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Abstract. Rolling bearings are the most important components in the transmission system of coal 

mining machinery, and their operating condition significantly impacts the entire mechanical and 

electrical equipment. Therefore, the fault diagnosis of rolling bearing can effectively ensure the 

operation reliability of equipment. Given the strong noise, coal impact, and other interference, the 

vibration signal of the rolling bearing cannot be effectively decomposed, and the fault 

identification efficiency is low. According to the method based on vibration analysis, this article 

proposes a rolling bearing fault diagnosis method based on ensemble local mean decomposition 

(ELMD) hybrid feature extraction and wavelet neural network. ELMD is used to solve the 

problem of modal aliasing in local mean decomposition (LMD), which can improve the efficiency 

of LMD. Quantitatively extracting the mixed features of each component and introducing a 

wavelet neural network for fault type recognition. The experimental results demonstrate that the 

proposed method has a high accuracy in fault recognition and is an effective fault diagnosis 

method. 

Keywords: rolling bearing, hybrid feature index, fault diagnosis, ELMD, wavelet neural network. 

1. Introduction 

Rolling bearings, as a fundamental component of coal mining machinery transmission 

systems, directly impact the efficiency and safety of coal mining machinery due to their operating 

conditions and failure rates. According to statistics, about 30 % of faults of rotating parts are 

caused by rolling bearings [1]. Therefore, the research on the rolling bearing fault diagnosis 

method is particularly important. In practice, the working environment of the mechanical 

transmission system of a coal mine is often harsh, so it is difficult to effectively decompose the 

vibration signals of rolling bearings and extract fault features and accurately identify faults under 

the interference of strong noise and falling coal impact. Many scholars have studied some research 

to carry out the accurate and efficient fault diagnosis of rolling bearings and the intelligent 

maintenance of equipment. Common fault diagnosis methods include vibration analysis, noise 

analysis, oil analysis, temperature analysis, and so on [2]. Among them, the vibration analysis 

method is the most widely used. 

The key to vibration analysis is to extract fault characteristics from vibration signals. However, 

the vibration signals of rolling bearings have characteristics such as nonlinearity, non-stationarity, 

strong coupling, and background noise, which require in-depth analysis of the vibration signals to 

achieve fault diagnosis, which poses certain difficulties. The classical spectral analysis reflects the 

frequency domain characteristics of vibration signals through the Fourier transform, due to its 

clear physical interpretation and fast computational capabilities, it has been widely utilized. 

However, its defect is that the classical spectral analysis method is based on the stability of the 

signal, which can only process the linear vibration signals, and only has global statistical 

significance [3]. Meanwhile, it cannot reflect the sudden change of the vibration signal and is not 

suitable for non-stationary vibration signals of mechanical faults. 

Short-time Fourier transforms (STFT) is a time-frequency analysis method that considers non-
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stationary signals as composed of a series of short-time stationary signals. It uses a window 

function multiplied by the signal to be analyzed [4]. But it is limited by the Heisenberg uncertainty 

principle, which has the shortcomings of low time-frequency resolution and lack of 

self-adaptability. In 1998, Huang et al. [5] proposed a fault diagnosis method for rolling bearings 

based on the Hilbert-Huang transform (HHT), which decomposes the signal into several Intrinsic 

Mode Functions (IMFs) using Empirical Mode Decomposition (EMD), the instantaneous 

amplitude and frequency of each IMF component are then calculated using the Hilbert transform. 

However, Hilbert-Huang Transform (HHT) has its limitations, such as severe endpoint effects 

during its execution, fitting errors caused by fitting the envelope using cubic spline interpolation, 

the occurrence of unexplainable negative frequencies during HT demodulation, and energy 

leakage caused by the endpoint effects [6]. Therefore, some improved methods such as LMD and 

ELMD are proposed. 

After extracting and decomposing the signal, it is necessary to perform fault feature 

quantization to extract parameters that represent the fault characteristics of mechanical equipment 

[7]. In terms of common time-domain feature parameters, there are mainly dimensional 

parameters such as peak, average value, root mean square value, and variance and dimensionless 

parameters such as kurtosis, margin, and waveform factor [8]. Entropy is originally used to express 

the disorder degree of molecules and it has also been introduced into the field of signal processing 

at present. The commonly used entropy features in fault diagnosis include information entropy, 

energy entropy, power spectrum entropy, and so on. 

After extracting the characteristic parameters of sensitive faults, it is necessary to accurately 

identify the faults. The neural network can continuously adjust the weights through self-learning 

when new faults occur, realize the complex nonlinear mapping relationship between faults and 

symptoms, and have the ability of associative memory, pattern matching, and similar induction of 

faults [9], it is a commonly used means at present. 

This article proposes to use the Extreme Learning Machine Decomposition (ELMD) to process 

the vibration signals of rolling bearings, and then extract mixed features such as time-domain 

characteristic parameters and entropy features from the decomposed results of ELMD. Finally, 

the fault diagnosis of rolling bearing can be performed by a wavelet neural network. This method 

can decompose components containing fault features in the case of large external interference. 

Compared with traditional feature selection algorithms, the manual selection of hybrid features 

can better distinguish the differences between different faults at each component, and improve the 

accuracy of wavelet neural network identification. 

2. The proposed method 

2.1. ELMD 

ELMD is an improved method based on LMD, and it can eliminate modal aliasing by adding 

Gaussian white noise [10]. The processing flow of ELMD is as follows: For a vibration signal 

𝑥(𝑡), suppose that the vibration signal added the ℎ-th white noise is 𝑥ℎ(𝑡) = 𝑥(𝑡) + 𝜀0𝑤
ℎ(𝑡). For 

the vibration signal 𝑥ℎ(𝑡) = 𝑥(𝑡) + 𝜀0𝑤
ℎ(𝑡), compute the average value 𝑚𝑖

ℎ and local amplitude 

𝑎𝑖
ℎ between adjacent local extrema points, and apply a moving average to all 𝑚𝑖

ℎ and 𝑎𝑖
ℎ values 

to obtain the local mean function 𝑚11
ℎ(𝑡)  and envelope estimation function 𝑎11

ℎ(𝑡)  [11]. 

Separate the local mean function 𝑚11
ℎ(𝑡) from the original signal 𝑥ℎ(𝑡) to obtain: 

ℎ11
ℎ(𝑡) = 𝑥ℎ(𝑡) − 𝑚11

ℎ(𝑡). (1) 

Divide ℎ11
ℎ(𝑡) by envelope estimation function 𝑎11

ℎ(𝑡), and the demodulation of ℎ11
ℎ(𝑡) can 

be obtained and shown as follows: 
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𝑠11
ℎ(𝑡) =

ℎ11
ℎ(𝑡)

𝑎11
ℎ(𝑡)

. (2) 

To calculate the envelope estimation function 𝑎12
ℎ(𝑡) of 𝑠11

ℎ(𝑡), the above iterative process 

needs to be repeated until a pure frequency modulation signal 𝑠1𝑛
ℎ(𝑡) is obtained, when the 

envelope estimation function of 𝑠11
ℎ(𝑡) satisfies 𝑎1(𝑛+1)

ℎ(𝑡) = 1. The envelope signal 𝑎1
ℎ(𝑡) 

can be obtained by multiplying all envelope estimation functions generated in the iterative process, 

and it is shown as follows: 

𝑎1
ℎ(𝑡) = 𝑎11

ℎ(𝑡) ⋅⋅⋅ 𝑎1𝑛
ℎ(𝑡) =∏𝑎1𝑞

ℎ(𝑡)

𝑛

𝑞=1

. (3) 

By multiplying the envelope signal 𝑎1
ℎ(𝑡) and pure frequency modulation signal 𝑠1𝑛

ℎ(𝑡), the 

first Product Function (PF)component of the original vibration signal 𝑥ℎ(𝑡) = 𝑥(t) + 𝜀0𝑤
ℎ(𝑡) 

can be obtained, and it can be separated from the original signal to obtain 𝑢1
ℎ(𝑡). Repeat the above 

steps until 𝑢𝑘
ℎ(𝑡) is a monotonic function. So far, the original vibration signal adds the ℎ-th white 

noise 𝑥ℎ(𝑡) is decomposed into 𝐽 PF components 𝑃𝐹𝑗
ℎ(𝑡), 𝑗 = 1,2, . . . , 𝐽 and a remainder 𝑢𝑘

ℎ(𝑡). 

It can be further seen that 𝑥(𝑡), a set of PF components will be obtained for a vibration signal 

after adding white noise once by the above process. Assuming a total of 𝐻 times white noise is 

added, the 𝐻 groups of PF components can be obtained. The final decomposition results can be 

obtained by averaging the PF components obtained by adding white noise each time, and the 

formula is expressed as follows: 

𝑃𝐹𝑗(𝑡) =
1

𝐻
∑𝑃𝐹𝑗

ℎ(𝑡),     𝑗 = 1,2, … , 𝐽

𝐻

ℎ=1

, (4) 

where 𝑃𝐹𝑗(𝑡) is the final 𝑗-th PF component obtained by ELMD, 𝑃𝐹𝑗
ℎ  the 𝑗-th PF component 

obtained by LMD when the ℎ-th white noise is added, 𝑗 is the decomposition layer of ELMD, and 

𝐻 is the total times of adding white noise. The flowchart of ELMD is shown in Fig. 1. 

 
Fig. 1. The flowchart of ELMD 

2.2. Hybrid feature parameters 

This article proposes a hybrid feature extraction model that mainly includes time-domain 
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feature parameters and entropy feature parameters. The time-domain feature parameters are 

widely used in the fault diagnosis of rolling bearing, and the time-domain feature parameters 

include dimensional parameters such as peak, average value, root mean square value, variance, 

and dimensionless parameters such as kurtosis, margin, and waveform factor [12]. The time-

domain feature parameters used in this paper are shown in Table 1. 

Table 1. Time-domain feature parameters used in this paper 

Kurtosis 𝑥𝑘𝑢𝑟 =
∑ (𝑥𝑖 − 𝑥̅)

4𝑛
𝑖=1

(𝑛 − 1)𝑥𝑠𝑡𝑑
4

 Peak factor 𝑥𝐶𝐹 =
𝑥𝑝
𝑥𝑟𝑚𝑠

 

Root mean square 𝑥𝑟𝑚𝑠 = √
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

 Margin factor 
𝑥𝐶𝐼𝐹 =

𝑥𝑝

(
1
𝑛
∑ √|𝑥𝑖|
𝑛
𝑖=1 )

2 

Waveform factor 𝑥𝑆𝐹 =
𝑥𝑟𝑚𝑠
𝑥̅

 

Envelope entropy is a method combining envelope spectrum analysis and information entropy 

[13]. It is a feature extraction method to measure the internal characteristic changes of the vibration 

signal and is independent of vibration signal strength. It is only related to the frequency 

distribution of the vibration signal, reflecting the complexity of the vibration signal, specifically 

expressed as follows: 

{
 
 
 

 
 
 𝐻𝑒 = −∑ 𝑝𝑖 ⋅ ln𝑝𝑖

𝑁

𝑖=1
,

𝑝𝑖 = 𝐻𝑋(𝑖) ∑ 𝐻𝑋(𝑗)
𝑁

𝑗=1
⁄ ,

∑𝑝𝑖

𝑁

𝑖=1

= 1,

 (5) 

where 𝐻𝑋(𝑖) is the envelope spectrum of any time-domain vibration signal 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁}. 
The power spectrum entropy starts from the spatial energy distribution in the frequency 

domain of the vibration signal, reflecting the overall uncertainty and complexity of the vibration 

signal, which characterizes the spectral structure of the analyzed vibration signal [14]. 

𝐹(𝜔) can be obtained by the Fourier transform of any time-domain vibration signal containing 

𝑁 data points. The power spectrum entropy can be expressed as: 

{
  
 

  
 𝑆(𝜔) =

1

𝑁
|𝐹(𝜔)|2,     𝜔 = 1,2, … , 𝑁,

𝑆𝑠𝑢𝑚 =∑ 𝑆(𝜔)
𝑁

𝜔=1
,

𝐻𝑃𝑆𝐸 = −∑
𝑆(𝜔)

𝑆𝑠𝑢𝑚
ln
𝑆(𝜔)

𝑆𝑠𝑢𝑚

𝑁

𝜔=1
.

 (6) 

2.3. The wavelet neural network (WNN) 

WNN is used in this paper for fault identification after hybrid feature extraction. WNN takes 

the wavelet function as the activation function of the hidden layer, and the corresponding 

parameters such as the network connection weights and threshold are replaced by the scaling and 

translation parameters of the wavelet function, respectively [15], and the structure of WNN is 

shown in Fig. 2. 
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Fig. 2. Structure of WNN 

In this paper, the commonly used Morlet wavelet is chosen as the wavelet basis function, 

assuming 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑘} is the network input and 𝑌 = {𝑌1, 𝑌2, . . . , 𝑌𝑚} is the network output 

respectively, 𝜔𝑖𝑗  is the weights between the input layer and the hidden layer, and 𝜔𝑗𝑘  is the 

weights between the hidden layer and the output layer. When the input layer signal is 𝑥𝑖, the output 

of the hidden layer is [16]: 

ℎ(𝑗) = 𝜓𝑗 (
∑ 𝜔𝑖𝑗𝑥𝑖 − 𝑏𝑗
𝑘
𝑖=1

𝑎𝑗
). (7) 

The output of the output layer is: 

𝑦(𝑘) =∑𝜔𝑗𝑘ℎ(𝑗)

𝑙

𝑗=1

. (8) 

The error energy function 𝐸 is used to optimize the parameters of the wavelet neural network: 

𝐸 =∑𝐸𝑃 =

𝑝

𝑝=1

1

2
∑∑[𝑦𝑛(𝑘) − 𝑦(𝑘)]2

𝑚

𝑘=1

𝑝

𝑝=1

. (9) 

Among them, 𝑦𝑛(𝑘) is the expected output and 𝑦(𝑘) is the actual output. 

The learning formula for the weights and coefficients of WNN is as follows: 

{
  
 

  
 𝜔𝑛,𝑘

(𝑖+1) = 𝜔𝑛,𝑘
(𝑖) − 𝜂

𝜕𝐸

𝜕𝜔𝑛,𝑘
(𝑖)
+ 𝜆∗(𝜔𝑛,𝑘

(𝑖) − 𝜔𝑛,𝑘
(𝑖−1)),

𝑎𝑘
(𝑖+1) = 𝑎𝑘

(𝑖) − 𝜂
𝜕𝐸

𝜕𝑎𝑘
(𝑖)
+ 𝜆∗(𝑎𝑘

(𝑖) − 𝑎𝑘
(𝑖−1)),

𝑏𝑘
(𝑖+1) = 𝑏𝑘

(𝑖) − 𝜂
𝜕𝐸

𝜕𝑏𝑘
(𝑖)
+ 𝜆∗(𝑏𝑘

(𝑖) − 𝑏𝑘
(𝑖−1)),

 (10) 

where 𝜂 is the learning rate and 𝜆 is the momentum factor. 

In conclusion, the training process of WNN is as follows: 

(1) Initialize the parameters, including weights 𝜔𝑖𝑗, 𝜔𝑗𝑘, scaling factor 𝑎𝑘, translation factor 

𝑏𝑘 and set learning rate 𝜂. 

(2) A large number of data samples were divided into training samples and testing samples. 

(3) Calculate the output value of the output layer of WNN and the error energy function 𝐸. 

(4) Parameter optimization is carried out using the error energy function 𝐸. 

(5) Evaluate whether the condition is met; if not, return to step (3) and repeat until the condition 

is satisfied. 
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3. Experimental platform 

The proposed method is verified by using a rolling bearing fault test bed, and the test bed is 

composed of a motor, speed sensing unit, speed reducer, test shaft, loading device, and load 

system. The rolling bearing fault test bed is shown in Fig. 3. 

 
Fig. 3. Rolling bearing fault test-bed 

A three-axis distributed vibration sensor is used to collect the vibration signal in this 

experiment, as shown in Fig. 4. Five rolling bearing states are selected for simulation in the 

vibration signal experiment, namely normal rolling bearing, rolling bearing with outer ring pitting, 

rolling bearing with outer ring crack, rolling bearing with inner ring pitting and rolling bearing 

with inner ring crack, as shown in Fig. 5. The motor speed is set as 50 Hz, and the sampling 

frequency is set as 20000 Hz. The measured vibration signals are shown in Fig. 6. 

 
Fig. 4. The three-axis distributed vibration sensor 

   

 

 

Fig. 5. Tested bearings 

 

The motor

Speed 

sensing unit
Load 

system

Test shaft

Loading 

device

Speed 

reducer

Normal Outer ring crack fault Outer ring pitting fault

Inner ring crack fault Inner ring pitting fault
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Fig. 6. The measured vibration signals 

4. Experimental validation 

4.1. The ELMD analysis of vibration signal 

The vibration signal measured in the test bed is analyzed, it can be seen from Fig. 6 that useful 

information cannot be obtained from the time-domain waveform. The above vibration signals are 

decomposed by ELMD, and Gaussian white noise with a standard deviation of 0.2 is added 

100 times in each decomposition. The original vibration signal is decomposed into 7 PF 

components by ELMD, and that is arranged from high frequency to low frequency, as shown in 

Fig. 7(a)-(e). 

To compare the decomposition results between LMD and ELMD, we use a rolling bearing 

with an inner ring crack as an example, and the comparison is shown in Fig. 8. The chaotic impact 

signal in the LMD decomposition result appears, and there is no periodicity, it shows a certain 

mode aliasing phenomenon. While the decomposition results in ELMD have less impact 

component, and it is clear and regular, it also inhibits a part of modal aliasing, impact signal in the 

PF component in the medium and lower frequency band is significantly improved. 

 
a) The ELMD decomposition results  

of normal rolling bearing 

 
b) The ELMD decomposition results  

of the rolling bearing with outer ring pitting 
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c) The ELMD decomposition results  

of the rolling bearing with an outer ring crack 

 
d) The ELMD decomposition results  

of the rolling bearing with inner ring pitting 

 
e) The ELMD decomposition results of the rolling bearing with an inner ring crack 

Fig. 7. The ELMD decomposition results 

 

 

Fig. 8. The comparison of the decomposition results between LMD and ELMD 

4.2. Quanfied extraction of hybrid features 

ELMD decomposes the relevant fault feature information into each PF component, with the 

key step being the quantitative extraction of this feature information. This paper extracts fault 

hybrid features, including time-domain features such as kurtosis, root mean square, waveform 

factor, margin factor, peak factor, envelope entropy, and power spectrum entropy. The feature 

weights calculated by the multi-label feature selection algorithm (ReliefF) are shown in Table 2, 
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the extracted time-domain features in Fig. 9, and the envelope entropy and power spectrum 

entropy in the various rolling bearing states are shown in Fig. 10. 

Table 2. Feature weights of the ReliefF algorithm at each PF component 

 PF1 PF2 PF3 PF4 PF5 PF6 PF7 

Root mean square 0.694 0.205 0.056 0.018 0.006 0.001 –0.001 

Kurtosis 0.384 0.011 0.079 –0.008 0.178 –0.019 0.553 

Waveform factor –0.316 –0.103 –0.042 0.216 0.138 –0.143 0.484 

Margin factor 0.672 0.211 0.046 0.198 0.074 0.001 –0.004 

Peak factor 0.681 0.247 0.081 0.205 0.088 0.026 0 

Envelope entropy 0.448 –0.015 –0.016 0.176 -0.021 0.018 0.375 

Power spectrum entropy 0.694 0.534 0.391 0.331 0.151 0.079 0 

 

 
a) Root mean square 

 
b) Kurtosis 

 
c) Waveform factor 

 
d) Margin factor 

 
e) Peak factor 

Fig. 9. Time-domain feature parameters of various rolling bearing states of various rolling bearing states 
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The ReliefF algorithm cannot effectively remove redundant features when selecting features, 

and the weight value is often positively correlated with the absolute value of features. Therefore, 

the difference between different faults in different frequency domains cannot be well 

distinguished, resulting in inaccurate feature selection. Therefore, this paper manually selects 

features in different frequency domains to improve the rationality and accuracy of feature 

selection. 

In Fig. 9(a), the root means square is sensitive to faults in the high-frequency domain. In 

Fig. 9(b), the kurtosis of the PF component of normal bearing is relatively stable, and the kurtosis 

of each fault at the PF4 component is different. In Fig. 9(c), the characteristic components of 

different fault waveform factors have obvious differentiation and a large variation range. In 

Fig. 9(d)-(e), both the margin factor and peak factor are very stable in describing normal bearings, 

and both have a higher recognition degree for crack bearings, and there is a certain rule at PF4. 

In Fig. 10(a), the envelope entropy of normal bearings is relatively stable, without obvious 

differentiation, but the signal differentiation of other fault rolling bearings is more serious, 

especially the rolling bearing with crack fault, which will be significantly increased or reduced. In 

Fig. 10(b), some PF components are not very different from normal rolling bearings, but some PF 

components, such as the PF5 components of the rolling bearing with outer ring crack, rolling 

bearing with inner ring pitting, and rolling bearing with inner ring crack, are greatly different from 

normal rolling bearing. However, the PF component of the same faults fluctuates less and shows 

an overall downward trend. To sum up, by analyzing the extraction results of each feature 

parameter, the PF components of each feature parameter that can best reflect the characteristic 

state are selected respectively. They include the root mean square of the PF1 component, the 

waveform factor of the PF7 component, the kurtosis, margin factor, peak factor, and envelope 

spectrum entropy of the PF4 component, the power spectrum entropy of PF3 components. 

 
a) Envelope entropy 

 
b) Power spectrum entropy 

Fig. 10. Entropy feature parameter of various rolling bearing states 

4.3. The analysis of WNN 

Firstly, BP neural network is used for data training and learning. Through continuous 

parameter modification, the model of the BP neural network tends to be complete, and the learning 

rate is 0.01 at this time. The prediction accuracy rate of the neural network for five kinds of bearing 

fault models is shown in Table 3. 
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Table 3. Accuracy of fault recognition of BP 

Fault type Normal 
Outer ring 

pitting 

Outer ring 

crack 

Inner ring 

pitting 

Inner ring 

crack 

Fault diagnosis rate 83.3 % 100 % 83.3 % 96.7 % 86.7 % 

In Table 3, the overall fault recognition rate of the BP neural network is not high. In addition 

to the recognition accuracy of the second type of outer ring pitting bearing, the recognition effect 

of other types of bearings is not particularly good. 

Since the BP neural network prediction is not particularly ideal, then the wavelet neural 

network is used to process the data. Using the wavelet function to replace the hidden layer function 

of the BP neural network, the fuzzy problem of the hidden layer of the BP neural network can be 

effectively improved. The designed WNN includes three layers, the input layer, the hidden layer, 

and the output layer. The neuron number of the input layer is 10, corresponding to the extracted 

hybrid feature parameters previously, and the hidden layer nodes are composed of wavelet 

functions. The neuron number of the output layer is 5, corresponding to 5 rolling bearing states. 

A total of 250 samples composed from the first 50 sets of each rolling bearing state are selected 

as the training samples, and the remaining 150 sets of samples are used as testing samples to test 

the diagnostic performance of the proposed method. The normalization processing is conducted 

before training, the weights are set to 0.01, the learning rate is set to 0.001, and the iterations are 

set to 100. The error evolution curve during the training process is shown in Fig. 11, and the fault 

diagnosis rate is shown in Table 4. 

 
Fig. 11. Error evolution curve during the training process 

Table 4. Accuracy of fault recognition of WNN 

Fault type Normal 
Outer ring 

pitting 

Outer ring 

crack 

Inner ring 

pitting 

Inner ring 

crack 

Fault diagnosis rate 100 % 90.0 % 93.3 % 96.7 % 100 % 

It can be seen from the results that the error in the preliminary iteration process is large, and 

the error becomes smaller and smaller as the number of iterations increases. The testing samples 

are used to test the proposed method, and the overall diagnosis rate of WNN is high. Among them, 

the recognition rate of normal and inner ring crack faults is the highest, reaching 100 %, the 

recognition rate of other fault types is also above 90 %, and the overall recognition rate reached 

96 %. That can prove that the proposed method is effective and can solve the problem of fault 

detection of the rolling bearing in electromechanical equipment. 

5. Conclusions 

To improve the accuracy of bearing fault diagnosis under the interference of strong noise, a 

fault diagnosis model based on ELMD hybrid features extraction and wavelet neural network 
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recognition is established in this paper. ELMD was used to decompose the signal, and the 

distinction between different faults by ReliefF and hybrid feature parameter extraction method 

was compared and analyzed, as well as the accuracy of the BP neural network and WNN neural 

network in fault identification. Through the analysis of experimental data, the effectiveness of this 

method is verified, and the following conclusions can be drawn: 

1) ELMD can effectively eliminate the mode aliasing caused by LMD decomposition. 

2) The hybrid feature parameter extraction method can effectively remove the phenomenon of 

feature redundancy generated by the traditional feature selection algorithm when extracting 

signals, effectively distinguish fault types, and increase the accuracy of fault identification. 

3) WNN can effectively improve the fuzzy of a hidden layer of the BP neural network and 

enhance the accuracy of fault identification. 
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