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Abstract. The present investigation is concerned with the development of non-power series 

solutions for the unsteady state nonlinear thermal model of a radiative-convective fin having 

temperature-variant thermal conductivity using Laplace transform-Galerkin weighted residual 

method. In the study, it is demonstrated that the symbolic solutions do not involve a large number 

of terms, complex mathematical analysis, high computational cost, and time as compared to the 

power series solutions in previous studies. The solutions allow effective predictions of the 

extended surface thermal performance over a large domain and time. The results of the non-power 

series solutions are verified numerically, and very good agreements are established. Parametric 

studies are carried out with the aid of the symbolic non-power solutions. It is found that as the 

conductive-convective and conductive-radiative increase, temperature distribution decreases since 

the rate of heat transfer becomes augmented and hence, the fin thermal efficiency is improved. 

Additionally, when the thermal conductivity of the fin increases, the temperature distribution in 

the passive device increases. The temperature increases with time at the different positions in the 

fin. Following the time histories of the solution, it is shown that unsteady state solutions converge 

to a steady state as time progresses. It could therefore be stated the developed non-power series 

analytical solutions provide a good platform for comparison of the nonlinear thermal analyses of 

fins in thermal systems. 

Keywords: analytical solution, rectangular fin, temperature-dependent, Laplace transform, 

Galerkin weighted residual method. 

Nomenclature 

𝐴𝑐 Fin cross sectional area 

𝐴𝑟 Ratio of the surface area to cross-section area 

𝑐𝑝 Specific heat capacity 

𝐸 Electric field 

ℎ Coefficient of convective heat transfer 

𝐻𝑎 Hartman number 

𝑘 Fin thermal conductivity 

𝑘𝑏 Fin thermal conductivity at the base temperature 

𝐿 Fin length 

𝑀𝑐 Adimensional convective parameter 

𝑁𝑟 Adimensional radiation parameter 

𝑃 Fin perimeter 
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𝑡 Time 

𝑇 Fin temperature 

𝑇∞ Ambient temperature 

𝑇𝐿 Fin base temperature 

𝑢 Axial velocity 

𝑉 Macroscopic velocity of electrons 

𝑥 Fin axial distance 

𝑋 Adimensional fin length 

𝛽 Nonlinear thermal conductivity coefficient 

휀 Fin material emissivity 

𝛿 Fin thickness 

𝜏 Dimensionless time 

𝜃 Adimensional temperature 

𝜃𝐿 Adimensional temperature at the fin base 

𝜌 Fin material density 

𝜎 Stefan-Boltzmann constant 

𝜎𝑚 Electric conductivity 

𝜎𝑚.𝑘 Electric conductivity per unit Kelvin 

1. Introduction 

Indisputably, there are increasing applications of passive devices for heat transfer 

augmentations and enhancements in thermal and electronic systems [1]. The importance of the 

passive devices has provoked a large volume of research in literatures. The theoretical 

investigations of thermal damage problems and heat transfer enhancement by the extended 

surfaces have attest to the facts that the controlling thermal models of the passive devices are 

always nonlinear. Consequently, the nonlinear thermal models have been successfully analyzed 

in the past studies with the aids of approximate analytical, semi-analytical, semi-numerical, and 

numerical methods. In such previous studies, Jordan et al. [8] adopted optimal linearization 

method to solve the nonlinear problems in the fin while Kundu and Das [9] utilized Frobenius 

expanding series method for the analysis of the nonlinear thermal model of the fin. Khani et al. 

[10] and Amirkolaei and Ganji [11] applied homotopy analysis method. In a further analysis, Aziz 

and Bouaziz [12], Sobamowo [13], Ganji et al. [14] and Sobamowo et al. [15] employed methods 

of weighted residual to explore the nonlinear thermal behaviour of fins. In another studies, 

methods of double decomposition and variation of parameter were used by Sobamowo [16] and 

Sobamowo et al. [17], respectively to study the thermal characteristics of fins. Also, differential 

transformation method has been used by some researchers such as Moradi and Ahmadikia [18], 

Sadri et al. [19], Ndlovu and Moitsheki [20], Mosayebidarchech et al. [21], Ghasemi et al. [22] 

and Ganji and Dogonchi [23] to predict the heat transfer behaviour in the passive devices. With 

the help of homotopy perturbation method, Sobamowo et al. [24], Arslanturk [25], Ganji et al. 

[26] and Hoshyar et al. [27] scrutinized the heat flow in the extended surfaces. However, these 

studies are for thermal analysis of fin under assumed constant heat transfer coefficient. The cases 

of heat transfer with variable heat transfer coefficient along the passive device varies has also be 

investigated [28-35]. Such analysis helps in providing the needed information on the efficiency, 

effectiveness, and design date of the extended surfaces under various boiling modes [33-44].  

Although, as pointed out in the review of the previous studies, there are various approximate 

analytical and numerical solutions that gained applications in solving the thermal problems 

[45-52], most of these solutions involve power series. Indubitably, such power series solutions 

require rigorous solution procedures with inherent large number of terms which are not convenient 

for use in practice [15]. Therefore, the advantages of generating non-power series analytical 

solutions to the nonlinear transient problems are very obvious as such solutions allow effective 
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thermal predictions of the extended surface over a large domain and time. Also, the solutions 

reduce the complex mathematical analysis that gives analytic expressions involving large number 

terms, high computational cost and time as compared to the power series solutions in previous 

studies. Hence, the present investigation is concern with the development non-power series 

analytical solutions for the transient nonlinear thermal model of a radiative-convective fin having 

temperature-variant thermal conductivity using Laplace transform-Galerkin weighted residual 

method (LT-GWRM). The developed symbolic solutions are used to examine the impacts of 

thermal model parameters on performance of fin. 

2. Problem formulation 

Given a solid rectangular fin having a variable thermal conductivity and exposed to 

convective-radiative environment at temperature 𝑇∞ and heat transfer co-efficient ℎ as in Fig. 1. 

Assuming that the extended surface is isotropic, homogeneous, and saturated with constant 

thermo-physical properties. It is taken that the heat transfer is one-dimensional along fin length. 

The prime surface is in perfectly thermal contact with fin base and there is no heat gain or loss at 

fin tip. 

 
Fig. 1. Schematic of convective-radiative longitudinal fin  

Thermal energy equation based on model assumptions is expressed as: 

𝜕

𝜕𝑥
(𝑘(𝑇∗)

𝜕𝑇∗

𝜕𝑥
) −

𝑃ℎ

𝐴𝑐𝑟

(𝑇∗ − 𝑇∞) −
𝜎𝑃휀

𝐴𝑐𝑟
(𝑇∗4 − 𝑇∞

4) =  𝜌𝑐𝑝

𝜕𝑇∗

𝜕𝑡
. (1) 

In the case that there is a small temperature difference between the base and the tip of the fin, 

the term 𝑇∗4
 in Eq. (3) could be expressed as a linear function of fin temperature as: 

𝑇∗4 = 𝑇∞
4 + 4𝑇∞

3(𝑇∗ − 𝑇∞)+. . . ≅ 4𝑇∞
3𝑇∗ − 3𝑇∞

4 . (2) 

Substitution of Eq. (2) into Eq. (1), we have: 

𝜕

𝜕𝑥
(𝑘(𝑇∗)

𝜕𝑇∗

𝜕𝑥
) −

𝑃ℎ(𝑇∗ − 𝑇∞)

𝐴𝑐𝑟
−

4𝜎휀𝑃𝑇∞
3(𝑇∗ − 𝑇∞)

𝐴𝑐𝑟
= 𝜌𝑐𝑝

𝜕𝑇∗

𝜕𝑡
, (3) 

where thermal conductivity is expressed as a linear law: 

𝑘(𝑇∗) = 𝑘𝑏(1 + 𝛾(𝑇∗ − 𝑇∞)). (4) 

Therefore, Eq. (3) becomes: 
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𝜕

𝜕𝑥
((1 + 𝛾(𝑇∗ − 𝑇∞))

𝜕𝑇∗

𝜕𝑥
) −

ℎ𝑃(𝑇∗ − 𝑇∞)

𝑘𝑏𝐴𝑐𝑟
−

4𝜎휀𝑃𝑇∞
3(𝑇∗ − 𝑇∞)

𝑘𝑏𝐴𝑐𝑟
=

𝜌𝑐𝑝

𝑘𝑏

𝜕𝑇∗

𝜕𝑡
. (5) 

The initial condition is: 

𝑇∗ = 𝑇0,    when      𝑡 = 0,  for  0 < 𝑥 < 𝐿, (6) 

The boundary conditions for the fin with insulated tip are given as: 

𝑑𝑇∗

𝑑𝑥
= 0,    at   𝑥 = 0,   for   𝑡 > 0, (7a) 

𝑇∗ = 𝑇𝑏,    at   𝑥 = 𝐿,   for   𝑡 > 0. (7b) 

Using the following dimensionless parameters of Eq. (8) in Eqs. (5)-(7): 

𝑋 =
𝑥

𝐿
,   𝜃 =

𝑇∗ − 𝑇∞

𝑇𝑏 − 𝑇∞
,   𝜏 =

𝑘𝑏𝑡

𝜌𝑐𝑝𝐿2
,   𝑀𝑐 =

𝑃ℎ𝐿2

𝐴𝑐𝑟𝑘𝑏
,   𝑁𝑟 =

4𝜎휀𝑃𝑇∞
3𝐿2

𝐴𝑐𝑟𝑘𝑏
,   𝛽 = 𝛾(𝑇𝐿 − 𝑇∞), (8) 

we arrived at the dimensionless forms of the governing as follows: 

𝜕

𝜕𝑋
[(1 + 𝛽𝜃)

𝜕𝜃

𝜕𝑋
] − (𝑀𝑐 + 𝑁𝑟)𝜃 =

𝜕𝜃

𝜕𝜏
. (9) 

Expansion Eq. (9), we have: 

𝜕2𝜃

𝜕𝑋2
+ 𝛽𝜃

𝜕2𝜃

𝜕𝑋2
+ 𝛽 (

𝜕𝜃

𝜕𝑋
)

2

− (𝑀𝑐 + 𝑁𝑟)𝜃 =
𝜕𝜃

𝜕𝜏
, (10) 

and the dimensionless initial is given as: 

𝜃 = 𝜃0,    when      𝜏 = 0,  for  0 < 𝑋 < 1, (11) 

and the adimensional boundary conditions for the fin are given as: 

𝜕𝜃

𝜕𝑋
= 0,    at   𝑋 = 0,   for   𝜏 > 0, (12a) 

𝜃 = 1,    at   𝑋 = 0,   for   𝜏 > 0, (12b) 

3. Analytical solutions for the thermal problems using integral transforms 

The thermal model in Eq. (10) is nonlinear and such can be solved numerically or by 

approximate analytical methods. However, the computational methods are approximate methods 

with inherent high computational cost and time. The approximate solutions involve power series 

with the rigorous solution procedures and large number of terms are not convenient for use in 

practice Therefore, the obvious advantages of generating non-power series analytical solutions to 

the nonlinear problems are very much important and this is given in the present study. Such 

non-power series solutions allow effective thermal predictions of the extended surface over a large 

domain and time. Also, the non-power series solutions reduce the complex mathematical analysis 

that gives analytic expressions involving large number terms, high computational cost and time. 

Therefore, it very important to find analytical or close form solutions to the thermal problems 

under investigations. Such symbolic solution will provide better physical insights into the 

importance of thermo-physical parameters than the numerical methods. In the generation of the 
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analytical solutions to differential equations, the practical significance of transform methods 

facilitates observation of great many properties and hidden views, of both mathematical and 

physical interest, which are not yet well known and have not met with proper appreciation. 

Consequently, using Laplace transforms, analytical solutions are developed for the heat transfer 

models. 

3.1. Laplace transform method (LT) 

The LT of function 𝑓(𝑡) and corresponding inversion are enumerated as: 

𝐹(𝑠) = ∫ 𝑒−𝑠𝑡
∞

0

𝑓(𝑡)𝑑𝑡, (13) 

𝑓(𝑡) =
1

2𝜋𝑖
∫ 𝑒−𝑠𝑡

𝑠+𝑖∞

𝑠−𝑖∞

𝐹(𝑠)𝑑𝑡, (14) 

where 𝑠 = 𝑎 + 𝑖𝑏 (𝑎, 𝑏 𝑅) is a complex number. 

3.2. Applying LT method to the nonlinear thermal model 

Applying Laplace transform to Eq. (10), provides the following solutions: 

𝑑2�̃�

𝑑𝑋2
+ 𝛽�̃�

𝑑2�̃�

𝑑𝑋2
+ 𝛽 (

𝑑�̃�

𝑑𝑋
)

2

− (𝑀𝑐 + 𝑁𝑟)�̃� = 𝑠�̃�. (15) 

Collecting like terms, we have: 

𝑑2�̃�

𝑑𝑋2
+ 𝛽�̃�

𝑑2�̃�

𝑑𝑋2
+ 𝛽 (

𝑑�̃�

𝑑𝑋
)

2

− (𝑠 + 𝑀𝑐 + 𝑁𝑟)�̃� = 0, (16) 

with boundary conditions in Laplace domain are: 

𝑠 > 0,     𝑋 = 0,    
𝜕�̃�

𝜕𝑥
= 0,

𝑠 > 0,     𝑋 = 1,    �̃� =
1

𝑠
.

 (17) 

An approximate solution of the form: 

�̃�(𝑋, 𝑠) = 𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠). (18) 

Which is given as: 

�̃�(𝑋, 𝑠) =
cosh√(𝑠 + 𝑀𝑐 + 𝑁𝑟)𝑋

𝑠 cosh√(𝑠 + 𝑀𝑐 + 𝑁𝑟)
 

      +Ω [
cosh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] 𝑋

𝑠 cosh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]
−

cosh√(𝑠 + 𝑀𝑐 + 𝑁𝑟)𝑋

𝑠 cosh√(𝑠 + 𝑀𝑐 + 𝑁𝑟)
]. 

(19) 

Which identically satisfies the boundary conditions of Eq. (17). 

Substituting Eq. (18) into Eq. (16), one has: 
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𝑑2[𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠)]

𝑑𝑋2
+ 𝛽[𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠)]

𝑑2[𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠)]

𝑑𝑋2

      +𝛽 (
𝑑[𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠)]

𝑑𝑋
)

2

− (𝑠 + 𝑁𝑐 + 𝑁𝑟)[𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠)] = 𝑓(𝑋, 𝑠).

 (20) 

According to Galerkin process, the coefficient Ω can be found by defining the condition: 

∫ 𝑓(𝑋, 𝑠)
1

0

𝜙1(𝑋, 𝑠)𝑑𝑋 = 0, (21) 

∫ {
𝑑2[𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠)]

𝑑𝑋2
+ 𝛽[𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠)]

𝑑2[𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠)]

𝑑𝑋2

1

0

 

      +𝛽 (
𝑑[𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠)]

𝑑𝑋
)

2

− (𝑠 + 𝑁𝑐 + 𝑁𝑟)[𝜙𝑜(𝑋, 𝑠) + Ω𝜙1(𝑋, 𝑠)]} 𝜙1(𝑋, 𝑠)𝑑𝑋

= 0. 

(22) 

where: 

�̃�𝑜(𝑋, 𝑠) =
cosh√(𝑠 + 𝑀𝑐 + 𝑁𝑟)𝑋

𝑠 cosh√(𝑠 + 𝑀𝑐 + 𝑁𝑟)
, (23) 

�̃�1(𝑋, 𝑠) = [
cosh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] 𝑋

𝑠 cosh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]
−

cosh√(𝑠 + 𝑀𝑐 + 𝑁𝑟)𝑋

𝑠 cosh√(𝑠 + 𝑀𝑐 + 𝑁𝑟)
]. (24) 

After substitution of Eqs. (23) and (24) into Eq. (22) and integrate, one arrives at: 

𝜆1Ω2 + 𝜆2Ω + 𝜆3 = 0. (25) 

The solution of Eq. (25) is: 

Ω =
−𝜆2 ± √𝜆2

2 − 4𝜆1𝜆3

2𝜆1
, (26) 

where: 

𝜆1 =
𝛽

𝑠
[−

2

3
tanh2 [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] −

27

40
tanh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] 

      +
1

3
tanh3 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] +

3

5
tanh [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] 

      +
177

40
tanh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] 

      −4tanh [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] tanh2 [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] 

      −
96

15
{

tanh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]

⋅ tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]
} {

1 − tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]

1 + tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]
} 

      +
3

8
√(𝑠 + 𝑀𝑐 + 𝑁𝑟) {1 − tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]}

2

{
tanh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]

tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]
}], 

(27a) 
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𝜆2 =
𝛽

𝑠
[
14

5
tanh [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] −

2

3
tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] 

      −
31

40
tanh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]

−
59

40
tanh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] 

      −
32

15
{

tanh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]

⋅ tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟 + 𝐻𝑎)]
} {

1 − tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]

1 + tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]
} 

      −
5

8
√(𝑠 + 𝑀𝑐 + 𝑁𝑟) {1 − tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]}

2

{
tanh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]

tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]
}] 

       ×
3

2𝑠
[√(𝑠 + 𝑀𝑐 + 𝑁𝑟) [tanh2 [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] − 1] 

       −tanh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] [
1

3
tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] −

1

2
]], 

(27b) 

𝜆3 =
𝛽

𝑠
[
1

3
tanh3 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] −

1

2
tanh [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)] 

       +
1

4
√(𝑠 + 𝑀𝑐 + 𝑁𝑟) {1 − tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]}

2

{
tanh [2√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]

tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]
}]. 

(27c) 

It is shown from Eq. (26) that Ω has two roots. However, it is established that the appropriate 

root is the one that gives 𝛽Ω ≤ 0. The other root gives some kinds of temperature distributions 

which are physically meaningless. 

Also, practical root of Ω which includes Eqs. (27) illustates that the inversion of Eq. (18) will 

be very difficult to find analytically. Therefore, the inverse Laplace transform of Eq. (18) was 

found numerically evaluated using Simon’s approach given as: 

𝜃(𝑋, 𝜏) =
𝑒𝑎𝑝𝜏

𝜏
[
1

2
�̃�(𝑋, 𝑎𝑝) + ∑ 𝑅𝑒 [�̃� (𝑋, 𝑎𝑝 + 𝑖

𝑛𝜋

𝜏
)] (−1)𝑛

𝑁

𝑛=1

], (28) 

where optimally, 𝑎𝑝𝜏 = 4.7. 

For the steady state, 𝜏 → ∞, we have: 

𝜃(𝑋) =
cosh√(𝑀𝑐 + 𝑁𝑟)𝑋

cosh√(𝑀𝑐 + 𝑁𝑟)
+ Ψ [

cosh [2√(𝑀𝑐 + 𝑁𝑟)] 𝑋

cosh [2√(𝑀𝑐 + 𝑁𝑟)]
−

cosh√(𝑀𝑐 + 𝑁𝑟)𝑋

cosh√(𝑀𝑐 + 𝑁𝑟)
], (29) 

where in the solution of Eq. (31): 

𝜉1Ψ2 + 𝜉2Ψ + 𝜉3 = 0. (30) 

Which gives: 

Ψ =
−𝜉2 ± √𝜉2

2 − 4𝜉1𝜉3

2𝜉1

, (31) 

where: 
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𝜉1 = 𝛽 [−
2

3
tanh2 [2√(𝑀𝑐 + 𝑁𝑟)] −

27

40
tanh [2√(𝑀𝑐 + 𝑁𝑟)] 

      +
1

3
tanh3 [√(𝑀𝑐 + 𝑁𝑟)] +

3

5
tanh [√(𝑀𝑐 + 𝑁𝑟)] 

      +
177

40
tanh [2√(𝑀𝑐 + 𝑁𝑟)] tanh2 [√(𝑀𝑐 + 𝑁𝑟)] 

      −4tanh [√(𝑀𝑐 + 𝑁𝑟)] tanh2 [2√(𝑀𝑐 + 𝑁𝑟)] 

      −
96

15
{

tanh [2√(𝑀𝑐 + 𝑁𝑟)]

⋅ tanh2 [√(𝑀𝑐 + 𝑁𝑟)]
} {

1 − tanh2 [√(𝑀𝑐 + 𝑁𝑟)]

1 + tanh2 [√(𝑀𝑐 + 𝑁𝑟)]
} 

      +
3

8
√(𝑀𝑐 + 𝑁𝑟) {1 − tanh2 [√(𝑀𝑐 + 𝑁𝑟)]}

2

{
tanh [2√(𝑀𝑐 + 𝑁𝑟)]

tanh2 [√(𝑀𝑐 + 𝑁𝑟)]
}], 

(32) 

𝜉2 = 𝛽 [
14

5
tanh [√(𝑀𝑐 + 𝑁𝑟)] −

2

3
tanh2 [√(𝑀𝑐 + 𝑁𝑟)] −

31

40
tanh [2√(𝑀𝑐 + 𝑁𝑟)] 

      −
59

40
tanh [2√(𝑀𝑐 + 𝑁𝑟)] tanh2 [√(𝑀𝑐 + 𝑁𝑟)] 

      −
32

15
{

tanh [2√(𝑀𝑐 + 𝑁𝑟)]

⋅ tanh2 [√(𝑀𝑐 + 𝑁𝑟)]
} {

1 − tanh2 [√(𝑀𝑐 + 𝑁𝑟)]

1 + tanh2 [√(𝑀𝑐 + 𝑁𝑟)]
} 

      −
5

8
√(𝑀𝑐 + 𝑁𝑟) {1 − tanh2 [√(𝑀𝑐 + 𝑁𝑟)]}

2

{
tanh [2√(𝑀𝑐 + 𝑁𝑟)]

tanh2 [√(𝑀𝑐 + 𝑁𝑟)]
}] 

      ×
3

2
[√(𝑀𝑐 + 𝑁𝑟) [tanh2 [2√(𝑀𝑐 + 𝑁𝑟)] − 1] 

      −tanh [2√(𝑀𝑐 + 𝑁𝑟)] [
1

3
tanh2 [√(𝑀𝑐 + 𝑁𝑟)] −

1

2
]], 

(33) 

𝜉3 = 𝛽 [
1

3
tanh3 [√(𝑀𝑐 + 𝑁𝑟)] −

1

2
tanh [√(𝑀𝑐 + 𝑁𝑟)] 

      +
1

4
√(𝑀𝑐 + 𝑁𝑟) {1 − tanh2 [√(𝑀𝑐 + 𝑁𝑟)]}

2

{
tanh [2√(𝑀𝑐 + 𝑁𝑟)]

tanh2 [√(𝑀𝑐 + 𝑁𝑟)]
}]. 

(34) 

Fin efficiency is given for the transient state as: 

𝜂 = ∫ �̃�(𝑋, 𝑠)
1

0

𝑑𝑋 =
tanh [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]

𝑠 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]
[1 − Ω {

tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]

1 + tanh2 [√(𝑠 + 𝑀𝑐 + 𝑁𝑟)]
}]. (35) 

While for the steady state as: 

𝜂 = ∫ 𝜃(𝑋)
1

0

𝑑𝑋 =
tanh [√(𝑀𝑐 + 𝑁𝑟)]

[√(𝑀𝑐 + 𝑁𝑟)]
[1 − Ψ {

tanh2 [√(𝑀𝑐 + 𝑁𝑟)]

1 + tanh2 [√(𝑀𝑐 + 𝑁𝑟)]
}]. (36) 

Using Laplace transform, the exact analytical solution for the linear thermal model 𝛽: 
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1 +
4

𝜋
∑

(−1)𝑛

2𝑛 − 1

∞

𝑛=1

 𝑒−
[(2𝑛−1)2𝜋2+(𝑀𝑐+𝑁𝑟)]𝑡

4 cos [
(2𝑛 − 1)𝜋𝑋

2
]. (37) 

It is very difficult to provide an explicit exact analytical solution to the nonlinear thermal model 

in this work. Therefore, the nonlinear model was also solved numerically using Crank-Nicolson 

finite different method. The finite difference method for the nonlinear thermal model in Eq. (11) 

is: 

(
𝜃𝑖+1

𝑛+1 − 2𝜃𝑖
𝑛+1 + 𝜃𝑖−1

𝑛+1 + 𝜃𝑖+1
𝑛 − 2𝜃𝑖

𝑛 + 𝜃𝑖−1
𝑛

2Δ2𝑋
) 

      +𝛽(𝜃𝑖
𝑛) (

𝜃𝑖+1
𝑛+1 − 2𝜃𝑖

𝑛+1 + 𝜃𝑖−1
𝑛+1 + 𝜃𝑖+1

𝑛 − 2𝜃𝑖
𝑛 + 𝜃𝑖−1

𝑛

2Δ2𝑋
) 

      +𝛽 (
𝜃𝑖+1

𝑛+1 − 𝜃𝑖−1
𝑛+1 + 𝜃𝑖+1

𝑛 − 𝜃𝑖−1
𝑛

4Δ𝑋
)

2

− (𝑀𝑐 + 𝑁𝑟)𝜃𝑖
𝑛 = (

𝜃𝑖
𝑛+1 − 𝜃𝑖

𝑛

Δ𝜏
). 

(38) 

The FDM for the initial condition is: 

𝜃𝑖
𝑜 = 0. (39) 

While FDM for boundary conditions become: 

𝜃1
𝑛 − 𝜃−1

𝑛

2Δ𝑋
= 0    ⇒      𝜃1

𝑛 = 𝜃−1
𝑛 ,      𝜃𝑀

𝑛 = 1. (40) 

4. Results and discussion 

The solutions of LT-GWRM are developed and shown in Figs. 2-10. However, Table 1 shows 

comparison of the results of finite difference method (FDM) and LT-GWRM for the nonlinear 

thermal models while Figs. 2 presents comparison of nonlinear thermal model results of 

LT-GWRM with the results of FDM using another set of the model parameters. 

 
Fig. 2. Comparison of nonlinear model results of FDM and LT-GWRM 

Fig. 3, 4 and 5 illustrate the effects of coductive-convective, condiuctive-radiative and 

magnetic field parameters on the temperature profiles of the fin, respectively. From the figures, as 

the coductive-convective, conductive-radiative and magnetic field parameters increase, it is shown 

that fin thermal distribution decreases. It can be seen in Fig. 3 that the decrease in the temperature 

of the fin as a result of increase in the conductive-convective parameter reveals that an increase in 
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the heat dissipation capability of the fin or increase in the surface heat loss as the coefficient of 

the heat transfer increases. It could be stated that when the coefficient of heat transfer increases, 

it significantly enhances the heat flow from the fin base and the surrounding fluid at the surface 

of the fin tends to convect more heat away from the fin surface thereby reducing the temperature 

distribution in the fin and continuous enhance the rate of heat transfer through the fin. 

Table 1. Comparison of results when 𝛽 = 0.5 

X FDM LT-GWRM 

0.0000 0.7897 0.7873 

0.2000 0.7991 0.7963 

0.4000 0.8225 0.8201 

0.6000 0.8624 0.8605 

0.8000 0.9223 0.9206 

1.0000 1.0000 1.0000 

In Fig. 4, where it is shown that the fin temperature decreases as the value of conductive-

radiative parameter increases. The is because as more heat is released from the surface of the fin 

through thermal radiation, the intensity of the radiative cooling increases i.e. the fin loses heat to 

the ambient fluid effectively and consequently, fin temperature drops.  

 
Fig. 3. Effects of conductive-convective parameter 

on fin thermal distribution 

 
Fig. 4. Effects of conductor-radiative parameter  

on fin thermal distribution 

 

 
Fig. 5. Impacts of thermal conductivity factor  

on the fin thermal distribution 

 
Fig. 6. Effects of time on the fin  

thermal distribution 

Fig. 5 shows the effect of the fin thermal conductivity on the transient thermal behaviour of 

the extended surface. The figure shows when the fin thermal conductivity and thermal 
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conductivity gradient increase, the fin temperature increases, the fin temperature increases. This 

is because, increase in the fin thermal conductivity and the thermal conductivity gradient causes 

an increase in the local temperature of the fin and makes the heat conducted through the fin 

increases, thereby the fin heat dissipation capability or surface heat loss to reduce. Moreover, a 

material of high thermal conductivity tends to store more heat than dissipating it as compared to 

a material of low thermal conductivity that dissipates heat more easily. It could therefore be said 

that when a high heat dissipation process is required as in the case compact and miniaturized 

equipment in thermal system applications such as cooling of electronic systems and devices, it is 

suggested that a material of relatively low thermal conductivity should be used. Fig. 6 shows the 

temperature profiles at different times while Fig. 7 illustrates the temperature histories at different 

positions in the fin. It could be observed that at the different positions in the fin, the temperature 

increases with an increase in time. The time histories of the solution shows that transient solutions 

converge to a steady state and the fin tip temperature increases as time progresses. 

 
Fig. 7. Temperature history in the fin at various locations in the fin 

5. Conclusions 

In this paper, with the aid of Laplace transform-Galerkin weighted residual method, non-power 

series solutions have been developed for the analysis of transient nonlinear thermal behaviour of 

conductive-radiative-convective fin with varying thermal conductivity. The verifications of the 

results of the solutions were done by comparing the results of the analytical solutions with the 

result of a numerical method. It was established that very good agreements were found. Parametric 

studies in the work showed that the coductive-convective and condiuctive-radiative parameters 

increase, the fin’s thermal profile reduces while fin’s heat transfer capability is augmented and 

hence, the fin thermal efficiency is augmented. However, the fin’s thermal profile is enhanced 

through the fin as value of the thermal conductivity term amplifies. At the different positions in 

the fin, the temperature grows as the time evolution progresses. The time histories of the solution 

shows that transient solutions converge to a steady state and the fin tip temperature increases as 

time progresses. This study serves to provide a good platform of comparison of results for the 

future works on nonlinear transient thermal analyses of fin. In our further study in the future, we 

will do a comparative study of two analytical solutions of power and non-power series. Such study 

will establish a relative advantage of the symbolic solutions over one another. 
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