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Abstract. Real-valued waveform frequency measurement problems are often encountered in 
signal processing and they can be solved by designing a linear system. However, they require the 
sampling frequency to reach twice the maximum of the measured frequency, that is, to meet the 
Nyquist condition, which in many cases cannot be satisfied considering the hardware limitation. 
Therefore, how to design a nonlinear method to reconstruct the signal frequency is of great 
significance. To solve the frequency estimation problem for a real-valued waveform with 
sub-Nyquist channels, we propose a frequency estimator based on multiple sub-Nyquist channels. 
Our algorithm mainly consists of the following parts: 1) Calculate the folded frequencies which 
are lying on the first Nyquist region for each channel based on ESPRIT. 2) Reconstruct the signal 
frequency by a search method according to the set of folded frequencies. Finally, the simulation 
results verify the good performance of our proposed algorithm. 
Keywords: sub-Nyquist channel, ESPRIT, search-based, real-valued waveform. 

1. Introduction 

In practice, measurements of high-frequency signals are often used in the field of radar signals 
[1] and infinite sensors [2]. Most current frequency estimation algorithms are based on the Nyquist 
theorem, which can estimate the signal in the time domain based on the differential linear 
relationship or map the signal from the time domain to the frequency domain based on the linear 
Fourier transform. However, as the signal bandwidth increases, those methods often require ADCs 
with a high sampling rate, which is very expensive and sometimes difficult to implement [3]. 
Therefore, how to reconstruct the signal frequency using the sub-Nyquist channel is an important 
nonlinear reconstruction problem. 

The development of the Chinese remainder theorem (CRT) provides a possible solution to 
solve this nonlinear reconstruction problem. The traditional search-based CRT method is proposed 
in [4-5], but it is time-consuming and requires the sampling frequency to be coprime. The closed-
form CRT proposed in [6-7] can further reduce the operation complexity while improving the 
generalizability of the algorithm. However, to use the CRT reconstruction method, we need to 
filter out the true residual from the two folded frequencies which are symmetrical about half of 
the sampling frequency. In practice, it is hard to select the correct residue. Therefore, the CRT is 
mostly applicable only in the frequency estimation for complex signals. To measure the frequency 
of the real-valued signal, Huang [8] added a zero-crossing detector in front of the sampling channel 
and selected the right remainder according to the signal phase. But this method has a limited noise 
immunity considering that the signal phase is easily affected by noise. 

Maroosi [9] gave the theoretical upper bound of the real-valued signal frequency for stable 
reconstruction. Based on Maroosi’s work, Su [10] proposed an estimator with better noise 
immunity based on least squares and a search algorithm that does not depend on the phase of the 
signal. We further propose a new real-valued signal frequency estimation method based on [9-10], 
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which improves the estimation accuracy and specifies the sampling requirements of this search 
algorithm. The simulation experiments demonstrate that our estimator does have better accuracy 
compared to [10]. 
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Fig. 1. System overall flow chart 

2. Frequency estimator using multiple sub-Nyquist channels 

2.1. Estimator overview 

Our proposed multi-channel-based frequency estimator for high-frequency signals is shown in 
Fig. 1. First, the signal is under sampled through multiple ADC channels. Then we obtain the 
residual frequency of the signal frequency in each channel according to the ESPRIT algorithm. 
Finally, we use the search-based method to reconstruct the signal frequency according to the set 
of sampling frequencies and residual frequencies obtained in the previous step. 

2.2. Obtaining folded frequency  

If we use an ADC with a sampling frequency of 𝑓௦ to undersample the signal with frequency 𝑓, the digital signal sequence is as follows: 

𝑠ሾ𝑛ሿ = 𝐴cos ൬2𝜋𝑓𝑓௦ 𝑛 + 𝜑൰ + 𝑤ሾ𝑛ሿ, (1)

where the 𝑤[𝑛] is the signal noise. Considering that the signal frequency may be greater than the 
sampling frequency, we have: 𝑓 = 𝑄𝑓௦ + 𝑓௥ ,    𝑄 ∈ 𝑁ା, (2)

where we denote the 𝑓௥ as the folded frequency or the residue of the signal frequency moduli the 
sampling frequency. Thus, we can rewrite Eq. (1) as: 
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𝑠[𝑛] = 𝐴cos ൬2𝜋𝑓௥𝑓௦ 𝑛 + 𝜑൰ + 𝑤[𝑛]. (3)

Considering that: 

𝐴cos ൬2𝜋𝑓௥𝑓௦ 𝑛 + 𝜑൰ = 12𝐴ቆ𝑒௜ቀଶగ௙ೝ௙ೞ ௡ାఝቁ + 𝑒ି௜ቀଶగ௙ೝ௙ೞ ௡ାఝቁቇ. (4)

Thus, the signal sequence model is as follows: 

⎝⎜
⎛ 𝑠[0]𝑠[1]⋯𝑠[𝑁 − 1]⎠⎟

⎞ = ⎝⎜
⎛ 1 1𝑒௜ቀଶగ௙ೝ௙ೞ ቁ 𝑒ି௜ቀଶగ௙ೝ௙ೞ ቁ ⋯ ⋯𝑒ሺேିଵሻ௜ቀଶగ௙ೝ௙ೞ ቁ 𝑒ିሺேିଵሻ௜ቀଶగ௙ೝ௙ೞ ቁ⎠⎟

⎞൮ 𝐴2 𝑒௜ఝ𝐴2 𝑒ି௜ఝ൲ + ⎝⎜
⎛ 𝑤[0]𝑤[1]⋯𝑤[𝑁 − 1]⎠⎟

⎞. (5)

We denote that: 𝐬 = (𝑠[0], 𝑠[1], . . . , 𝑠[𝑁 − 1])் , 
𝐏𝟏 = ⎝⎜

⎛ 1 1𝑒௜ቀଶగ௙ೝ௙ೞ ቁ 𝑒ି௜ቀଶగ௙ೝ௙ೞ ቁ⋯ ⋯𝑒(ேିଵ)௜ቀଶగ௙ೝ௙ೞ ቁ 𝑒ି(ேିଵ)௜ቀଶగ௙ೝ௙ೞ ቁ⎠⎟
⎞ ,      𝐏𝟐 = ⎝⎜

⎛ 𝑒௜ቀଶగ௙ೝ௙ೞ ቁ 𝑒ି௜ቀଶగ௙ೝ௙ೞ ቁ𝑠𝑒ଶ௜ቀଶగ௙ೝ௙ೞ ቁ 𝑒ିଶ௜ቀଶగ௙ೝ௙ೞ ቁ⋯ ⋯𝑒ே௜ቀଶగ௙ೝ௙ೞ ቁ 𝑒ିே௜ቀଶగ௙ೝ௙ೞ ቁ⎠⎟
⎞, 

𝚽 = ቆ𝑒௜ቀଶగ௙ೝ௙ೞ ቁ0 0𝑒ି௜ቀଶగ௙ೝ௙ೞ ቁቇ ,      𝐰 = ቌ 𝑤[0]𝑤[1]⋯𝑤[𝑁 − 1]ቍ. 
(6)

To obtain𝑓௥, we choose the widely used parameter estimation method ESPRIT [11] 
(Estimation of Signal Parameters Via Rotational Invariance Techniques) based on signal 
eigenspace. 

Thus we have: 𝐏𝟐 = 𝐏𝟏𝚽 and we can also find selection matrix 𝐉𝟏 and 𝐉𝟐 which satisfy: 𝐉𝟐𝐏𝟐 = 𝐉𝟏𝐏𝟏Φ. (7)

Based on the signal sequence𝐬, we can build the autocorrelation matrix: 𝐑𝐬𝐬 = 𝐬𝐬𝐇. (8)

Thus, we can obtain the eigenvector matrix 𝐕 which could span the signal subspace through 
eigenvalue decomposition of 𝐑𝐬𝐬. Therefore, we could find a full rank matrix 𝐓 which satisfies: 𝐏 = 𝐕𝐓. (9)

Considering Eq. (7), we have: 𝐓Φ𝐓𝐇 = 𝐉𝟏 𝟏𝐕ି𝟏𝐉𝟐𝐕. (10)

We find an eigen decomposition of 𝐓𝚽𝐓𝐇 and finally we have: 

𝑓௥ = 𝑓௦2𝜋 arg൫𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙(TΦ𝐓𝐇)൯. (11)
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2.3. Signal frequency reconstruction  

As we have obtained the folded frequency 𝑓௥ and 𝑓௦ − 𝑓௥ in Section 2.2, we can choose the one 𝑓௥௧ from 𝑓௥ and 𝑓௦ − 𝑓௥ which satisfies 0 < 𝑓௥௧ < ௙ೞଶ . 
Thus, we have the following reconstruction model: 𝑓 = 𝑝௜𝑓௦௜ + 𝑞௜𝑓௥௧௜ ,    𝑝௜ ∈ 𝑁ା,     𝑞௜ ∈ ሼ−1,1ሽ, (12)

where the 𝑓௦௜ denotes the sampling frequency in the 𝑖th AD channel and 𝑓௥௧௜  denotes the selected 
folded frequency in the 𝑖th AD channel. Maroosi [9] gave the reconstruction upper bound as: 

𝑓୫ୟ୶ଵ = minቐ𝑓௦ଵ + 𝑙𝑐𝑚(𝑓௦ଶ,𝑓௦ଷ)𝑓௦ଶ + 𝑙𝑐𝑚(𝑓௦ଵ,𝑓௦ଷ)𝑓௦ଷ + 𝑙𝑐𝑚(𝑓௦ଵ,𝑓௦ଶ)ቑ2 . (13)

In other words, we can reconstruct the signal frequency without aliasing only if 𝑓 < 𝑓୫ୟ୶ଵ. 
As we have three channels, there exist too many parameter combinations of 𝑝௜ ∈ 𝑁ା and 𝑞௜ 

for 𝑖 ∈ {1,2,3}. To reduce the search complexity, we add a constraint to the sampling rateswhich 
makes the three sampling frequencies close to each other. 

Assume: 𝑓௦ଵ < 𝑓௦ଶ < 𝑓௦ଷ, ඌ𝑓୫ୟ୶𝑓௦ଷ ඐ (𝑓௦ଷ − 𝑓௦ଵ) ≤ 𝑓௦ଵ2 . (14)

Thus, the frequency upper bound is: 

𝑓୫ୟ୶ = min ቊ𝑓୫ୟ୶ଵ,ቆ቞ 𝑓௦ଵ2(𝑓௦ଷ − 𝑓௦ଵ)቟ + 1ቇ𝑓௦ଷቋ. (15)

Then we have the following parameter combinations as shown in table 1according to Su [10] 
and each row represents a specific frequency region. 

Table 1. Reconstruction method 𝑓 𝑝ଵ 𝑝ଶ 𝑝ଷ 𝑞ଵ 𝑞ଶ 𝑞ଷ 
[0, 𝑓௦ଵ/2) 0 0 0 1 1 1 

[𝑓௦ଵ/2, 𝑓௦ଶ/2) 0 0 1 1 1 –1 
[𝑓௦ଶ/2, 𝑓௦ଷ/2) 0 1 1 1 –1 –1 

[𝑓௦ଷ/2, 𝑓௦ଵ) 1 1 1 –1 –1 –1 
[𝑓௦ଵ, 𝑓௦ଶ) 1 1 1 –1 –1 1 
[𝑓௦ଶ, 𝑓௦ଷ) 1 1 1 –1 1 1 

[𝑓௦ଷ, 3𝑓௦ଵ/2) 1 1 1 1 1 1 
[3𝑓௦ଵ/2, 3𝑓௦ଶ/2) 1 1 2 1 1 –1 
[3𝑓௦ଶ/2, 3𝑓௦ଷ/2) 1 2 2 1 –1 –1 

[3𝑓௦ଷ/2, 2𝑓௦ଵ) 2 2 2 –1 –1 –1 
… … … … … … … 

We define the reconstruction loss function as: 𝑓௟௢௦௦ = |(𝑝ଵ𝑓௦ଵ + 𝑞ଵ𝑓௥௧ଵ ) − (𝑝ଶ𝑓௦ଶ + 𝑞ଶ𝑓௥௧ଶ)| + |(𝑝ଶ𝑓௦ଶ + 𝑞ଶ𝑓௥௧ଶ) − (𝑝ଷ𝑓௦ଷ + 𝑞ଷ𝑓௥௧ଷ)|        +|(𝑝ଵ𝑓௦ଵ + 𝑞ଵ𝑓௥௧ଵ ) − (𝑝ଷ𝑓௦ଷ + 𝑞ଷ𝑓௥௧ଷ)|. (16)
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Then we can choose the best parameter combination with least 𝑓௟௢௦௦ to reconstruct the signal 
frequency. 

3. Simulation and results 

We set the three sampling frequencies as1500 Hz, 1510 Hz and 1520 Hz. The maximum 
frequency which can be measured by our proposed estimator based on Eq. (15) is 57760 Hz. We 
can see that our estimator improves the upper bound of frequency measurement significantly. 

Firstly, we test the performance of our estimator compared with Su [10]. We set the data length 𝑁 = 30 and signal frequency 𝑓 = 10000. In order to improve the speed of calculation, we construct 
a 5×5 autocorrelation matrix. If the data sequence with length greater than 5, we can construct 
multiple autocorrelation matrices using a sliding window with a length of 5and then compute the 
average matrix from them. 

 
Fig. 2. Estimator performance compared with Su [10] 

The experiment result is shown in Fig. 2. We can see from the simulation result that our 
estimator not only has better accuracy at the high SNR region, but also is more resistant to noise. 
Su’s algorithm becomes unstable at 16 dB, while our algorithm starts to diverge at 10 dB. 

In addition, we also test the effect of the number of data points selected on the estimation 
accuracy. We still set to construct a 5×5 autocorrelation matrix, but the selected data lengths are 
10, 20, and 30, and the other parameters are the same as in the previous experiment. Fig. 3 shows 
that the reconstruction accuracy improves as the number of data points increases, and the noise 
immunity also becomes stronger. However, it can also be found that the performance improvement 
gradually decreases as the number of points increases. 

 
Fig. 3. Estimator performance with different data lengths 
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4. Conclusions 

To solve the single real-valued signal frequency estimation problem using ADC with a low 
sampling rate, we propose a multiple sub-Nyquist channel-based estimation algorithm. We first 
estimate the folded frequency of the signal based on the ESPRIT algorithm, and then use a search 
algorithm to reconstruct the signal frequency in the presence of constraints on the sampling 
frequencies. Experiments verify that our algorithm has good accuracy and noise immunity. Since 
the ESPRIT algorithm can handle multi-frequency estimation problems, it is a future research 
direction for us to improve the search algorithm to achieve multi-frequency reconstruction 
afterward. 
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