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Abstract. Assessing and localizing damages are an important problem in structural engineering. 

Artificial neural networks (ANN) have an excellent pattern recognition capability. In this paper, a 

structural anomaly diagnosis method based on ANN model using displacement response signals 

is proposed to assess and localize damages, and applied to a five-story frame structure under 

random base excitation. The random displacement responses are used as the input to ANN for 

detecting structural damages, which differ from conventional methods such as using modal 

parameters extracted from responses. The ANN model is set up by training and then validation 

using random displacement responses. Damages in a structure are denoted by stiffness 

degradation. Detection results are mainly affected by incomplete measurement due to intensive 

noise, finite sampling time length and measured degree of freedom (DOF). Numerical results show 

the effects of the incomplete measurement on the accuracy of predicting damages based on the 

proposed method. 

Keywords: structural damage detection, artificial neural networks, random excitation, five-story 

frame, displacement response. 

1. Introduction 

Structural anomaly diagnosis or damage detection (SDD) is very significant for reducing 

catastrophic failures and prolonging service life of structures. Typical SDD methods, proposed by 

analyzing dynamic responses of engineering structures, are divided into two categories: non-

destructive testing-based methods and vibration-based methods [1]. 

As an active branch of SDD, vibration-based methods have obtained a lot of interests and 

attentions from researchers worldwide in past few years. The idea of vibration-based methods is 

that changes in structural physical parameters such as stiffness and mass would cause changes of 

modal parameters including natural frequencies, damping and mode shapes and then vibration 

responses. In 1979, Cawley and Adam first located and roughly assessed damages in structure 

based on the changes of natural frequencies [2]. However, the frequency is not accurate enough 

to a local damage and different damages may cause the same frequency change. As a result, model 

shapes and their extension [3, 4], were proposed to detect structural damages. It has been found 

that an individual damage indicator may mistakenly detect a damage element sometimes or miss 

a real damage element [5]. With the rapid development of computer technologies, a 

comprehensive damage detection method based on artificial intelligence technology to integrate 

the advantages of several damage indicators is developed. 

As the most popular method of artificial intelligence, ANN is applied to SDD due to its 

excellent pattern recognition capability [6, 7], which is a mathematical model of theoretical mind 

and brain activity. The basic idea using ANN for SDD is to build an ANN model to provide a 

relationship between modal parameters or vibration responses and structural parameters through 

a training process. Once the relationship is established, the ANN model is then capable of 

detecting damages from modal parameters or response data. A lot of research works about 

adopting modal parameters (such as natural frequencies and mode shapes) as input vectors to 
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detect damages in structures based on ANN model have been done [8-11]. However, modal 

parameters adopted as input vectors cannot be identified precisely for complex structures. Some 

researchers have proposed the extraction of damage features directly from dynamic responses in 

time domain, frequency domain, or time-frequency domain. Wu et al. [12] used an ANN model 

based on the simulated acceleration responses to detect structural damages. Yu et al. [13] proposed 

a novel deep convolutional neural network for detecting building structure damages using raw 

acceleration responses. However, using displacement responses of structures under random 

excitations for detecting structural damage based on ANN model has not been studied. 

Displacement responses have less pollution than acceleration responses by measurement noses. 

As a result, this work focuses on using random displacement responses to detect structural damage 

based on ANN model, and analyzing effectiveness of the method including effects of incomplete 

measurement due to intensive noise, finite sampling time length and measured DOF. 

The rest of this paper is organized as follows: Section 2 gives a brief introduction of ANN; in 

Section 3, the ANN-based method for SDD is described in detail by five-story frame structure; 

Section 4 discusses the performance of the proposed method and the effects of incomplete 

measurement on predicting accuracy with numerical results. Finally, a conclusion is drawn in the 

last section. 

2. ANN model 

The classical structure of an ANN generally made of three layers: input layer, hidden layer and 

output layer. Each neuron in the input layer represents the value of one independent variable. The 

neurons in the hidden layer are only for computational purposes. Each of the output neurons 

computes one dependent variable. Signals are received at the input layer, pass through the hidden 

layers, and reach the output layer. These layers have a diverse number of neurons and activation 

functions, which depend on the type of problems. All neurons are linked to the neurons in the next 

layer by their connectivity weights [14]. Fig. 1 shows a schematic of ANN architecture with two 

hidden layers, which is used in this study.  

 
Fig. 1. A schematic of ANN architecture with two hidden layers 

The least mean square error (MSE) is a performance index of the applied back-propagation 

(BP) algorithm, which is calculated as the difference between the target output and the network 

output. The BP algorithm can minimize the MSE via Adam algorithm [15]. The MSE is: 

MSE =  
1

𝑛
∑ (𝑇𝑖 − 𝑂𝑖)

2
𝑛

𝑖
, (1) 

where 𝑛 is the number of data, 𝑇𝑖 is the output of the target and 𝑂𝑖 is the output of the network. 
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3. ANN-based method for SDD 

A SDD method based on the ANN using displacement responses is proposed to assess and 

localize damages in a frame structure under random excitations. The displacement responses of 

the structure are used as the input of the ANN and damages due to stiffness reduction are as the 

out layer of the ANN. The damage-sensitive features can be extracted automatically from the raw 

displacement responses in real-time. 
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Fig. 2. Five-story frame model 

A numerical study is conducted to detect damages in the frame structure based on the method. 

Fig. 2 shows a five-story frame modeling ‘shear building’. The structure has five degrees of 

freedom (floor translations) and is subjected to random base acceleration excitation �̈�𝑔 . The 

excitation is a zero-mean Gaussian random process with the power spectral density: 

𝑆�̈�𝑔
=

1 + 4𝜁𝑔
2(𝜔/𝜔𝑔)2

[1 − (𝜔/𝜔𝑔)2]2 + 4𝜁𝑔
2(𝜔/𝜔𝑔)2

𝑆0, (2) 

where the dimensionless excitation intensity 𝑆0 = 1, parameters 𝜔𝑔 = 5𝜋  and 𝜁𝑔 = 0.6. The 

structural mass, stiffness and damping coefficients of the 𝑖 -th story are 𝑚𝑖 = 500 kg,  

𝑐𝑖 = 1.0 kN·s/m and 𝑘𝑖 = 120 kN/m (𝑖 = 1-5), respectively. The structural dynamic equation can 

be obtained as: 

𝐌�̈� + 𝐂�̇� + 𝐊𝐗 = −𝐌𝚯 · �̈�𝑔, (3) 

where 𝐌, 𝐂 and 𝐊 denote mass, damping and stiffness matrices, respectively; X, �̇�, �̈� denote 

relative displacement, velocity and acceleration vectors, respectively; 𝚯 =  [1,1,1,1,1]𝑇 ; and  

𝐗 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]𝑇, in which 𝑥𝑖 is the 𝑖-th floor displacement relative to the base. 

 
Fig. 3. Displacement responses with 10 dB SNR 

 
Fig. 4. MSE versus SNR for cases 7, 8 and 9 
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Table 1. Condition scenarios of the frame structure 

Scenario 

no. 

Damage location 

(floor no.) 

Damage 

severity (%) 

Scenario 

no. 

Damage location 

(floor no.) 

Damage severity 

(%) 

1 No 0 7 4 10 

2 1 5 8 5 25 

3 1 20 9 3,5 20, 45 

4 2 10 10 4, 5 25, 25 

5 2 25 11 1, 2, 3 10,15,10 

6 3 20 12 1, 2, 3, 4, 5 5, 20, 30, 10, 20 

The displacement responses of the frame structure are calculated in time domain and then are 

used as the input to the ANN. The stiffness degradation is as the damages, and the damage severity 

is defined as 𝛼𝑖 = 1 − 𝑘𝑖,𝑑 𝑘𝑖,𝑢⁄ , where 𝑘𝑖,𝑢 and 𝑘𝑖,𝑑 denote the 𝑖-th stiffness for undamaged and 

damaged cases, respectively. 12 scenarios are used to train and validate the ANN for SDD, as 

given in Table 1. Case 1 is the undamaged; cases 2-8 have the single damage with different 

degradations in different floors; and cases 9-12 have the multiple damages in different floors. For 

each condition scenario, 100 samples of random excitation produced by Eq. (2) are used to obtain 

structural responses. 1200 groups of samples are collected and divided into 100 subgroups. 99 

subgroups are used to train the ANN, and one subgroup is used for validation. In addition, 

Gaussian white noise is added to the responses to simulate noisy measurement. Fig. 3 shows an 

example of random displacement responses of the damaged structure (scenario no. 12) with 10 dB 

signal-to-noise ratio (SNR). The time interval of samples is 0.1 s and total time is 50 s. The output 

vector is {𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5} representing the damage severity of every floors. 

4. ANN detection results 

The effects of noise intensity, sampling time length and measured DOF of random vibration 

responses on the accuracy of the proposed ANN-based method for SDD are investigated. 

First, displacement responses with different SNRs (representing different noise intensities) are 

considered. Fig. 4 shows the MSE dependent on the SNR for cases 7, 8 and 9. Fig. 5 shows the 

comparison of predicting damages of 6 condition scenarios for different SNRs. The accuracy of 

predicting results increases with the SNR from 10 dB to 30 dB. For example, the MSE of 

prediction values is 9.42×10-3, 2.85×10-4, 9.31×10-5 for SNR = 10, 20, 30 dB in case 9, 

respectively.  

 
a) Case 1 

 
b) Case 7 

 
c) Case 8 

 
d) Case 9 

 
e) Case 11 

 
f) Case 12 

Fig. 5. Prediction results of structural damages for different noise intensities 
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Second, displacement responses with different sampling time lengths are considered. Fig. 6 

shows the comparison of predicting damages of 3 condition scenarios for different time lengths. 

The accuracy of predicting results increases with the sampling time length from 10 s to 50 s. For 

example, the MSE of prediction value is 8.0×10-4, 3.6×10-7, 3.5×10-7 for the time length 10, 30, 

50 s in case 7, respectively, and it is very little for the time length larger than 30s. 

 
a) Case 7 

 
b) Case 9 

 
c) Case 12 

Fig. 6. Prediction results of structural damages for different sampling time lengths 

 
a) Case 7 

 
b) Case 9 

 
c) Case 12 

Fig. 7. Prediction results of structural damages for different DOFs 

Finally, displacement responses of different DOFs (for finite measured DOFs) as input vector 

are considered. That is one DOF response (1st floor), three DOFs responses (1st, 3rd and 5th 

floors) and five DOFs responses (all floors) are used, respectively. Fig. 7 shows the comparison 

of predicting damages of 3 condition scenarios for different DOFs used. The accuracy of 

prediction results is insensitive to various DOFs. For example, the MSE of prediction value is 

3.6×10-9, 5.4×10-7, 3.6×10-7 for 1, 3, 5 DOFs in case 7, respectively. 

5. Conclusions 

A SDD method based on ANN model using displacement responses is proposed to assess and 

localize damages, and applied to a five-story frame structure under random base excitation. 

Random displacement responses are used as input to the ANN model to detect structural damages. 

The effects of incomplete measurement due to intensive noise, finite sampling time length and 

measured DOF on the accuracy of predicting damages are obtained. 

There are several meaningful results for the ANN-based SDD method as following: (1) the 

accuracy of prediction results increases with the SNR from 10 dB to 30 dB, and the MSE of 

prediction results is very small for the SNR larger than 30 dB; (2) the accuracy of prediction results 

increases with sampling time length of random displacement responses from 10 s to 50 s, and the 

prediction results are more accurate for time length larger than 30 s; (3) the effect of the finite 

measured DOFs on the accuracy of prediction results is very slight for the five-story frame. The 

above results are valuable for utilizing ANN based on random displacement responses to detect 

structural damages. 
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