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Abstract. In order to solve the problem that the measured values of key state parameters such as 

the lateral velocity and yaw rate of the vehicle are easily interfered by random errors, a filter 

estimation method of vehicle state is proposed based on the principle of robust filtering and the 

unscented particle filter algorithm. Based on the establishment of a 3-DOF non-linear dynamic 

model and the Dugoff tire model of the vehicle, the adaptive robust unscented particle 

filter(ARUPF) is used to filter and estimate the parameters of the vehicle state, and to realize the 

longitudinal and lateral speed as well as the yaw rate of the vehicle during the driving process. 

The simulation and the real vehicle test results show that based on the adaptive robust unscented 

particle filter algorithm, the vehicle driving state estimation can be realized, the measurement 

parameters can be effectively filtered, and the estimation accuracy is high. 

Keywords: automotive engineering, vehicle state estimation, adaptive robust unscented particle 

filter, vehicle handling dynamics. 

1. Introduction 

When analyzing the active safety of a vehicle, it is particularly important to obtain the state 

parameters during the driving process of the vehicle. The algorithms used to estimate the key state 

parameters of automobiles mainly include Kalman filter algorithm, particle filter algorithm, 

sliding mode observer algorithm, robust observer algorithm and Romberg observer algorithm. The 

sliding mode observer algorithm depends on the accuracy and performance of the sensor, 

otherwise it is prone to chattering. The robust observer algorithm is prone to underestimation bias 

in some cases, which causes the algorithm to diverge. The calculation process of the Romberg 

observer algorithm is complex, and it is difficult to meet the real-time requirements of the vehicle 

estimation algorithm. 

A vehicle is a strong nonlinear system, but the Kalman filter can only process linear systems. 

Based on the standard Kalman filter algorithm, the Extended Kalman Filter (EKF) and Unscented 

Kalman Filter (UKF) are developed to handle nonlinear systems. The extended Kalman filter 

algorithm linearizes the nonlinear system by performing Taylor expansion of the mathematical 

model of the nonlinear system at the optimal point, and solving the Jacobian matrix of the 

nonlinear function. When this algorithm is used to linearize the nonlinear system, only the first-

order system is retained, and the second-order or higher-order components are discarded, so there 

is a certain estimation bias. At the same time, when the estimated target system has strong 

nonlinearity, its calculation amount is too large and the Jacobian matrix is complicated to solve, 

so the divergence is easy to occur. For each sigma point obtained, its mean and variance are 

ensured the same as the original data, and brought into the nonlinear system for unscented 

transformation making it close to Gaussian distribution through weighted summation of samples. 

Based on the characteristics of Gaussian distribution, the algorithm can be accurate to the 

third-order mean and covariance, and the operation is simple, and the obtained system is stable. 

The problem of vehicle state estimation has been widely studied. A brief review is presented 

in what follows. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2022.22788&domain=pdf&date_stamp=2022-12-11
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Lenzo et al. [1] proposed an Extended Kalman Filter (EKF) method to estimate the vehicle 

states as well as tyre-road coefficient of friction. Li et al. [2] proposed a new situation-sensitive 

method to improve the vehicle detection at nighttime. In order to estimate vehicle states and 

parameter with high precision, Zhu et al. [3] presented a modified particle filter. Wang et al. [4] 

proposed a novel adaptive fault-tolerant extended Kalman filter to estimate vehicle state in case 

of partial loss of sensor data. In order to improve the driving dynamics and the driving safety, 

Henning et al. [5] presented an integrated lateral dynamics control concept for a over-actuated 

vehicle. Zhao et al. [6] presented a state estimation method to enable fully autonomous flight in 

outdoor environments. Alatorre et al. [7] proposed an algorithm that merges the concepts of least 

squares method and sliding mode observer for the estimation of the vehicle mass. Heidfeld et al. 

[8] proposed an Unscented KALMAN Filter (UKF) for simultaneous state and parameter 

estimation. Badini et al. [9] presented a simple parameter independent speed estimation algorithm 

for vector-controlled permanent magnet synchronous motor (PMSM) drive. Kulikov et al. [10] 

resolved the lack of square-root implementations by means of hyperbolic QR transforms applied 

for yielding J-orthogonal square roots. Malikov [11] solved the problem of differential equations 

with periodic using the quadratic Lyapunov function. Takikawa1 et al. [12] used a global 

navigation satellite system (GNSS) Doppler for accurate vehicular trajectory estimation. Gao et 

al. [13, 14] presented a new methodology of distributed state fusion for multisensory nonlinear 

systems by using the sparse-grid quadrature filter. 

In the literatures proposed above, some researchers did not implement the algorithms in 

onboard real-time systems. And some researchers missed the diverse traffic conditions in daytime 

and nighttime when estimating states of the vehicle. At the same time, more vehicle parameters 

including the yaw inertia of the vehicle hadn’t been estimated in a lot of literatures. And the 

estimation error covariance as well as the closed-loop operation of the state estimator with a 

driving dynamic hadn’t been investigated. For some researchers, the usability of the proposed 

model should be improved. 

In the current research, most of the observation noise covariance matrix is set to a fixed value. 

However, in the actual driving process of the vehicle, the process noise and observation noise are 

randomly generated. The unscented particle filter (UPF) algorithm uses the unscented Kalman 

filter method to generate the proposal density function, so that the prior probability peak value 

and the likelihood function peak value have good agreement reducing particle degradation. 

However, the accuracy is affected by the uncertainty of the system noise. And the lack of an 

adaptive adjustment mechanism makes it impossible to adjust the filter gain and related parameters 

in real time. In order to better estimate the state parameters of the vehicle in real-time and 

effectively, the adaptive robust unscented particle filter (ARUPF) method, which can adjust filter 

parameters in real time and has better adaptability to interference noise is proposed. 

The ARUPF algorithm absorbs the advantages of robust estimation, robust adaptive filtering 

and particle filtering fully. It combines robust estimation principle and the UPF algorithm through 

equivalent weight function and adaptive factor. The state model information and measurement 

model information can be controlled by selecting appropriate weight function and adaptive factor, 

suppressing the influence of abnormal interference. The ARUPF algorithm overcomes the 

shortcomings of using only a single filtering algorithm. The algorithm uses the important density 

function selected from the three important steps of UT transformation, equivalent weight and 

adaptive factor adjustment to perform importance sampling, reducing the degree of particle 

degradation, and having high filtering accuracy. 

2. Mathematical model of vehicle dynamics 

2.1. 3-DOF vehicle model 

The vehicle state estimation model is established based on a 3-DOF vehicle model. The  

3-DOF vehicle model is shown in Fig. 1. 𝑥𝑜𝑦 is the vehicle coordinate system, and the origin of 
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the vehicle coordinate system coincides with the center of mass of the vehicle. 
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Fig. 1. 3-DOF vehicle model 

The paper adopts a simplified estimation model, and establishes a nonlinear 3-DOF vehicle 

model including longitudinal and lateral as well as yaw motion. And it is assumed that:  

(1) The center of mass of the vehicle model coincides with the origin of the vehicle coordinate 

system; 

(2) The suspension has no effect on the vertical movement of the vehicle;  

(3) The vehicle has no degree of freedom in the pitch and roll directions;  

(4) The impact of the longitudinal rolling resistance is ignored for the state parameter 

estimation.  

In Fig. 1, 𝑎  and 𝑏  are the distances of front and rear axles from the center of gravity 

respectively; 𝑡𝑓 and 𝑡𝑟 are the tracks of the front and rear wheels respectively; 𝛼𝑓𝑙,𝑓𝑟 are the side 

slip angles of the left and right front wheels; 𝛼𝑟𝑙,𝑟𝑟 are the side slip angles of the left and right rear 

wheels; 𝐹𝑥_𝑓𝑙,𝑓𝑟,𝑟𝑙,𝑟𝑟 are the longitudinal forces of the left front, right front, left rear, and right rear 

wheels; 𝐹𝑦_𝑓𝑙,𝑓𝑟,𝑟𝑙,𝑟𝑟  are the lateral forces of the left front, right front, left rear, and right rear 

wheels; 𝛿𝑓𝑙,𝑓𝑟 are the wheel angles of the left and right front wheels. 

The dynamic equation of the 3-DOF vehicle model is as follows: 

{

𝑎𝑥 = �̇� − 𝑣𝑟,
𝑎𝑦 = �̇� + 𝑢𝑟,

𝐼𝑧�̇� = ∑𝑀 ,

 (1) 

where, 𝑢  and 𝑣  are the longitudinal and the lateral speed; 𝑟  is the yaw rate; 𝑎𝑥  and 𝑎𝑦  the 

longitudinal and lateral acceleration; 𝑀 is the yaw moment; 𝐼𝑧 is the moment of inertia around the 

z axis of the vehicle. 

The side slip angle of the center of mass is: 

𝛽 = arctan (
𝑣

𝑢
). (2) 

According to the kinetic equation, the calculation formulas for other parameters are as follows: 
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𝑀 = 𝑎(𝐹𝑥_𝑓𝑙sin𝛿𝑓𝑙 + 𝐹𝑦_𝑓𝑙cos𝛿𝑓𝑙) −
𝑡𝑓

2
(𝐹𝑥_𝑓𝑙cos𝛿𝑓𝑙 − 𝐹𝑦_𝑓𝑙sin𝛿𝑓𝑙)

             +𝑎(𝐹𝑥_𝑓𝑟sin𝛿𝑓𝑟 + 𝐹𝑦_𝑓𝑟cos𝛿𝑓𝑙) +
𝑡𝑓

2
(𝐹𝑥_𝑓𝑟cos𝛿𝑓𝑟 − 𝐹𝑦_𝑓𝑟sin𝛿𝑓𝑟)

             −𝑏𝐹𝑥_𝑟𝑙 −
𝑡𝑓

2
𝐹𝑥_𝑟𝑙 − 𝑏𝐹𝑥_𝑟𝑟 +

𝑡𝑓

2
𝐹𝑥_𝑟𝑟

 (3) 

𝑎𝑥 =
1

𝑚
(𝐹𝑥𝑓𝑙cos𝛿𝑓𝑙 − 𝐹𝑦𝑓𝑙sin𝛿𝑓𝑙 + 𝐹𝑥𝑓𝑟cos𝛿𝑓𝑟 − 𝐹𝑦𝑓𝑟sin𝛿𝑓𝑟 + 𝐹𝑥𝑟𝑙 + 𝐹𝑥𝑟𝑟), (4) 

𝑎𝑦 =
1

𝑚
(𝐹𝑥𝑓𝑙sin𝛿𝑓𝑙 + 𝐹𝑦𝑓𝑙cos𝛿𝑓𝑙 + 𝐹𝑥𝑓𝑟sin𝛿𝑓𝑟 + 𝐹𝑦𝑓𝑟cos𝛿𝑓𝑟 + 𝐹𝑥𝑟𝑙 + 𝐹𝑥𝑟𝑟), (5) 

{
 
 

 
 𝛼𝑓𝑙,𝑓𝑟 = 𝛿𝑓𝑙,𝑓𝑟 − arctg

𝑣 + 𝑎𝑟

𝑢 ±
𝑡𝑓
2
𝑟
,

𝛼𝑟𝑙,𝑟𝑟 = −arctg
𝑣 − 𝑏𝑟

𝑢 ±
𝑡𝑟
2
𝑟
,

 (6) 

{
 
 

 
 
𝑣𝑓𝑙,𝑓𝑟 = √(𝑢 ∓

𝑡𝑓

2
𝑟)

2

+ (𝑣 + 𝑎𝑟)2,

𝑣𝑟𝑙,𝑟𝑟 = √(𝑢 ∓
𝑡𝑟
2
𝑟)

2

+ (𝑣 − 𝑏𝑟)2,

 (7) 

{
 
 

 
 𝐹𝑧_𝑓𝑙,𝑓𝑟 = (

1

2
𝑚𝑔 ±𝑚𝑎𝑦

ℎ

𝑡𝑓
)𝑏 −

1

2
𝑚𝑎𝑥ℎ,

𝐹𝑧_𝑟𝑙,𝑟𝑟 = (
1

2
𝑚𝑔 ±𝑚𝑎𝑦

ℎ

𝑡𝑟
) 𝑏 +

1

2
𝑚𝑎𝑥ℎ,

 (8) 

where, 𝑚 is the vehicle mass; ℎ is the height of the center of mass; 𝑅𝑒 is the rolling radius of the 

wheels; 𝑙 is the wheelbase; 𝑣𝑓𝑙,𝑓𝑟 is the center speed of the left and right front wheels; 𝑣𝑟𝑙,𝑟𝑟 is the 

center speed of the left and right rear wheels; 𝐹𝑧_𝑓𝑙,𝑓𝑟 is the vertical load of the left and right front 

wheels; 𝐹𝑧_𝑟𝑙,𝑟𝑟 is the vertical load of the left and right rear wheels. 

2.2. Tire model 

The expression of the Dugoff tire model is relatively simple, with fewer unknown parameters, 

and can accurately describe the nonlinear characteristics of tire friction. Therefore, the tire model 

selected in this article is the Dugoff tire model [15]: 

𝐹𝑥𝑖 = 𝐶𝜎
𝜎𝑖

1 + 𝜎𝑖
𝑓(𝜆𝑖), (9) 

𝐹𝑦𝑖 = 𝐶𝛼
tan𝛼𝑖
1 + 𝛼𝑖

𝑓(𝜆𝑖), (10) 

𝑓(𝜆𝑖) = {
(2 − 𝜆𝑖)𝜆𝑖 ,             𝜆𝑖 ≤ 1,
1,                              𝜆𝑖 > 1,

 (11) 

𝜆𝑖 =
𝜇𝐹𝑧𝑖(1 + 𝜎𝑖)

2√𝐶𝜎
2 ⋅ 𝜎𝑖

2 + 𝐶𝛼
2tan2𝛼𝑖

, (12) 

where 𝐶𝜎 and 𝐶𝛼 are the longitudinal and cornering stiffness of the tires respectively; 𝜎𝑖 is the 

longitudinal slip ratio; 𝛼𝑖 is the slip angle of the tire; 𝑖 indicates 𝑓𝑙, 𝑓𝑟, 𝑟𝑙 and 𝑟𝑟; 𝜇 is the road 

friction coefficient; when 𝜆𝑖 > 1, the wheel is in the linear state area; when 𝜆𝑖 ≤ 1, the wheel is 
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in the non-linear state region. 

2.3. Nonlinear vehicle system containing noise 

The state vector of the nonlinear vehicle system is set as 𝐱 = [𝑣𝑥, 𝑢, 𝑟]
𝑇, the system input is 

𝐮 = [𝑎𝑥]
𝑇, and the observation vector is 𝐲 = [𝑎𝑦, 𝑟]. 

3. The ARUPF Algorithm 

The traditional particle filter algorithm has the defect of particle degradation in the iterative 

process, resulting in waste of computing resources and low accuracy of estimation results. In order 

to solve the above problems, the filtering algorithm is often optimized by increasing the number 

of particles, re-sampling, and selecting a reasonable proposal density function. Increasing the 

number of particles can effectively alleviate the particle degradation, but it increases the 

computational workload of the system. The re-sampling method can increase the diversity of 

particles and avoid particle degradation. The adaptive robust unscented particle filter algorithm 

uses the unscented transformation algorithm to calculate the mean and covariance of each particle 

and establish a reasonable proposal density function combining the robust filter estimation 

algorithm to automatically adjust the gain matrix and system variance making the distribution of 

sample points fit better with the maximum likelihood function. Unscented particle filter algorithm 

is easy to implement in engineering and can effectively reduce the workload of the system. The 

specific methods are as follows: 

1) Initialization, 𝑘 = 0.  

Drawing initial state particles from the prior distribution: 

{
�̅�0
(𝑖)
= 𝐸[𝑥0

(𝑖)],

𝑝0
(𝑖)
= 𝐸[(𝑥0

(𝑖) − �̅�0
(𝑖))(𝑥0

(𝑖) − �̅�0
(𝑖))𝑇],

 (13) 

{
 
 

 
 �̅�0

(𝑖)𝑎
= 𝐸[�̅�0

(𝑖)𝑎] = [(�̅�0
(𝑖))𝑇  0  0]𝑇 ,

𝑝0
(𝑖)𝑎

= 𝐸[(𝑥0
(𝑖)𝑎 − �̅�0

(𝑖)𝑎)(𝑥0
(𝑖)𝑎 − �̅�0

(𝑖)𝑎)𝑇] = [
𝑝0
(𝑖) 0 0

0 𝑄 0
0 0 𝑅

] ,
 (14) 

where �̅�0
(𝑖)

 and 𝑝0
(𝑖)

 are the mathematical expectation and variance of the initial particle 

respectively, �̅�0
(𝑖)𝑎

 and 𝑝0
(𝑖)𝑎

 are the mathematical expectation and variance of the initial Sigma 

point, respectively; 𝑄 and 𝑅 are the covariance matrix and the observation covariance matrix of 

the system respectively. 

2) Importance sampling.  

Calculating the mean and variance using the unscented Kalman algorithm. 

(1) Extracting the set of Sigma points: 

𝑥𝑘−1
(𝑖)𝑎

= [�̅�𝑘−1
(𝑖)𝑎�̅�𝑘−1

(𝑖)𝑎 −√(𝑛𝑎 + 𝜆)𝑝𝑘−1
(𝑖)𝑎�̅�𝑘−1

(𝑖)𝑎 +√(𝑛𝑎 + 𝜆)𝑝𝑘−1
(𝑖)𝑎], (15) 

where 𝑥𝑘−1
(𝑖)𝑎

 and 𝑝𝑘−1
(𝑖)𝑎

 are the mathematical expectation and variance of the extracted particles 

respectively; 𝑛𝑎 and 𝜆 are the state dimension and scaling factor respectively. 

(2) One-step prediction for the Sigma point set: 
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{
 
 
 

 
 
 𝑥𝑘|𝑘−1

(𝑖)𝑎
= 𝑓(𝑥𝑘−1

(𝑖)𝑥 , 𝑘 − 1),

�̅�𝑘|𝑘−1
(𝑖)

=∑𝑊𝑗
𝑚𝑥𝑗,𝑘|𝑘−1

(𝑖)𝑥

2𝑛𝑎

𝑗=0

,

𝑝𝑘|𝑘−1
(𝑖)

=∑𝑊𝑗
𝑐[𝑥𝑗,𝑘|𝑘−1

(𝑖)𝑥 − �̅�𝑘|𝑘−1
(𝑖) ][𝑥𝑗,𝑘|𝑘−1

(𝑖)𝑥 − �̅�𝑘|𝑘−1
(𝑖) ]𝑇 ,

2𝑛𝑎

𝑗=0

 (16) 

{
 
 

 
 𝑍𝑘|𝑘−1

(𝑖)
= ℎ(𝑥𝑘|𝑘−1

(𝑖)𝑥 , 𝑥𝑘|𝑘−1
𝑖𝑛 ),

�̅�𝑘|𝑘−1
(𝑖)

=∑𝑊𝑗
𝑐𝑍𝑗,𝑘|𝑘−1

(𝑖)

2𝑛𝑎

𝑗=0

,
 (17) 

where 𝑥𝑘|𝑘−1
(𝑖)𝑎

, �̅�𝑘|𝑘−1
(𝑖)

 and 𝑝𝑘|𝑘−1
(𝑖)

 are state value, mathematical expectation and variance of the 

Sigma particle after one-step prediction respectively; 𝑍𝑘|𝑘−1
(𝑖)

 and �̅�𝑘|𝑘−1
(𝑖)

 are the observed value 

and the observed mean value obtained by inputting the observation equation for the Sigma point 

after one-step prediction respectively; 𝑊𝑗
𝑚 and 𝑊𝑗

𝑐 are the calculation weights of the mean and 

the covariance corresponding to Sigma respectively. 

(3) Integrating the observation data to update the mean, Kalman gain and covariance of the 

Sigma point set: 

{
 
 
 
 
 

 
 
 
 
 
𝑃�̅�𝑘,�̅�𝑘 =∑𝑊𝑗

(𝑐)
[𝑍𝑗,𝑘|𝑘−1

(𝑖)
− 𝑍𝑘|𝑘−1

(𝑖)
][𝑍𝑗,𝑘|𝑘−1

(𝑖)
− 𝑍𝑘|𝑘−1

(𝑖)
]𝑇

2𝑛𝑎

𝑗=0

,

�̂�𝐾
(𝑖)
= 𝑃𝑘|𝑘−1

(𝑖)
− 𝐾𝑘𝑃�̅�𝑘,�̅�𝑘𝐾𝑘

𝑇,

𝑃𝑥𝑘,𝑍𝑘 =∑𝑊𝑗
(𝑐)
[𝑥𝑗,𝑘|𝑘−1
(𝑖)

− �̅�𝑘|𝑘−1
(𝑖)

][𝑥𝑗,𝑘|𝑘−1
(𝑖)

− �̅�𝑘|𝑘−1
(𝑖)

]𝑇

2𝑛𝑎

𝑗=0

,

𝐾 = 𝑃�̅�𝑘,�̅�𝑘𝑃𝑥𝑘,𝑍𝑘 ,

�̅�𝑘
(𝑖)
= �̅�𝑘|𝑘−1

(𝑖)
+ 𝐾𝑘𝑍𝑘 − �̅�𝑘|𝑘−1

(𝑖) ,

 (18) 

where 𝑃�̅�𝑘,�̅�𝑘 and 𝑃𝑥𝑘,𝑍𝑘 are the observed covariance and system variance obtained by weighted 

calculation respectively; 𝐾𝑘 , �̅�𝑘
(𝑖)

 and �̂�𝐾
(𝑖)

 are the system gain matrix, state value and variance 

after state update respectively. 

3) ARUPF algorithm.  

The ARUPF algorithm is based on robust estimation filtering theory, which controls the 

abnormal situation of the observed value of the dynamic model, and constructs an adaptive factor 

to control the error of the dynamic model. If �̅�𝑖 is set as the weight matrix of the state matrix �̅�𝑘
(𝑖)

, 

the equivalent weight matrix is �̅� = diag(�̅�1, �̅�2, ⋯ , �̅�𝑘). The principle for using the IGG (Institute 

of Geodesy & Geophysics) method to generate the equivalent weight function is as follows: 

�̅�𝐾 =

{
 
 

 
 
𝑃𝐾 ,                                          (|𝑉𝐾| ≤ 𝐾0),

𝑃𝐾
𝐾0
|𝑉𝐾|

(
𝐾𝑔 − |𝑉𝐾|

𝐾𝑔 − 𝐾0
)

2

,       (𝐾0 ≤ |𝑉𝐾| ≤ 𝐾𝑔),

0,                                             (|𝑉𝐾| ≥ 𝐾𝑔),

 (19) 

where 𝑉𝐾 = 𝐴𝑘�̅�𝑘
(𝑖)
− �̅�𝑘|𝑘−1

(𝑖)
 is the detect residual values for sensors; the value range of the 
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adjustment factor are 𝐾0 ∈ (1,1.5) and 𝐾𝑔 ∈ (3,8). 

It is set that the sensor perception matrix is 𝐴𝑘. The system state vector is updated according 

to the weight matrix obtaining the system state solution vector of the adaptive robust Kalman 

filter: 

𝑥𝑟𝑘 = (𝛼𝑘𝑃�̅�𝑖 + 𝐴𝑘
𝑇�̅�𝑘𝐴𝑘)

−1(𝛼𝑘𝑃�̅�𝑖�̅�𝑘
(𝑖) + 𝐴𝑘

𝑇�̅�𝑘𝑍𝑘|𝑘−1
(𝑖) ), 

𝛼𝑘 =

{
  
 

  
 
1,                                                           (|Δ�̅�𝑘| ≤ 𝑐0),

𝑐0
Δ�̅�𝑘

(
𝑐1 − |Δ�̅�𝑘|

𝑐1 − 𝑐0
)2                              (𝑐0 ≤ |Δ�̅�𝑘| ≤ 𝑐1),

0,                                                            (|Δ�̅�𝑘| ≥ 𝑐1),

Δ�̅�𝑘 = ‖𝑥𝑟𝑘 − �̅�𝑘
(𝑖)‖ √𝑡𝑟 (∑�̅�𝑘

(𝑖)
) (|Δ�̅�𝑘|)⁄ ,

 
(20) 

where 𝛼𝑘 is the adaptive factor; 𝑡𝑟 is the matrix trace operator; the ranges of the regulators 𝑐0 and 

𝑐1 are 𝑐0 ∈ (1,1.5), 𝑐1 ∈ (3,8). 
In the above formula, the weight matrix �̅�𝑘  is obtained by judging the residual error; the 

adaptive factor 𝛼𝑘 is obtained by the difference operation between the state estimated value and 

the predicted value. The two parameters are used to adjust the Kalman gain, the sampled particle 

mean and the particle weight at the same time and update the particle and normalize weights: 

{
  
 

  
 𝐾𝑘

∗ = �̂�𝑘
(𝑖)
�̅�𝑘
−1,

�̅�𝑘
(𝑖)∗

= �̅�𝑘|𝑘−1
(𝑖)

+ 𝐾𝑘
∗(𝑍𝑘 − �̅�𝑘|𝑘−1

(𝑖) ),

�̂�𝐾
(𝑖)∗

= 𝛼𝑘𝑃𝑘|𝑘−1
(𝑖)

− 𝐾𝑘
∗𝑃�̅�𝑘,�̅�𝑘𝐾𝑘

𝑇∗,

𝑊𝑘
(𝑖)∗

∝
𝑝(𝑍𝑘|�̂�𝑘

(𝑖)∗)𝑝(�̂�𝑘
(𝑖)∗|𝑋𝑘−1

(𝑖) )

𝑞(�̂�𝑘
(𝑖)∗|𝑋0:𝑘

(𝑖)∗, 𝑍1:𝑘)
,

 (21) 

where 𝐾𝑘
∗ is the Kalman gain computed by the robustness algorithm; �̅�𝑘

(𝑖)∗
 is the State sample 

mean; �̂�𝐾
(𝑖)∗

 is the sample variance; 𝑊𝑘
(𝑖)∗

 is the updated particle weight value. 

Using the resampling algorithm, the particle set is eliminated and copied based on the 

normalized weight, and the weight is reset to the new particle. When the prediction model has 

excessive abnormal interference, the adaptive factor 𝛼𝑘  is decreased, which can weaken the 

influence of the interference. When there is a large disturbance in the observation model, the 

abnormal influence caused by the disturbance can be reduced by adjusting the weight matrix �̅�𝑘. 

The adaptive robust unscented particle filter algorithm can effectively solve the problem of gross 

error and abnormal state of the system observation, and establish a reasonable particle filter which 

effectively solves the problem of particle degradation. 

4. Numerical simulations and experimental verification 

4.1. Numerical simulations 

A Volkswagen vehicle is verified by a simulation test on the virtual prototype software 

ADAMS. And the real vehicle used for test is the same with the virtual vehicle model in Adams. 

That is to say, the parameters of the vehicle dynamics model in ADAMS are the same as our test 

vehicle shown in Table 1. 

ADAMS/Car adopts a top-down modeling sequence. That is to say, the vehicle model and the 

system assembly model are built on the basis of each subsystem model. And each subsystem 

model needs to be established by templates, so the establishment of each template is the key steps 
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to establish the vehicle model. The template establishment process is as follows: 

(1) Simplification of the physical model: According to the relative motion relationship between 

the various parts of the subsystem, defining the “Topological Structure” of the parts, integrating 

the parts, and defining the parts without motion relationship as a “Gene-ralPart”. 

(2) Determining “Hard Point”: The hard point is the geometric positioning point at the key 

connection point of the part, and the determination of the hard point is to determine the geometric 

coordinates of the key point of the part. To determine the hard point is to determine the geometric 

coordinates of the key points of the part in the subsystem coordinate system, and the hard point 

can be modified in the vehicle model and template state. 

Table 1. Simulation parameters 

Parameter Value 

𝑚 (kg) 1558 

𝐼𝑧 (kg∙m2) 2538 

𝑎 (m) 1.48 

𝑏 (m) 1.08 

ℎ (m) 0.432 

𝑡𝑓 (m) 1.51 

𝑡𝑟 (m) 1.55 

𝑟𝑒 (m) 0.32 

(3) Determining the parameters of the part: Calculating or measuring the mass of the integrated 

part, the position of the center of mass, and the moment of inertia around the three axes of the 

center of mass coordinate system. It should be noted that the directions of the three coordinate 

axes of the center of mass coordinate system must be parallel to the directions of the three axes of 

the system coordinate system.  

(4) Creating the “Geometry” of the part: Building the geometric model of the part on the basis 

of the hard point. Since the dynamic parameters of the part have been determined, the shape of the 

geometric model has no influence on the dynamic simulation results. But in the kinematic analysis, 

the outer contour of the part is directly related to the motion check of the part. And the intuitiveness 

of the model is considered. And considering the intuitiveness of the model, the geometry of the 

part should be as close to the actual structure as possible. 

(5) Defining “Constrain”: Defining the type of constraint according to the motion relationship 

between parts. The components are connected by constraints to form the subsystem structure 

model. Defining constraints is the key to correct modeling and is directly related to the rationality 

of the degrees of freedom of the system. 

(6) Defining “Mount”: Defining assembly commands at the connections between subsystems 

and subsystems or external models. 

(7) Defining “Subsystem”: Transferring the model built in Template to the standard mode and 

defining each subsystem model preparing for assembling the vehicle model. 

 
Fig. 2. Vehicle model in ADAMS 

(8) Defining “Assembly”: In the standard mode, each subsystem is assembled into a complete 
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vehicle model. So that the establishment process of the physical model is completed in the 

ADAMS/Car module. By adding attribute files, the simulation analysis of the vehicle under 

different working conditions can be carried out to obtain the required results. 

The vehicle model can be obtained as shown in Fig. 2. 

4.1.1. Sine delay test 

The sine delay test is carried out on a dry, flat and clean cement test site. The test vehicle drives 

at a constant speed of (80±2) km/h. The virtual test value, the experimental measurements, the 

estimation results of the ARUPF and the UPF algorithm are shown in Fig. 3. The results show that 

the ARUPF algorithm achieves better estimation results for the longitudinal velocity and the yaw 

rate, while the estimation results of the UPF algorithm have a certain amplitude fluctuation in the 

steering wheel holding stage. For the lateral velocity, the ARUPF There is a small deviation 

between the estimated value of the ARUPF algorithm and the virtual test value at the peak. But 

the overall estimated result meets the engineering needs. And the estimated result of the UPF 

algorithm is different from the virtual test value during the steering wheel rotation process. There 

is a certain magnitude of fluctuation in the steering wheel holding process. 

 
a) Longitudinal velocity 

 
b) Absolute error of longitudinal velocity 

 
c) Lateral velocity 

0 1 2 3 4 5 6
20

20.5

21

21.5

22

22.5

23

Time/s

L
o

n
g

it
u

d
in

al
 v

el
o

ci
ty

/(
m

 s
-1

)

 

 

Virtual test value

ARUPF

UPF

0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

Time/s

A
b

so
lu

te
 e

rr
o

r 
o

f 
lo

n
g

it
u

d
in

al
 v

el
o

ci
ty

/(
m

  s
-1

)

 

 

Virtual test value

ARUPF

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

Time/s

L
at

er
al

 v
el

o
ci

ty
/(

m
 s

-1
)

 

 

Virtual test value

ARUPF

UPF



VEHICLE STATE AND PARAMETER ESTIMATION BASED ON ADAPTIVE ROBUST UNSCENTED PARTICLE FILTER.  

YINGJIE LIU, DAWEI CUI, WEN PENG 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460 401 

 
d) Absolute error of lateral velocity 

 
e) Yaw rate 

 
f) Absolute error of yaw rate 

Fig. 3. Comparison of the state variables found with the different algorithms (ARUPF and UPF)  

for a sine delay test road 

The ARUPF algorithm has the advantages of robust estimation and unscented particle filtering. 

After comprehensively selecting the important density function by using unscented 

transformation, equivalent weight function and adaptive adjustment factor, the importance 

sampling of particles is carried out. And the sensor perception vector is used reasonably. It 

effectively suppresses the pollution problem of state parameters and the abnormal disturbance of 

sensor perception values, reducing the degree of particle degradation in the process of vehicle state 

estimation and overcoming the shortcomings of a single filtering algorithm. The reasons for this 

error are as follows: since the mathematical model ignores the suspension characteristics and tire 

rolling resistance, the tire slip angle and the lateral load transfer of the sprung mass have a certain 

relationship with the tire slip angle and tire vertical load in ADAMS. However, the observer can 

effectively estimate the vehicle state such as the longitudinal and lateral velocity, as well as the 

yaw rate, etc. 

4.1.2. Double lane change test  
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is 60 km/h. The test driver make the vehicle pass through the double lane change channel without 

touching the stakes. The virtual test value, the experimental measurements, the estimation results 

of the ARUPF and the UPF algorithm are shown in Fig. 4.  

 
a) Longitudinal velocity 

 
b) Absolute error of longitudinal velocity 

 
c) Lateral velocity 

 
d) Absolute error of lateral velocity 
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e) Yaw rate 

 
f) Absolute error of yaw rate 

Fig. 4. Comparison of the state variables found with the different  

algorithms (ARUPF and UPF) for a double lane change test road 

This test condition is used to verify the accuracy of the algorithm for estimating the 

longitudinal and lateral velocity as well as the yaw rate of the vehicle when the vehicle states 

change rapidly. The results show that the ARUPF algorithm has achieved good results in the 

estimation of the longitudinal velocity and the yaw rate. But the UPF algorithm has a small 

fluctuation in the estimation of the longitudinal velocity and the yaw rate. For the lateral velocity, 

there is a certain magnitude of deviation between the estimated results of the ARUPF algorithm 

and the virtual test value during the steering wheel rotation, while the estimated results of the UPF 

algorithm have large fluctuations. 

The average absolute error (MAE) and root mean square error (RMSE) are given to verify the 

estimation accuracy of the proposed algorithm. 

Table 2. The MAE and RMSE indicators of the two algorithms 

Evaluation index State value UPF ARUPF 

MAE 

𝑣 (m/s) 0.316 0.140 

𝑣 (m/s) 0.181 0.0475 

𝑟 (rad/s) 0.316 0.0180 

RMSE 

𝑣 (m/s) 0.345 0.141 

𝑣 (m/s) 0.243 0.0522 

𝑟 (rad/s) 0.411 0.0221 

From Table 2, it can be seen more intuitively that the estimation accuracy of the ARUPF 

algorithm is significantly higher than the UPF method. 

The ARUPF algorithm has the advantages of robust estimation and unscented particle filtering. 

After comprehensively selecting the important density function by using unscented 

transformation, equivalent weight function and adaptive adjustment factor, the importance 

sampling of particles is carried out. And the sensor perception vector is used reasonably. It 

effectively suppresses the pollution problem of state parameters and the abnormal disturbance of 

sensor perception values, reducing the degree of particle degradation in the process of vehicle state 
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estimation and overcoming the shortcomings of a single filtering algorithm. The reasons for this 

error are as follows: since the mathematical model ignores the suspension characteristics and tire 

rolling resistance, the tire slip angle and the lateral load transfer of the sprung mass have a certain 

relationship with the tire slip angle and tire vertical load in ADAMS. However, the observer can 

effectively estimate the vehicle state such as the longitudinal and lateral velocity, as well as the 

yaw rate, etc. 

4.1.3. Slop input test 

A slope input test is carried out on a dry, flat and clean cement test site, the vehicle speed is 

maintained at 80 km/h. The virtual test value, the experimental measurements, the estimation 

results of the ARUPF and the UPF algorithm are shown in Fig. 5. The test can make the vehicle 

gradually enter the limit working condition as the steering wheel angle increases, and the tire 

gradually transitions from the linear working area to the nonlinear working area, which leads to 

the increase of the error of the model of the vehicle.  

 
a) Longitudinal velocity 

 
b) Absolute error of longitudinal velocity 

 
c) Lateral velocity 
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d) Absolute error of lateral velocity 

 
e) Yaw rate 

 
f) Absolute error of yaw rate 

Fig. 5. Comparison of the state variables found with the different  

algorithms (ARUPF and UPF) for a slop input test road 

It can be seen from Fig. 5 that when the system noise increases, the estimation deviation of the 

UPF algorithm for the longitudinal lateral speed gradually increases. For the estimation of yaw 

rate, both the UPF algorithm and the ARUPF algorithm maintain a high estimation accuracy. 

The ARUPF algorithm has the advantages of robust estimation and unscented particle filtering. 

After comprehensively selecting the important density function by using unscented 

transformation, equivalent weight function and adaptive adjustment factor, the importance 

sampling of particles is carried out. And the sensor perception vector is used reasonably. It 

effectively suppresses the pollution problem of state parameters and the abnormal disturbance of 

sensor perception values, reducing the degree of particle degradation in the process of vehicle state 

estimation and overcoming the shortcomings of a single filtering algorithm. The reasons for this 

error are as follows: since the mathematical model ignores the suspension characteristics and tire 

rolling resistance, the tire slip angle and the lateral load transfer of the sprung mass have a certain 

relationship with the tire slip angle and tire vertical load in ADAMS. However, the observer can 

effectively estimate the vehicle state such as the longitudinal and lateral velocity, as well as the 

yaw rate, etc. 
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4.2. Experimental verification 

According to ISO/TR3888-2004, the real vehicle test on double lane change road is carried 

out. And the test speed is set as 80 km/h (±3 km/h). A gyroscope is installed on the vehicle to 

collect the yaw rate and lateral acceleration of the vehicle in real time. The non-contact speed 

sensor is used to measure the longitudinal and lateral speed of the vehicle. In addition, the steering 

wheel angle tester is used to measure the steering wheel angle. Fig. 6 is the comparison between 

the estimated value of ARUPF method of three state variables and the real vehicle test value. 

 
a) Longitudinal velocity 

 
b) Lateral acceleration 

 
c) Yaw rate 

Fig. 6. Comparison of the estimated and test values 

From Fig. 6, it can be seen that although there is a certain error, the estimated value is basically 

consistent with the experimental value in trend. There is a large difference between the 

experimental value and the estimated value of the longitudinal velocity, because the estimation of 

the longitudinal velocity in the model is affected by many parameters such as longitudinal 

acceleration, lateral velocity and yaw rate. And the tire model used in this paper still has some 

deviation when simulating the mechanical characteristics of real vehicle tire. In addition, the 

measurement error and installation position of the sensor are also important reasons for the 

deviation between the estimated and the test value. 

0 1 2 3 4 5 6 7 8
20

20.5

21

21.5

22

22.5

23

Time/s

L
o

n
g

it
u

d
in

al
 v

el
o

ci
ty

/(
m

 s
-1

)

 

 

Simulation value

Test value

0 1 2 3 4 5 6 7 8
-4

-2

0

2

4

Time/s

L
at

er
al

 a
cc

el
er

at
io

n
/(

m
 s

-2
)

 

 

Simulation value

Test value

0 1 2 3 4 5 6 7 8
-0.2

-0.1

0

0.1

0.2

Time/s

Y
aw

 r
at

e/
(r

ad
s

-1
)

 

 

Simulation value

Test value



VEHICLE STATE AND PARAMETER ESTIMATION BASED ON ADAPTIVE ROBUST UNSCENTED PARTICLE FILTER.  

YINGJIE LIU, DAWEI CUI, WEN PENG 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460 407 

5. Conclusions 

Based on the Dugoff tire model, a 3-DOF dynamic model of the vehicle with front wheel 

steering is established to estimate the longitudinal and lateral speed and the yaw rate of the vehicle. 

The equivalent weight function is generated by using the IGG method. By adaptively adjusting 

the weight matrix, the random error caused by nonlinear factors in the process of vehicle sensor 

detection can be effectively suppressed. And the influence of data distortion caused by interference 

can be reduced, and the accuracy of vehicle state estimation is improved. Based on the principle 

of adaptive robust filter and unscented particle filter algorithm, a new state estimation method of 

vehicle is proposed. The ARUPF method has the advantages of good noise filtering effect and 

high precision. A simulation platform is used to simulate, analyze and verify the estimation effect 

of the proposed algorithm. The simulation results show that the vehicle state estimation based on 

the ARUPF algorithm has the characteristics of high precision, strong anti-interference ability and 

good stability. It has the advantages of low cost, easy engineering implementation providing a 

new idea for vehicle state estimation. 
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