where ‖•‖ி denotes the Frobenius norm. 
As mentioned above, the optimal projection coordinate is obtained as shown in Eq. (13). 

Therefore the 𝑀 training samples can be projected into eigen space and denoted as 𝐸ଵ,𝐸ଶ,⋯ ,𝐸ெ. 
Finally, given a testing sample 𝑇, if: 𝑑(𝐓,𝐄௥) = min௝ 𝑑൫𝐓,𝐄௝൯, (16)

and 𝐄௥ belongs to the class identity 𝜔௠ (where 𝑚 ∈ {1,2,⋯ ,𝑁௖௟௔௦௦} and 𝑁௖௟௔௦௦ is the total class 
number of the training samples), the resulting decision is that 𝐓 is classified as 𝜔௠. 

After this, the real-time collected vibration signal features are also assessed with the projection 
coordinate that obtained in the NNC training phase, and then input into the state recognition model 
to identify the bearing health state. 

3.3. The proposed scheme for bearing diagnosis 

The framework of the proposed scheme for bearing diagnosis is depicted in Fig. 4. 
The proposed method is decomposed into two main steps. The first step is done offline and 

aims at generating a classification model. The second step, which is achieved online, utilizes the 
model generated in the first step to classify the bearing health state. The process of the proposed 
method for offline training is given below: 

(1) Vibration signal is first measured from the bearing system using acceleration sensors. 
(2) Divide the original signal into equal time segments with a sliding window (length: 𝐿) and 
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M sub-signals are obtained. 
(3) Perform feature extraction according to the methodology described in section 2. 
(4) Reduce dimensionality and remove redundancy using 2DPCA, and obtain the projection 

coordinate 𝑈. 
(5) Train NNC model by projecting all training samples with 𝐔 into eigen space to obtain the 

training projective features 𝐸௝ (𝑗 = 1, 2,…, 𝑀). 
For online fault diagnosis, the testing vibration signal is also acquired with length 𝐿, and the 

same process of WCM-based feature extraction is conducted to derive the original feature. Finally, 
it is input into the NNC model to decide its current state. In addition, the computation complexity 
of the proposed method could be less than the traditional fault diagnosis methods, due to the WCM is 
derived by a slipping scheme in feature extraction phase when applied in online monitoring. 

 
Fig. 4. Framework of the proposed diagnostic scheme 
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4. Experimental validation 

4.1. Simulation study 

To express the structures of the collected signals using the proposed coding technology more 
intuitively, a simulation presentation was conducted first. In this subsection, an impulse signal is 
employed to observe the performance of the waveform coding. An modified impulse signal from 
Ref. [17] is expressed in Eq. (17): 

𝑦(𝑘) = ෍𝑒ିଽ଴଴×ቀ௞ି௥× ிೞ௙೘ିఛೝቁ௞ +  sin൮2𝜋𝑓 × 𝑘 − 𝑟 × 𝐹௦𝑓௠ − 𝜏௥𝐹௦ ൲, (17)

where 𝑓௠, 𝑓 are equal to 110 and 3,900 respectively, the uniformly distributed random number 𝜏 ∈ [−0.1, 0.1] is used to simulate the randomness caused by the slippage, 𝐹௦ is the sampling 
frequency (𝐹௦ = 12,000 Hz). And (𝑘 − 𝑟 × 𝐹௦/𝑓௠ − 𝜏௥)/𝐹௦) ≥ 0 is applied to ensure the causality 
of the exponential function. 

 
a) 

 
b) 

Fig. 5. Impulse signal: a) time waveform; b) WCM of a) 

In this chapter, the presence of additive Gaussian noise for the simulated signals are 
considered, and the signal noise ratio (SNR) is set as –2 dB. This simulation study aims to show 
the waveform coding process of the proposed method. According to the generation process of 
WCM, it can be seen that the WCM can be dug as the eigenstate of the simulated signals. It is 
clear that, the intrinsic structure of the analyzed signal is exploited into a two-dimensional matrix. 
The original signal and its WCM are shown in Fig. 5, where only 1024 sampling points are 
displayed. 

The feature extraction of the simulated data is omitted on account of the large length of the 
signals (i.e., 𝐿 = 1024), with which the feature matrix 𝐕 is too large to demonstrate here. For the 
technical details about feature extraction, readers can refer to the example presented in Fig. 3. 
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Fig. 6. The test rig for bearing fault diagnosis 

4.2. Bearing fault diagnosis using the proposed method 

4.2.1. Bearing data description 

In order to evaluate the performance of the proposed methodology, vibration signals collected 
from Case Western Reserve University [18] are utilized to validate the effectiveness of the 
diagnostic scheme. As depicted in Fig. 6, the test rig consists of a 2 hp motor (left), a torque 
transducer/encoder (center), a dynamometer (right), and control electronics (not shown). Bearing 
with fault diameters of 0.007 inches, 0.014 inches, 0.021 inches, 0.028 inches, were installed on 
the motor housing at the drive end of the motor to acquire the vibration signals. Vibration signals 
under four different load/speed conditions, i.e. C1 = 0 hp/1797 rpm, C2 = 1 hp/1772 rpm,  
C3 = 2 hp/1750 rpm and C4 = 3 hp/1730 rpm, were collected with a sampling frequency of  
1,2000 Hz. The experiment conditions are illustrated in Table 1. The bearing data sets were 
obtained from the experimental bench under the four different health conditions: (1) normal 
condition (NO); (2) with inner race fault (IF); (3) with outer race fault (OF); and (4) with ball fault 
(BF). Fig. 7 illustrates the WCMs obtained from bearings under different health status in C3 
operating condition. In this work, the length of the sub-signal (or the moving window) is set as 
4096, and the quantization bit n and word length m are empirically designated as 7 and 3 
respectively. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 
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g) 

 
g) 

Fig. 7. Time-domain waveforms and WCMs of four different operation statuses in C3 condition:  
a), b) normal condition; c), d) inner race fault; e), f) ball fault and g), h) outer race fault 

Table 1. Illustration of the experiment conditions 
Experiment conditions  C1 C2 C3 C4 

Speed (rpm) 1797 1772 1750 1730 
Load (hp) 0 1 2 3 

In this section, two experiments were conducted over two different data subsets (A-B) to fully 
verify the robustness of the proposed method. During the random segmentation phase, the samples 
were randomly extracted with a fix time window from the acquired raw vibration signals. And 
200 samples were created for each bearing with NO (or IF, or OF and or BF) under load condition 
C1 (or C2, or C3 and or C4). The two classification problems are summarized in Table 2. 

Table 2. Description of the bearing data sets 

Data set No. of samples 
(training/testing) 

Defect size 
(training/testing) Health condition Label 

A 

400/400 0/0 Normal 1A 
400/400 0.007/0.007 Ball fault 2A 
400/400 0.007/0.007 Inner race fault 3A 
400/400 0.007/0.007 Outer race fault 4A 

B 

400/400 0/0 Normal 1B 
400/400 0.007/0.007 Ball fault 2B 
400/400 0.014/0.014 Ball fault 3B 
400/400 0.021/0.021 Ball fault 4B 
400/400 0.007/0.007 Inner race fault 5B 
400/400 0.014/0.014 Inner race fault 6B 
400/400 0.021/0.021 Inner race fault 7B 
400/400 0.007/0.007 Outer race fault 8B 
400/400 0.014/0.014 Outer race fault 9B 
400/400 0.021/0.021 Outer race fault 10B 

Table 3. Diagnosis performance using the proposed method 

Data set 
Testing condition 

Average accuracy C1  
(0 hp/1797 rpm) 

C2  
(1 hp/1772 rpm) 

C3  
(2 hp/1750 rpm) 

C4  
(3 hp/1730 rpm) 

A 94.30 % 95.36 % 95.15 % 91.88 % 94.42 % 
B 95.65 % 95.47 % 95.06 % 93.07 % 94.81 % 

4.2.2. Diagnostic performance analysis 

In order to eliminate the redundancy of the original coding statistic features and improve the 
computational efficiency, all collected original features for training sets are tackled by means of 
2DPCA algorithm to calculate the projection coordinate for reduction of dimensionality. While 
processing using 2DPCA, the contribution of the selected largest eigenvalues is set as 𝛾 = 90 %, 
to establish the projection coordinate. Then the original training and testing features are mapped 
with the projection basis. As a result, the NNC is trained with the dimension-reduced features of 
training samples to derive the state classification model. One other thing to note is that training 
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samples under the four load conditions are all applied to train the NNC model in the training phase, 
and each experimental routine is performed 20 times via randomly selecting training samples, then 
the average accuracies of the 20 randomized trials are calculated and recorded. The diagnostic 
performances of the two data sets are shown in Table 3. 

Examining the diagnostic performance from Table 3, it can be observed that high accuracies 
are achieved for both data set A and B. For the first classification problem, testing samples from 
C1, C2, C3 and C4 were classified with accuracy 94.30 %, 95.36 %, 95.15 % and 91.88 % 
respectively. Average accuracy, 94.42 %, is obtained and it indicates that the proposed method 
could diagnose the health states of bearing with satisfied performance. Moreover, for the second 
classification problem, testing samples from C1, C2, C3 and C4 were classified with accuracy 
95.65 %, 95.47 %, 95.06 % and 93.07 % respectively. This shows that the proposed method could 
be capable of handling this multi-class problem to perform bearing fault classification. 
Meanwhile, an interesting phenomenon is noticed that the average accuracy using data set B (10 
class) is little higher than that using data set A (4 class). The main reason is that the samples in 
the class of 2B, 5B and 8B are more misclassified than others. 

In order to compare the performance for fault diagnosis more intuitively, some published 
publications are convened to make comparisons in Table 4. 

Table 4. Diagnostic performance comparison with some published works 

Method Load 
condition Classified problem (training/testing) Accuracy (%) 

Multiple ANFIS combination [19] Multiple 4 class (both 0.007) 100.00 
10 class (both 0, 0.007, 0.014, 0.021) 91.33 

SVR + phase space features [20] Single 10 class (both 0, 0.007, 0.014, 0.021) 90.30 
TR-LDA2 + kNN classifier [21] Single 10 class (both 0, 0.007, 0.014, 0.021) 92.50-98.00 

NNC + coding features  
[present work] Multiple 4 class (both 0.007) 94.42 

10 class (both 0, 0.007, 0.014, 0.021) 94.81 

Validating with the same bearing data, time- and frequency-domain features are calculated and 
classified with multiple adaptive neuro-fuzzy inference system (ANFIS) combination in [19], in 
which 100.00 % and 91.33 % are obtained for the two classification problems respectively. As for 
the ten-class classification problem, phase space features and Support Vector Regression Machine 
(SVR) in [20], trace ratio criterion LDA (TR-LDA) and kNN classifier in [21] are put forward to 
deal with this complicated situation, and accuracies of 90.30 %, 92.50-98.00 % and 99.38 % are 
obtained respectively. Meanwhile, the present work with 94.81 % classification accuracy seems 
to be another excellent diagnostic method in handling this problem. Through the comparison and 
analysis, it can be seen that the proposed diagnostic scheme could demonstrate excellent 
performance on fault classification problems, overall. Due to the excellent efficiency of feature 
extraction and the outstanding performance for fault classification, the proposed method is also 
applicable to be applied in the fault diagnosis system for industrial applications. 

5. Conclusions 

Obviously, the waveform coding algorithm proves that the nature and regularity of the time 
series could be grasped deeply. More and higher requirements are being put forward for industrial 
applications, as well as the efficiency of the utilized algorithms is receiving more and more 
attentions. Based on this consideration, a WCM-based feature extraction method is proposed in 
this paper. At first, the statistical feature is acquired directly from WCM of the time domain series 
with the assistance of a coding algorithm. Then 2DPCA is employed to tackle these statistical 
features obtained in previous phase. Finally, fault classification with NNC is applied for 
classification. Two groups of experiments are conducted to validate the performance of the 
presented methodology. Reviewing the process of feature extraction and the effectiveness for fault 
classification, some conclusions are derived as follows. 
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1) The proposed algorithm has small algorithmic complexity and high efficiency. Thanks to 
its non-repetitive calculation for the overlapping sections as illustrated in Fig. 2, the proposed 
algorithm is well suited for online monitoring in real-time fault diagnosis systems. 

2) The diagnosis scheme in this paper could show an excellent performance in handling the 
multi-class classification problems like data set B in Table 2. 

As described in Section 2, it can be seen that the parameter 𝑛 for quantization and 𝑚 for 
WCM-based feature calculation may influence the performance and robustness of the proposed 
coding method. And they are both selected empirically. Therefore, a future work will be aimed at 
the optimized selection of these parameters to further improve the robustness of the proposed 
method. 
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