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Abstract. The impulse and modulation characteristic of rolling bearing’ faulty signal is often very 
weak when early fault arises in rolling bearing or gears, and the main reasons are due to the signal 
attenuation caused by too long signal acquisition path and the interference of other multi-source 
vibration. In order to extract the weak feature accurately, a method named as variational mode 
extraction (VME) based on constructed reference enhanced by improved minimum entropy de-
convolution (IMED) is proposed, which combines both the advantages of IMED in solving the 
influence of the long signal acquisition path and VME based on constructed reference in extracting 
the impulse and modulation characteristic of vibration signal. Firstly, IMED is used as signal 
preprocessing method to analyze the vibration signal of rotating machinery to eliminate the 
influence of long signal acquisition path and enhance the repetitive impulse characteristics. Then, 
reference signal is constructed according to the prior knowledge of the rotating machinery and 
input it with the output signal of IMED into the VME model together, and the output result of 
VME not only could further enhance the impulse characteristic of vibration signal, but also obtain 
the modulation characteristic simultaneously. Finally, envelope spectral or enhanced envelope 
spectral is performed on the output signal of VME and satisfactory fault features are extracted. In 
order to solve the shortcomings of traditional MED, an IMED based on D-norm is proposed which 
has higher computational efficiency and could extract multi-harmonic impulse features. In 
addition, VME based on constructed reference is proposed to improve the accuracy of VME in 
extracting the target signal. Feasibility and superiority of the proposed method are verified by one 
experimental case and one engineering case. 
Keywords: fault diagnosis, construction reference, variational mode extraction, improved 
minimum entropy de-convolution, rotating machinery. 

1. Introduction 

State monitoring and fault diagnosis of rotating machinery based on vibration signals has 
become the mainstream. However, the collected vibration signal of faulty rotating machinery is 
essential one kind of multi-source signal, and its fault features are often very weak due to the long 
signal acquisition path and the interference of other signal components. Normally, the signal needs 
to be filtered or decomposed into several sub-signals, then the feature extraction method is 
performed on the filtered signal or some sub-signals to obtain an accurate diagnosis conclusion. 
Various methods have been proposed to meet the above requirement such as wavelet transform 
[1], followed by the sparse representation analysis method based on predefined dictionary [2-3]. 
However, the decomposition quality of wavelet transform has a great relationship with the selected 
wavelet basis. So far, the construction or selection of wavelet basis has not been resolved perfectly. 
Though the sparse representation analysis method based on predefined dictionary, also naming as 
analytical dictionary [4-7] solves the problem of wavelet basis selection to certain extent, it has 
the defects of requiring much more prior knowledge of the analyzed signal. Sparse representation 
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analysis method based on self-learning dictionary [8-11] does not require prior knowledge of the 
analyzed signal, and the optimal dictionary set could be learned adaptively based on the analyzed 
signal, but its huge amount of calculation and low computational efficiency limit its engineering 
application. Empirical mode decomposition (EMD) is a decomposition method for non-stationary 
signal, and it could decompose the multicomponent signal into a series of intrinsic mode functions 
(IMFs) to achieve better feature extraction result. However, its inherent mode aliasing and weak 
mathematical theory limit its further popularization and application [12]. Besides, EMD is 
extremely susceptible to noise interference since its algorithm is based on the local maximum 
expansion [13]. In recent years, although various of EMD improved methods have solved the 
above-mentioned shortcomings of EMD to some extent [14-15], most of them have the 
disadvantage of a large amount of calculation.  

As a variational, non-recursive, multi-resolution decomposition method, variational mode 
decomposition (VMD) has higher computational efficiency and stronger noise robustness than 
EMD, and it has achieved certain applications in the area of fault diagnosis [16-18]. VME only 
extracts the target signal, but VMD will decompose the analyzed signal into a series of signals at 
the same time, so unnecessary extra calculation will be generated. In addition, the number of 
decomposition modes needs to be predetermined for VMD, and the number choice of 
decomposition modes will produce great contingency on the decomposition results. So far, there 
is still no relevant literature to solve the problem perfectly. VME being derived from VMD has 
the same calculation concept as VMD: Wiener filtering, Hilbert transform and variation [19], and 
it could use prior knowledge of the analyzed signal to extract the specific pattern being buried in 
the analyzed signal. Furthermore, the calculation efficiency of VME could be improved greatly 
compared with VMD due to the reason that it only extracts the specific pattern hidden in the 
analyzed signal. However, the extraction effect of VME often depends on whether the feature of 
the target extracted component being buried in the analyzed signal is obvious or not. As mentioned 
above, the impulse characteristic of rotating machinery’ vibration signal is often weak owing to 
the signal attenuation of the signal acquisition path, and the analyzed signal needs to be 
preprocessed to enhance the impulse characteristic before applying VME on the analyzed signal. 
Minimum entropy de-convolution (MED) [20] is often used as a preprocessing method for the 
enhancement of impulse characteristic, and the characteristic of traditional MED is that it will use 
the maximize kurtosis of its output as the termination condition. Endo et al. used MED for impact 
fault signal extraction of rotating machinery for the first time [21], then MED and its related 
algorithms have been used widely in the area of fault diagnosis [22-24]. However, the following 
two problems of MED still need to be solved to obtain much better extraction effect: (1) the 
theoretical goal of MED is to filter out a few obvious impulsive components hidden in the 
background noise through the de-convolution optimal filter. However, it is often hoped to extract 
an impact component in each fault cycle. (2) Additional impact components at signal 
discontinuities also might be de-convoluted by MED, which may lead to misjudgment results. 
MCKD [23] algorithm de-convolutes the impulse signal based on the prior knowledge of the 
failure rotating machinery. The above-mentioned two shortcomings of MED could be solved by 
MCKD to some extent. However, MCKD has the following problems in engineering applications: 
(1) Prior knowledge of the fault cycle is required. (2) Resampling is required when the fault cycle 
is irregular. (3) Its calculation efficiency is lower compared with MED. (4) MCKD cannot extract 
impact fault signals effectively when the background noise is strong. Aiming at solving the above-
mentioned related drawbacks of MED and MCKD, an IMED method is proposed, which uses a 
time target vector to define the impact position determined by MED. The proposed method does 
not need to construct an optimal filter iteratively same as MED, and it also does not need the prior 
knowledge such as the failure cycle of rotating machinery same as MCKD. In addition, the 
proposed method has stronger noise robustness than the above two methods, and it could extract 
the early weak fault features of rotating machinery effectively. 

Based on the above stated, an effective fault feature extraction method named as repetitive 
impacts recovering using VME with constructed reference enhanced by IMED is proposed. The 
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proposed method combines both the advantages of IMED in solving the influence of the long 
signal acquisition path and VME based on constructed reference in extracting the impulse and 
modulation characteristic of vibration signal. Firstly, IMED is used as signal preprocessing 
method to analyze the vibration signal of rotating machinery to eliminate the influence of the 
signal acquisition path. Meanwhile, the repetitive impulse characteristics are also enhanced by 
IMED. Then, construct the reference signal according to the prior knowledge of the rotating 
machinery and input it with the output signal of IMED into the VME model together, and the 
output result of VME not only could further enhance the impulse characteristic of the vibration 
signal, but also obtain the modulation characteristic simultaneously. Finally, perform envelope 
spectral or enhanced envelope spectral on the output of VME and the fault features are identified 
successfully. Three main contributions are contained in this work: (i) An IMED method is 
proposed which overcomes the shortcomings of MED and other related MED improved method, 
and it could recover much more repetitive impulse components than the other methods; (ii) VME 
with constructed reference is proposed and used to extract the specific component buried in other 
interferences correctly; and (iii) The proposed combined method can deal with both experimental 
signal and engineering signal, and its advantages over the other methods are evident. 

The remaining chapters of this paper are organized as follows. Section 2 and 3 presents the 
calculation theories of VME with constructed reference and IMED in details respectively. Flow 
charts of the proposed method and its application in fault diagnosis are described in Section 4. The 
applications of the proposed method on one experiment case and one engineering case are shown 
in Section 5. Conclusions are obtained in Section 6. 

2. VME with constructed reference 

It could be known that the decomposition result of VMD is restricted by the penalty parameter 
and the number of modes according to its basic algorithm and principles [16-18]. Besides, the 
optimal number of modes must be determined before the decomposition is started for VMD. 
Otherwise, when the number of setting modes is too high, certain interference patterns will appear, 
which affects the extraction of valid information; when the number of setting modes is too low, 
modal aliasing will appear. VME is the improved method originating from VMD, and the 
difference is that VME only extracts the target signal in contrast to VMD as mentioned earlier. It 
is necessary to decompose the signal into several modes by VMD firstly when using VME to 
analyze the signal, then use Wiener filter to filter each of the obtained modes, and a specific mode 
near the center frequency is extracted according to the obtained approximate value of the center 
frequency of the signal finally. Besides, the extracted specific mode has nothing to do with other 
modes decomposed by VMD. Compared with VMD, VME not only eliminates the limitation of 
the selection optimal number of modes, but also has a high convergence speed and reduces the 
computational complexity. Based on the principle of VME algorithm and its advantages over 
VMD, this paper proposes a new method naming VME with constructed reference, that is, a 
reference signal is constructed according to the prior knowledge of the diagnosis object, and then 
input it with the original fault signal into the VME algorithm model simultaneously to extract the 
target signal more effectively. Principle of the VME algorithm can be found in [19], which will 
not be repeated here. The basic process of the VME with constructed reference signal is described 
as follows through a simulation. 

A simulation signal whose time-domain waveform as shown in Fig. 1 is analyzed by VME, 
which is composed of three components: sig1 is the simulated vibration signal of rolling element 
bearing, whose mathematical equation could be described by Eq. (1) [26-27]: 
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⎩⎪⎨
⎪⎧𝑥 𝑡 = 𝑠 𝑡 + 𝑛 𝑡 = 𝐴 ℎ 𝑡 − 𝑖𝑇 − 𝜏 + 𝑛 𝑡 ,𝐴 = 𝐴 cos 2𝜋𝑓 𝑡 + 𝜙 + 𝐶 ,ℎ 𝑡 = 𝑒 cos 2𝜋𝑓 𝑡 + 𝜙 .  (1)

In which the inner race fault characteristic frequency (FCF) is set as 𝑓  = 102 Hz, rotating 
frequency is set as 𝑓  = 12 Hz, and the sampling frequency is set as 𝑓 = 25600 Hz. 𝜏  represents 
the random slide between the rolling elements and the races, whose standard deviation is 0.5 % of 
the shaft rotating frequency. Sig2 is a sine signal and Sig3 is random white noise. Construct a 
reference signal whose time-domain waveform is shown in Fig. 2, and the characteristic frequency 
of the constructed signal is set same as Sig1. Then input it with the simulation signal into VME 
model, and the last output result is shown in Fig. 3, in which Sig2 is the extracted sine component 
and Sig1 is the extracted simulation signal of rolling bearing, and it could be concluded that 
satisfactory extraction results are obtained: 

 
Fig. 1. Simulation signal 

 
Fig. 2. Constructed reference signal 

EEMD [28] is the improved method of EMD which makes full use of the influence of Gaussian 
white noise on the decomposition results of EMD, and it overcomes the shortcomings of mode 
mixing phenomenon owned by EMD. To verify the advantages of VME, apply EEMD on the 
same simulation signal as shown at the bottom figure of Fig. 1 and the decomposition results are 
given in Fig. 4, in which imf1 could be regarded as the extracted simulation signal of rolling 
bearing. The advantage of VME over EEMD is evident through comparing the extraction result 
as shown in Fig. 3 by using VME and the extraction result as shown in Fig. 4 by using EEMD. 
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Fig. 3. Extracted results of the simulation signal by using VME 

 
Fig. 4. Decomposition results of the simulation signal by using EEMD 

3. IMED 

The vibration signal of faulty bearing or faulty gear will take on impulse characteristics 
usually, and suppose that the faulty signal is expressed by Eq. (2): 𝑥 = ℎ ∗ 𝑦 + 𝑒, (2)

where 𝑥 represents the collected signal; 𝑦 is the original impulse characteristic signal; 𝑒 
represents the background noise, and ℎ represents the influence of signal acquisition path on the 
impulse characteristic signal.  

Same as the ideology of MED, the basic ideology of IMED is to construct an optimal filter in 
a non-iterative way to recover the original impulse characteristic signal, and the process could be 
expressed by Eq. (3): 
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𝑦 = 𝑓 ∗ 𝑥 = 𝑓 𝑥 , (3)

where 𝑘 = 1,2,⋯ ,𝑁 − 𝐿. 
As mentioned in the introduction, compared with the classical MED algorithm, the MCKD 

method optimizing the optimal filter with the maximization of the correlation kurtosis as the 
objective function not only could reflect the continuity of the impulse signal when failure arises 
in rolling bearing, but also could measure the proportion of periodic impulse sequences. However, 
in addition to the drawbacks described in the introduction, the noise reduction effect of MCKD is 
also affected by the length of the filter: if the length of the filter is too large, the amount of 
calculation will be increased. Besides, the period is need to be rounded or adjusted by resampling 
when the period is a decimal. In view of the periodic impulse characteristic of the vibration signal 
of faulty bearing or gear, a multi-point D-norm (Multiple D Norms, MDN) is proposed on the 
basis of the D-norm in the MED algorithm, that is: 

𝑀𝐷𝑁 𝑦, 𝑡 = 𝑡 𝑦‖𝑦‖, (4)𝐼𝑀𝐸𝐷 = max𝑀𝐷𝑁 𝑦, 𝑡 = max 𝑡 ⋅ 𝑦‖𝑦‖. (5)

The IMED algorithm uses a time target vector to define the position and weight of the impulse 
sequence obtained by deconvolution, and this target vector is well suitable for vibration feature 
extraction when a shock pulse is generated per revolution of rotating machinery. Furthermore, 
IMED is also applicable for non-integer fault without resampling. The target vector 𝑡 in Eq. (5) 
defines the position and weight of the impulse component of the convolution target. The effect of 
IMED achieves the best when the original impulse characteristic signal 𝑦 is completely consistent 
with 𝑡. At the same time, the MDN value in Eq. (4) reaches the maximum value, and the filter 𝑓 
is the obtained optimal convolution filter. 

Transform Eq. (5) into Eq. (6) for further solution: 𝑑𝑑𝑓 𝑡 𝑦‖𝑦‖ = 0, (6)

where 𝑓 = 𝑓 , 𝑓 ,𝑓 ,⋯ , 𝑓 , 𝑡 = 𝑡 , 𝑡 , 𝑡 ,⋯ , 𝑡 . 
Combine Eq. (3), (5) and (6): 𝑑𝑑𝑓 𝑡 𝑦‖𝑦‖ = ‖𝑦‖ 𝑡 𝑀 + 𝑡 𝑀 + ⋯+ 𝑡 𝑀 − ‖𝑦‖ 𝑡 𝑦𝑋 𝑦 = 0, (7)

where 𝑘 = 1,2,⋯ ,𝑁 − 𝐿. 
Let 𝑋 = [𝑀 ,𝑀 ,⋯ ,𝑀 ], and Eq. (7) could be simplified as following: ‖𝑦‖ 𝑋 𝑡 − ‖𝑦‖ 𝑡 𝑦𝑋 𝑦 = 0. (8)

Following equation is obtained through further sorting: 𝑡 ⋅ 𝑦‖𝑦‖ 𝑋 𝑦 = 𝑋 𝑡. (9)

Combine 𝑦 = 𝑋 𝑓 with Eq. (9), and there is following equation obtained: 
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𝑡 ⋅ 𝑦‖𝑦‖ 𝑓 = (𝑋 𝑋 ) 𝑋 𝑡. (10)

Take the special solution of Eq. (10) as a set of optimal filters, which is denoted as: 𝑓 = (𝑋 𝑋 ) 𝑋 𝑡. (11)

The original impulse characteristic signal𝑦could be recovered by substituting the optimal filter 𝑓 obtained from Eq. (11) into 𝑦 = 𝑋 𝑓. 
The simulation signal as described in Eq. (1) is used to verify the superiority of IMED. Firstly, 

add random white noise into it and time-domain waveform of the noised signal is shown in 
Fig. 5(a). Time-domain waveforms of the impulse characteristic enhanced signals by using IMED 
and MCKD are presented in Fig. 5(b) and Fig. 5(c) respectively. It could be observed that the 
proposed IMED method not only could enhance the impulse characteristic of the vibration signal 
of faulty bearing effectively, but also could extract multiple shocks through comparison between 
Fig. 5(b) and Fig. 5(c). In addition, Fig. 5(d) and Fig. 5(e) are the relationship between the kurtosis 
index of the impulse enhanced signal and the iteration number of IMED and MCKD: it could be 
seen that the output signal of IMED with biggest kurtosis is basically obtained after about 5 
iterations. However, the maximum correlation kurtosis of the impulse enhanced signal using 
MCKD is obtained after about 16 iterations, indicating that IMED has higher computation 
efficiency than MCKD. 

 
a) Noised simulation signal 

 
b) Repetitive impulse characteristic  

enhanced by IMED 

 
c) Impulse characteristic enhanced by MCKD 

 
d) Kurtosis of the enhanced impulse signal  

by IMED with the number of iteration 

 
e) Kurtosis of the enhanced impulse signal by 

MCKD with the number of iteration 
Fig. 5. Noised simulation signal handled by IMED and MCKD 
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4. Flow chart of the proposed method 

Flow chart of the proposed method to recover the repetitive impacts using VME with 
constructed reference enhanced by IMED is introduced in this section. This method combines both 
the advantages of IMED in solving the influence of the long signal acquisition path and VME 
based on constructed reference in extracting the impulse and modulation characteristic of vibration 
signal, and its specific process is given in Fig. 6 and its details are as follows: 

Step 1: Install the accelerator sensor as close to the vibration source as possible to collect the 
vibration signal effectively. 

Step 2: Input the collected signal into IMED model to minimize the influence of the signal 
acquisition path and enhance the impulse characteristic of fault signal preliminarily. 

Step 3: Construct a reference signal with the prior knowledge of the faulty component, and the 
FCF of the faulty component is used as the prior knowledge in the study. 

Step 4: Input the constructed reference signal with the output signal of IMED into the VME 
model simultaneously for better extraction result of VME. 

Step 5: Apply envelope spectral on the extraction result of step 4 to extract satisfactory fault 
feature, and enhanced envelope spectral is another alternative if unsatisfactory extraction result is 
obtained by envelope spectral. 

Start

Vibration signal 
collection

Input the collected vibration signal into IMED

Construct a reference signal based on the prior 
knowledge of the faulty component, and input the 

reference signal and the  output signal of IMED into the 
VME model

Apply envelope spectral or enhanced envelope spectral 
on the output signal of VME model

Effective fault features 
are extracted  

Fig. 6. Flow chart of the proposed method 

5. Case studies 

5.1. Case 1: rolling element bearing diagnosis in laboratory 

5.1.1. Data description 

Effectiveness of the proposed method is verified by using the early failure data in the 
degradation stage of the rolling element bearing’ accelerated failure life cycle. The experiment is 
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fundamentally different from traditional fault processing method of rolling element bearing, which 
is impossible to be simulated accurately using mathematical models or processing pitting methods. 
Details of the experiment could be referred to literature [25], and they are not presented here due 
to space limitations. Take one of the test bearings as research object and its relevant parameters 
and the calculated fault characteristic frequencies (FCFs) are presented in Table 1 and Table 2 
respectively. Amplitude and kurtosis of the selected bearing over its whole life cycle are presented 
in Fig. 7 and Fig. 8, in which sudden change at the 2230th minute could be observed, and there is 
almost no change before the 2297th minute, so the collected data corresponding to the 2297th 
minute could be reviewed as the vibration signal of the early weak failure stage. The final 
disassembly diagram of the selected test bearing is given in Fig. 9, which shows that failure occurs 
on the inner race.  

Table 1. Parameters of the test bearing 
Type Ball 

number 
Ball diameter 

(mm) 
Pitch diameter 

(mm) 
Contact 
angle 

Motor 
speed 

Load 
(kN) 

6307 8 13.494 58.5 0 3000 12.744 

Table 2. Fault characteristic frequencies of the test rolling bearing 𝑓  𝑓  𝑓  𝑓  𝑓  
50 19 102 246 153 

 
Fig. 7. Amplitude over its whole life of the test bearing 

 
Fig. 8. Kurtosis over its whole life of the test bearing 

 
Fig. 9. Fault occurring on the inner race 
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5.1.2. Data analysis and fault diagnosis 

Time-domain waveform of the data corresponding to the 2297th minute with its envelope 
spectral are presented in Fig. 10(a) and Fig. 10(b): the impulse features in the time-domain are 
submerged completely due to the influence of strong background noise, and the energy 
distribution of the spectral lines locating on the inner race FCF with its harmonics are not obvious 
in the envelope spectral result. The original vibration signal as shown in Fig. 10(a) is firstly 
analyzed by IMED, and time-domain waveform and envelope spectral result of the output signal 
of IMED are presented in Fig. 10(c) and Fig. 10(d) respectively. It could be seen intuitively that 
the impact characteristics have been enhanced by comparing Fig. 10(c) with Fig. 10(a). The 
kurtosis values of the original signal as shown in Fig.10 (a) and the repetitive impact enhancement 
signal as shown in Fig. 10(c) are calculated respectively, which are 1.2 and 3.6, and this further 
quantifies the enhancement effect of IMED on the repetitive characteristics of the original signal. 
Apply envelope spectral analysis on the signal as shown in Fig. 10(c) and the corresponding result 
is presented in Fig. 10(d) from which the inner race FCF with its harmonics still could not be 
identified. Besides, misjudgment might be caused based on the analysis result as shown in 
Fig. 10(d), because the obvious spectral peaks could be observed roughly locating on the outer 
race FCF with its harmonics. The above results indicate that further processing of the output signal 
of IMED is needed. The reference signal is constructed based on the prior knowledge of the test 
bearing, that is the inner race FCF. Time-domain waveform of the constructed reference signal is 
shown in Fig. 10 (e). It should be noted that, the amplitude of the reference signal has little effect 
on the output of the VME through testing: the relationship between the amplitude of the reference 
signal and the accuracy of the VME’ output target signal is shown in Fig. 10(f). Subsequently, 
input the constructed reference signal with the signal as shown in Fig. 10(c) into the VME 
calculation model, and the last result is presented in Fig. 10(g): sig1 is the decomposition residual 
which includes the rotating frequency with its harmonics, the gear meshing components and so 
on, and sig2 is the target extraction component. Comparing sig2 with the signal as presented in 
Fig. 10(c), the impulse characteristic is further enhanced. Based on the theory of VME, the 
characteristic frequency of sig1 should have the same frequency as the constructed reference 
signal. In order to express the extraction results of the proposed method intuitively, apply envelope 
spectral on sig1 and the result is given at the bottom figure of Fig. 10(g), and the inner race FCF 
is identified ideally. 

 
a) Time-domain waveform of the  

test bearing’ early weak fault 

 
b) Envelope spectral of the signal  

as shown in Fig. 10(a) 

 
c) Repetive impulse characteristic of the signal  

shown in Fig.10 (a) enhanced by IMED 
d) Envelope spectral of the signal  

as shown in Fig. 10(c) 
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e) Constructed reference signal for the signal as 

shown in Fig. 10(c) 
 

 
f) Relationship between the amplitude of the 

reference signal and the accuracy  
of the VME output target signal 

 
g) Extracted results of the signal shown in Fig. 10(c) by using VME 

Fig. 10. Feature extraction result of test bearing’ early weak fault using the proposed method 

5.2. Case 2: Gear diagnosis in engineering 

5.2.1. Data description 

The complexity of the faulty vibration signal in engineering is much higher than that of the 
experimental signal, and the reasons are due to the inference of the other vibration signals of the 
components around the fault source and the limited condition of the vibration monitoring location. 
In order to further verify the effectiveness of the proposed method, it is used in gear fault diagnosis 
in actual engineering. The engineering research object is a coal mill in the cement plant and its 
structure is shown in Fig. 11. The coal mill is a machine whose function is crushing and grinding 
the coal into pulverized coal, and it is an important auxiliary equipment for pulverized coal stoves 
in the electric power and building materials industries. It will cause serious chain reaction if failure 
arises in it. The output speed of the motor is reduced by a three-stage gearbox, and the same gear 
noted in Fig. 12 is driven by the output speed of the gearbox through a coupling. The total 
transmission ratio of the gearbox is 5.6, and the output speeds of the motor and the gearbox are 
744 r/min and 132 r/min respectively. Parameters of the open gears supported by the bearing seat 
are shown in Table 3. It was found that bigger vibration phenomenon occurring at both the free 
end and driven end of the bearing seat. The measurement points in different directions and the 
corresponding measurement values are shown Table 4. The sensor type is vibration accelerator, 
and the vibration data corresponding to the maximum vibration value that is 14.39 m/s/s 
(horizontal direction of the driven end the bearing seat) is selected for analysis. Since both the 
rotating frequency and the meshing frequency are low, the sampling frequency could be set a little 
lower, that is 𝐹𝑠 = 853 Hz. The length of the sampling data is set as 𝐿 = 32768 in order to obtain 
high resolution.  
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Fig. 11. Structure of coal mill 

 
Fig. 12. Fault location occurring on the 

small gear 

Table 3. Parameters of the open gears 
Gear name Tooth number Rotating speed (Hz) Mesh frequency (Hz) 
Big gear 241 0.247 Hz 59.4 Small gear 27 2.2 Hz 

Table 4. Values of the measuring points 
Number Measuring points Direction Measuring values (m/s2) 

1 
Drive end of bearing  

pedestal 

Horizontal 14.37 
2 Vertical 12.29 
3 Axial 8.91 
4 

Free end of bearing  
pedestal 

Horizontal 10.72 
5 Vertical 9.1 
6 Axial 6.29 

5.2.2. Data analysis and fault diagnosis 

Time-domain waveform of the selected vibration signal is presented in Fig. 13(a), and 
Fig. 13(b) is its corresponding envelope spectral result. Theoretically, it will present an impact 
and modulation phenomenon in the time domain waveform, and a spectral line distribution 
structure with the meshing frequency as the center frequency and the mesh gear speed as the side 
frequency will appear in the envelope spectral. However, neither of the above features could be 
reflected. The root reason is that when failure occurs on the small gear, the vibration energy 
aroused by the failure source is very weak compared with the large gear rotating vibration energy, 
meshing frequency energy and gearbox output signal energy. Apply IMED on the original signal 
same as the experiment and the output signal is shown in Fig. 13(c), and it could be seen that both 
the impulse and modulation characteristics of the faulty gear signal have been enhanced. However, 
the fault features still could not be extracted by applying envelope spectral on the signal as shown 
in Fig. 13(c), which could be verified by Fig. 13(d). The output signal of IMED should be further 
processed according to the proposed method. Firstly, it is necessary to construct a reference signal 
of the faulty gear based on the prior knowledge of the faulty gear, namely the meshing frequency 
and the rotating frequency of meshing gear. The constructed reference signal of faulty gear could 
be referred to Eq. (12) and its time-domain waveform is shown in Fig. 13(e): 𝑔 = [1 + 3cos(2𝜋𝑓 𝑡)] ∗ cos(2𝜋𝑓 𝑡), (12)

where 𝑓  = 0.247 Hz is the rotating frequency of big gear, and 𝑓 = 59.4 Hz is the meshing 
frequency.  

Input the constructed reference signal of faulty gear with the signal as shown in Fig. 13(c) into 
VME model simultaneously, and the extracted signal is shown in Fig. 13(f) whose impulse and 
modulation characteristics are further enhanced. Apply envelope spectral on the extracted signal 
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as shown in Fig. 13(f) and the result is shown in Fig. 13(g), based on which a spectral line 
distribution structure with the meshing frequency 59.4Hz as the center frequency and the big gear 
speed 0.247 Hz as the side frequency could be observed roughly, which verifies the feasibility of 
the proposed method in engineering application. However, in order to reflect the extraction effect 
more intuitively, apply fast spectral correlation (FSC) [29] and enhanced envelope epectrum 
(EES) [30] on the signal as shown in Fig. 13(f). Compared with spectral correlation (SC), FSC 
has much higher calculation efficiency and much more outstanding capturing ability of the 
cyclostationary signal by refining frequency resolution arbitrarily. Besides, the performance of 
EES is also improved by introducing the kurtosis weighting scheme into FSC. The corresponding 
two-dimensional FSC image of the signal as shown in Fig. 13(f) is presented in Fig. 13(h) from 
which relative evident modulation phenomenon could be observed. EES of the signal as shown in 
Fig. 13(f) based on the obtained FSC result as shown in Fig. 13(h) is shown in Fig. 13(i), which 
reflects the modulation phenomenon much more intuitively. 

 
a) Time-domain waveform of the vibration  

signal of faulty gear 

 
b) EDS of the vibration signal as shown  

in Fig. 13(a) 

 
c) Repetive impulse characteristic of the signal shown 

in Fig.13 (a) enhanced by IMED 

 
d) EDS of the vibration signal  

as shown in Fig.13 (c) 

 
e) Constructed reference signal for the signal as shown in Fig.13 (c) 

 
f) Extracted results of the signal shown  

in Fig. 13(c) by using VME 

 
g) EDS of the vibration signal  

as shown in Fig. 13(e) 
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h) FSC image of the signal as shown in Fig. 13(f) 

 
i) EES of the signal as shown in Fig. 13(f) based on the obtained FSC result as shown in Fig. 13(h) 
Fig. 13. Feature extraction result of engineering gear’ early weak fault using the proposed method 

6. Conclusions 

A repetitive impulse recovering method using VME with constructed reference enhanced by 
IMED was proposed for fault diagnosis of rotating machinery. The proposed method uses the 
feature enhancement effect of IMDE on the repetitive impulse component in the vibration signal 
and the accurate extraction effect of the target signal based on VME with constructed reference 
comprehensively. One laboratory case and one engineering case analysis results demonstrate the 
effectiveness and advantages of the proposed method. Mainly conclusions are summarized as 
follows: 

1) The advantages of proposed IMED in repetitive impulse characteristic enhancement effect 
over traditional MED method such as MCKD is highlighted through analyzing a bearing simulated 
signal.  

2) A VME method based on constructed reference signal is proposed to improve the extraction 
accuracy of VME, and a simulation signal is used to verify that the proposed VME based method 
with constructed reference signal not only has much more precise extraction effect than the 
traditional VME and EEMD, but also has virtue of noise robustness. 

3) The proposed fault feature enhancement method is easy to be implemented and could meet 
the requirements of online diagnosis, which provides a new method for fault diagnosis of rotating 
machinery. 
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