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Abstract. The slope fitting line between MPE (multi-scale permutation entropy) and MWPE 
(multi-scale weighted permutation entropy) is recently proposed as a discriminant statistic for 
testing the nonlinearity of a time series. The main objective of this paper is to demonstrate that the 
selection of the optimal parameters of the non-uniform embedding is essential for the proposed 
discriminant statistic. In particular, the presented case studies indicate that the modified 
discriminant statistic based on non-uniform embedding can detect differences between such time 
series which remain indistinguishable if the original approach is used. 
Keywords: time series, permutation entropy, attractor embedding. 

1. Introduction 

Permutation entropy is a robust time series tool which provides a quantification measure of the 
complexity of a dynamic system by capturing the order relations between values of a time series 
and extracting a probability distribution of the ordinal patterns [1]. Weighted-permutation entropy 
(WPE) considers the amplitude information which is ignored in the symbolization approach used 
in PE [3]. PE and WPE can measure the complexity of a time series in a single scale. Multi-scale 
permutation entropy (MPE) and multi-scale weighted permutation entropy (MWPE) are 
introduced in [18] and do help to describe the complexity of a time series in multiple scales. It is 
shown in [2] that a linear correlation between MPE and MWPE exists in multiple scales. The slope 
of the linear regression between MPE and MWPE is used as a discriminant statistic to detect 
nonlinearity of financial time series through surrogate data analysis in [2]. 

The main objective of this paper is to employ case studies to demonstrate that the selection of 
optimal embedding parameters is an essential step which must be taken before this discriminant 
statistic (the slope of the linear regression between MPE and MWPE) can be used to characterize 
the complexity of a time series. 

The paper is organized as follows. Short definitions of PE, WPE, MPE, WMPE, the linear 
regression between MPE and WMPE are given in Section 2. The selection of the optimal 
embedding parameters is discussed in Section 3. The comparison between the discriminant 
statistic and the modified discriminant statistic based on non-uniform embedding is presented in 
Section 4. Computational simulations with synthetic data are discussed in Section 5. Discussions 
on the novelty and the implications of the results are presented in Section 6. Concluding remarks 
are given in Section 7. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jme.2022.22897&domain=pdf&date_stamp=2022-09-27
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2. Preliminaries 

This section gives a concise description of algorithms and techniques used in [2]. 

2.1. Permutation entropy and weighted permutation entropy 

For a given discrete time series 𝑥 , non-uniform embedding yields the trajectory matrix 
comprised of following row vectors [15, 11]: 𝑋 , = 𝑥 , 𝑥 , 𝑥 , … , 𝑥 ⋯ , (1)

where 𝑚 is the dimension of the delay coordinate space; 𝑇 is the vector of delays;  𝑇 = 𝜏 , 𝜏 , … , 𝜏 ; 𝑘 = 1,2, … ,𝑛; 𝑛 = 𝑁 − 𝜏 + ⋯+ 𝜏 . Note that the trajectory matrix 𝑋 ,  is constructed using overlapping observation windows (index 𝑘 runs successively 
throughout the original time series). 

Permutation entropy (PE) quantifies the statistics of ordinal permutations [1]. For example, the 
ordinal pattern of a sequence 8,3,5  is 𝜋 = 3,1,2  because 𝑥 ≤ 𝑥 ≤ 𝑥 . 

PE of the trajectory matrix Eq. (1) is computed by the following algorithm. First, each row 
vector 𝑋 ,  is mapped into an ordinal pattern 𝜋 , = 𝑓 𝑋 , , 𝑟 ∈ 1,2, … ,𝑚! ; where 𝑓 
denotes the mapping function. The relative frequency of each ordinal pattern (the probability to 
observe a particular ordinal pattern in the trajectory matrix) reads: 

𝑝 𝜋 , = ∑ 𝟏 𝜋 , = 𝑓 𝑋 ,∑ 𝟏 𝑓 𝑋 , ∈ 𝛱 , (2)

where the membership function 𝟏 σ  is equal to one when the logical statement 𝜎 is true, and 
equal to 0 otherwise; Π is the complete space of ordinal patterns. Finally, PE of the trajectory 
matrix reads: 

𝑃𝐸 𝑚,𝑇 = − ! 𝑝 𝜋 , log 𝑝 𝜋 , . (3)

Analogously, the weighted frequency of each ordinal pattern reads: 

𝑝 𝜋 , = ∑ 𝟏 𝜋 , = 𝑓 𝑋 , 𝜔∑ 𝟏 𝑓 𝑋 , ∈ 𝛱 𝜔 , (4)

where 𝜔  is the variance of each row vector in the trajectory matrix: 

𝜔 = 1𝑚 𝑥 ( ) − 𝑋 , , (5)𝑋 , = 1𝑚 𝑥 ( ) . (6)

Finally, weighted permutation entropy (WPE) of the trajectory matrix reads: 

𝑊𝑃𝐸(𝑚,𝑇) = − ! 𝑝 𝜋 , log 𝑝 𝜋 , . (7)
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2.2. Multi-scale permutation entropy 

Multi-scale analysis is added to the calculation of PE and WPE in [2]. Time series are analyzed 
at different scales by constructing consecutive coarse–grained time series by averaging a 
successively increasing number of data points in non-overlapping windows: 

𝑦( ) = 1𝑠 ( ) 𝑥 , (8)

where 𝑠 represents the scale factor and 1 ≤ 𝑗 ≤ int(𝑁/𝑠). For a fixed 𝑠, PE and MPE are 

calculated for 𝑦( ) ( / )
 resulting into the multi-scale permutation entropy (MPE) and the 

multi-scale weighted permutation entropy (WMPE). Note that MPE and WMPE are closely 
related to the Shannon information index [19]. 

2.3. Linear regression between MPE and WMPE 

At fixed 𝑚 and 𝑇, the computation of MPE and WMPE is performed at 𝑠 = 1,2, … ,20. Then, 
the slope of the fitting line (produced by the linear regression algorithm) between MPE and 
WMPE is proposed as a new discriminant statistic in [2]. 

3. The selection of optimal embedding parameters 

Chen and Shang [2] follow the recommendations from Bandt and Pompe [1] and use  𝑚 = 3,4, … ,7. However, all time delays are fixed to 1 “for the practical purposes” (as stated in 
[2]). 

It has been reported in a number of studies that non-uniform embedding helps to better reveal 
the properties of nonlinear time series compared to uniform embedding when all time delays are 
equal [15, 10, 9]. Moreover, the dynamical properties of the reconstructed attractor are best 
revealed when the dimension of the delay coordinate space is optimal [14]. 

The role of the optimal time delay can be illustrated by the following two-dimensional 
example. It is well known that the selection of a particular time delay does not influence the 
geometric shape of the reconstructed attractor if the embedded time series is completely random 
[14, 11]. However, the situation is completely different if the embedded time series does represent 
a deterministic process (even if the signal to noise ratio is low). Fig. 1 depicts three different time 
series (a noise-free harmonic function, a numerical solution to the chaotic Rossler system [12], 
and a random signal) embedded at 𝜏 = 1 and at the optimal time delay (determined by the 
algorithm presented in [17]). It can be clearly seen that the geometric shape of the reconstructed 
attractor in the delay coordinate space does depend on the time delay if only the embedded time 
series is not a random time series. 

The purpose of this comment is to demonstrate that the selection of optimal embedding 
parameters is an essential step which must be performed before computing the slope of the fitting 
line between MPE and WMPE. 

3.1. Optimal non-uniform embeddings of two real-world time series 

Let us consider two time series nv515.dat and qbirths.dat (Fig. 2); both are standard time series 
available at The Time Series Data Library [5]. Time series qbirths.dat does contain the number of 
daily births in Quebec (Canada) in the period between January 01, 1977 and December 31, 1990. 
Time series nv515.dat contains normalized tree-ring widths in dimensionless units (each tree-ring 
corresponds to one year vegetation period of the tree). Data are collected at Indian Pilo Garden in 
Nevada (USA) during the year 1980. 
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First of all, we determine the optimal dimension of the delay coordinate space for each 
individual time series. The classical FNN algorithm [6] yields the optimal dimension 𝑚 = 5 for 
both time series. 

 
Fig. 1. The shape of the reconstructed attractor of a harmonic time series at 𝜏 = 1 (part A) and at 𝜏 = 15 

(part B); the solution of the chaotic Rossler system at 𝜏 = 1 (part C) and at 𝜏 = 45 (part D); a  
random time series at 𝜏 = 1 (part E) and at 𝜏 = 42 (part F). All computations are performed  

in the two-dimensional delay coordinate plane (𝑚 = 2). The optimal time delays  
are determined using the algorithm presented in [2] 

 
Fig. 2. Time series nv515.dat (part A) and time series qbirths.dat (part B) available from TSDL [5]  
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Next, optimal time delays are individually determined for both time series by using the 
combinatorial optimization algorithm presented in [17]. This optimization algorithm is based on 
the maximization of the average area of the embedded attractor in all possible planar projections 
[17]. It appears that optimal time delays are: 𝑇 = 14, 14, 33, 12  for time series nv515.dat and 𝑇 = 2, 1, 2, 2  for time series qbirths.dat. 

 
Fig. 3. A schematic diagram illustrating the non-uniform embedding process of time series 𝑓(𝑡) into a 5-

dimensional delay coordinate space with time delays 𝜏 − 𝜏  and coordinate axes 𝐶  – 𝐶  

All possible planar projections of the embedded attractor for time series nv515.dat at 𝜏 = 1; 𝜏 = 1; 𝜏 = 1 and 𝜏 = 1 are depicted in Fig. 3. Analogously, all possible planar projections of 
the embedded attractor for time series nv515.dat at 𝜏 = 14; 𝜏 = 14; 𝜏 = 33 and 𝜏 = 12 are 
depicted in Fig. 4. 

 
Fig. 4. All possible planar projections of the embedded attractor of time series nv515.dat into a 

5-dimensional delay coordinate space with time delays 𝜏 = 1; 𝜏 = 1; 𝜏 = 1 and 𝜏 = 1.  
The notations on the axes correspond to the notation used in Fig. 2 

A straightforward comparison between the shapes of the planar projections of the 
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reconstructed attractors in Fig. 3 and Fig. 4 reveals that the projections of the attractor are more 
compressed along the hypotenuse in Fig. 3 (especially in parts A to D where time delays are equal 
to 1). The dynamical features of the reconstructed attractor are best revealed when the set of 
optimal time delays is used for its reconstruction [17] (Fig. 4). 

 
Fig. 5. All possible planar projections of the embedded attractor of time series nv515.dat into a 

5-dimensional delay coordinate space with optimal time delays 𝜏 = 14; 𝜏 = 14; 𝜏 = 33 and 𝜏 = 12.  
The notations on the axes correspond to the notation used in Fig. 2 

3.2. Considerations about the optimal embedding dimension 

As mentioned previously, the FNN algorithm suggests that the optimal embedding dimension 
for time series nv515.dat and qbirths.dat is 𝑚 = 5. However, the embedding dimension should be 
determined taking into account also the length of the time series [1]. The length of the time series 𝑁 should be much larger than 𝑚! in order for all possible permutations to have a chance to appear 
[1]. As a rule of thumb, the condition 𝑁 5𝑚! is widely adopted in the literature as a convention 
[13]. 

The lengths of time series nv515.dat and qbirths.dat are 4351 and 5113 correspondingly. 
Therefore, the condition 𝑁 5𝑚! is conveniently satisfied for both time series. However, this 
becomes a serious issue when coarse-grained time series are considered (𝑖𝑛𝑡(𝑁/𝑠) 5𝑚!). 
Acceptable and unacceptable embeddings for both time series are depicted in Table 1 and Table 
2. Note that optimal time delays are determined separately for each embedding dimension 𝑚. 

It can be observed that acceptable embeddings for time series nv515.dat at 𝑚 = 5 are achieved 
only if the scale factor 𝑠 is not larger than 6 (Table 1). Analogously, acceptable embeddings for 
time series qbirths.dat at 𝑚 = 5 are achieved only if 𝑠 = 8. In other words, the discriminant 
statistic (linear regression coefficient) between MPE and MPWE becomes an unreliable statistical 
parameter when the scale factor 𝑠 is varied between 1 and 20 (as defined in [2]). 



THE DISCRIMINANT STATISTIC BASED ON MPE-MWPE RELATIONSHIP AND NON-UNIFORM EMBEDDING.  
VILMA PETRAUSKIENE, JURATE RAGULSKIENE, HUAXIN ZHU, JIE WANG, MAOSEN CAO 

156 JOURNAL OF MEASUREMENTS IN ENGINEERING. SEPTEMBER 2022, VOLUME 10, ISSUE 3  

Table 1. Acceptable embeddings for time series nv515.dat. The number of vectors in the trajectory matrix 
must be higher than 5𝑚! (𝑚 is the embedding dimension; 𝑠 is the scale factor of the coarse-grained time 

series; 𝑁 is the length of the original time series). Optimal time delays are: 𝑇 = 44  at 𝑚 = 2;  𝑇 = 44, 50  at 𝑚 = 3; 𝑇 = 46, 45, 50  at 𝑚 = 4; 𝑇 = 14, 14, 33, 12  at 𝑚 = 5;  𝑇 = 28, 23, 22, 46, 23  at 𝑚 = 6. Bold and italic font denote unacceptable embeddings 𝑠  𝑖𝑛𝑡(𝑁 𝑠⁄ )   𝑚 = 2   𝑚 = 3  𝑚 = 4   𝑚 = 5   𝑚 = 6  
1 4351 4307 4257 4210 4278 4209 
2 2176 2132 2082 2035 2103 2034 
3 1450 1406 1356 1309 1377 1308 
4 1088 1044 994 947 1015 946 
5 870 826 776 729 797 728 
6 725 681 631 584 652 583 
7 622 578 528 481 549 480 
8 544 500 450 403 471 402 
9 483 439 389 342 410 341 
10 435 391 341 294 362 293 
11 396 352 302 255 323 254 
12 363 319 269 222 290 221 
13 335 291 241 194 262 193 
14 311 267 217 170 238 169 
15 290 246 196 149 217 148 
16 272 228 178 131 199 130 
17 256 212 162 115 183 114 
18 242 198 148 101 169 100 
19 229 185 135 88 156 87 
20 218 174 124 77 145 76  5𝑚! 10 30 120 600 3600 

Table 2. Acceptable embeddings for time series qbirths.dat. The number of vectors in the trajectory matrix 
must be higher than 5𝑚! (𝑚 is the embedding dimension; 𝑠 is the scale factor of the coarse-grained time 

series; 𝑁 is the length of the original time series). Optimal time delays are: 𝑇 = 3  at 𝑚 = 2;  𝑇 = 3,1  at 𝑚 = 3; 𝑇 = 1,2,2  at 𝑚 = 4; 𝑇 = 2,1,2,2  at 𝑚 = 5; 𝑇 = 2,2,12,3,30  at 𝑚 = 6.  
Bold and italic font denote unacceptable embeddings 𝑠  𝑖𝑛𝑡(𝑁 𝑠⁄ )   𝑚 = 2   𝑚 = 3  𝑚 = 4   𝑚 = 5   𝑚 = 6  

1 5113 5110 5109 5108 5106 5064 
2 2557 2554 2553 2552 2550 2508 
3 1704 1701 1700 1699 1697 1655 
4 1278 1275 1274 1273 1271 1229 
5 1023 1020 1019 1018 1016 974 
6 852 849 848 847 845 803 
7 730 727 726 725 723 681 
8 639 636 635 634 632 590 
9 568 565 564 563 561 519 
10 511 508 507 506 504 462 
11 465 462 461 460 458 416 
12 426 423 422 421 419 377 
13 393 390 389 388 386 344 
14 365 362 361 360 358 316 
15 341 338 337 336 334 292 
16 320 317 316 315 313 217 
17 301 298 297 296 294 252 
18 284 281 280 279 277 235 
19 269 266 265 264 262 220 
20 256 253 252 251 249 207  

5𝑚! 10 30 120 600 3600 
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Without doubts, the optimal embedding dimension 𝑚 = 5 should be used for both time series 
(nv515.dat and qbirths.dat) if only the data records would be long enough. The length of the time 
series must be taken into account when making a decision about the acceptable embedding 
dimension [1]. Table 1 and Table 2 suggest that 𝑚 = 4 would be a good compromise for both 
time series. 

4. The comparison between the discriminant statistic and the modified discriminant statistic 

The algorithm presented in [2] is executed for both time series (nv515.dat and qbirths.dat) at 𝑚 = 5 and 𝑇 = 1,1,1,1 . Relationships between MPE and MPWE are depicted in Fig. 5. The 
discriminant statistic (linear regression coefficient) between MPE and MPWE for time series 
nv515.dat at 𝑇 = 1,1,1,1  is 0.6665 (Fig. 5(a)); linear regression coefficient between MPE and 
MPWE for time series qbirths.dat at 𝑇 = 1, 1, 1, 1  is 0.6639 (Fig. 5(b)). As noted previously, 
such computations are unreliable because the condition 𝑖𝑛𝑡(𝑁/𝑠) 5𝑚! does not hold true for 
all s (gray circles denote such MPE – MPWE points where the condition is broken). 

 
Fig. 6. The discriminant statistic presented in [2] cannot determine a large difference between time series 

nv515.dat and qbirths.dat at 𝑚 = 5. The modified discriminant statistic (based on optimal embedding 
parameters) shows a large difference between time series nv515.dat and qbirths.dat at 𝑚 = 4.  

Linear regressions between MPE and MPWE for nv515.dat and qbirths.dat at 𝑇 = 1,1,1,1 , 𝑚 = 5 are 
shown in parts A and B respectively. Linear regressions between MPE and MPWE for nv515.dat  

(at 𝑇 = 46,45,50 ) and for qbirths.dat (at 𝑇 = 1,2,2 ) at 𝑚 = 4 are shown in parts C and D respectively. 
Gray circles denote unreliable embeddings when the condition 𝑖𝑛𝑡(𝑁/𝑠) 5𝑚! does not hold true 

Computational experiments are continued at 𝑚 = 4 and optimal time delays 𝑇 = 46,45,50  
(nv515.dat) and 𝑇 = 1, 2, 2  (qbirths.dat). The discriminant statistic (linear regression 
coefficient) between MPE and MPWE for time series nv515.dat is 0.5539 (Fig. 5(c)); linear 
regression coefficient between MPE and MPWE for time series qbirths.dat is 0.4728 (Fig. 5(d)). 
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5. Computational simulations with synthetic data 

Computational simulations are continued with the chaotic Rössler system which is a 
paradigmatic model of chaotic dynamics [12]: 

⎩⎪⎨
⎪⎧𝑑𝑥𝑑𝑡 = −𝑦 − 𝑧,              𝑑𝑦𝑑𝑡 = 𝑥 + 𝑎𝑦,                𝑑𝑧𝑑𝑡 = 𝑏 + 𝑧(𝑥 − 𝑐),  (9)

where constants 𝑎, 𝑏, 𝑐 are set to 𝑎 = 0.1, 𝑏 = 0.1, 𝑐 = 14. The Rössler time series is generated by 
integrating the system of equations in Eq. (9) and by selecting every tenth value of 𝑥 (the time 
step is set to 0.01). Different realizations of the discrete Gaussian random noise with zero mean 
are added to the synthetic Rössler time series. Optimal embedding dimensions and optimal time 
lags for the Rössler time series with 10 %, 50 % and 200 % noise levels are shown in Table 3 [16]. 

Table 3. Optimal embedding dimensions, optimal time lags [16], the discriminant statistic, the mean  
of the modified discriminant statistic for the Rössler time series with different noise levels 

Noise 
level 

Optimal 
embedding 
dimension 

Optimal 
time lags 

The discriminant 
statistic 𝛽 

The mean of the 
modified 

discriminant 
statistic 𝛽 

The confidence 
interval 

10 % 6 {37, 45, 17, 38, 6} 0.9474 0.8754 [0.8521; 0.8987] 

50 % 7 {36, 16, 14, 28, 35, 36} 0.9840 0.9987 [0.991; 1.0064] 

200 % 8 {49, 41, 15, 36, 33, 16, 
40} 0.9943 1.0238 [1.0195; 1.0281] 

Linear regressions between MPE and MPWE for the Rössler time series with 10 %, 50 % and 
200 % noise levels (all time lags are set to 1) are shown in Fig. 6(a, c, e). Linear regressions at 
non-uniform embeddings with optimal time lags are shown in Fig. 6(b, d, f). The discriminant 
statistic 𝛽 (reconstructed by using uniform embedding) and the modified discriminant statistic 𝛽 
(reconstructed by using non-uniform embedding) are shown in Table 3. 

Two important conclusions can be done from the results depicted in Table 6. Firstly, the 
modified discriminant statistic 𝛽 is able to determine larger differences between different time 
series. Secondly, the difference between 𝛽 and 𝛽 becomes smaller as the noise level becomes 
larger. This fact does correspond well to the fact that any time delays are equally good (in terms 
of the area occupied by the embedded attractor in the delay coordinate space) if the embedded 
time series is the white noise [17]. 

It is also important to evaluate the uncertainty of the modified discriminant statistic 𝛽. As 
discussed previously, the real-world time series nv515.dat and qbirths.dat are relatively short 
(Fig. 5). However, the chaotic Rössler time series is generated using computational algorithms 
without any restrictions in its length. Therefore, the slope coefficients (the modified discriminant 
statistic 𝛽) is computed ten consecutive times in ten non-overlapping observation windows. The 
confidence interval for 𝛽 using the three-sigma rule (𝑝 = 0.05) is computed according to the results 
of repetitive computational experiments. 

The confidence intervals of 𝛽 for the Rössler time series with 10 % noise, 50 % noise, and 
200 % noise are [0.8521; 0.8987], [0.991; 1.0064], [1.0195; 1.0281] accordingly. It is interesting 
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to observe that the discriminant statistic 𝛽 stays outside the confidence intervals of 𝛽 (Table 3). 
This is a rather natural and expected results because the chaotic Rössler time series is a stationary 
ergodic time series [11]. Of course, the situation would be different if the analyzed time series 
would be non-stationary time series (the value of 𝛽 would depend on the location of the 
observation window). 

 
Fig. 7. Linear regressions between MPE and MPWE for the Rössler time series with 10 %, 50 % and  
200 % noise levels (all time lags are set to 1) are shown in Fig. 6 parts A, C, and E. Linear regressions  

for the Rössler time series with 10 %, 50 % and 200 % noise levels (optimal non-uniform time lags  
are set according to Table 1) are shown in Fig. 6 parts B, D, and F 

6. Discussions 

The main objective of this paper is to demonstrate that the selection of optimal time delay(s) 
is an essential step in the application of discriminant statistic based on the relation between MPE 
and MWPE. 

The objective of time delay selection methods is making components of the reconstructed 
vectors independent as far as possible – yet not too far, in order to keep the information about 
dynamic properties of the embedded time series. Moreover, optimal time lags do also result into 
the maximal area (in average) in all possible planar projections of the embedded attractor. Setting 



THE DISCRIMINANT STATISTIC BASED ON MPE-MWPE RELATIONSHIP AND NON-UNIFORM EMBEDDING.  
VILMA PETRAUSKIENE, JURATE RAGULSKIENE, HUAXIN ZHU, JIE WANG, MAOSEN CAO 

160 JOURNAL OF MEASUREMENTS IN ENGINEERING. SEPTEMBER 2022, VOLUME 10, ISSUE 3  

all time delays to 1 results into higher correlations between the components of the reconstructed 
vectors – what has a direct impact to the computation of MPE and MWPE. Convincing 
demonstrations of these effects are given in Figs. 3 and 4. 

The optimization of time delays can be ignored if the time series is random, or the signal to 
noise ratio is very low. As mentioned previously, the selection of particular time delays is 
meaningless if the embedded time series does represent a random noise. Otherwise, the geometric 
shape of embedded attractors (and the patterns of components of the reconstructed vectors) do 
depend on time delays. 

For example, the shapes of the planar attractors in Fig. 3 are more compressed along the 
diagonal if compared to Fig. 4 (this effect is especially clearly seen in parts A to D). In other 
words, the components of the reconstructed vectors in the trajectory matrix are more correlated in 
Fig. 3 than in Fig. 4. 

This effect is clearly represented in the discriminant statistic based on the relation between 
MPE and MWPE (Fig. 5). The discriminant statistic does not show a big difference between time 
series nv515.dat and qbirths.dat when all time delays are set to 1. The percentage difference 
between the two discriminant statistic values is 0.39 % (0.6665 versus 0.6639). However, the 
discriminant statistic shows a much higher percentage difference when time delays are optimal: 
14.64 % (0.5539 versus 0.4728). 

Spearman's rank correlation coefficient is used to assess how well the relationship between 
MPE and MPWE can be described using a linear function. Note that a linear fit between the two 
variables is better for time series nv515.dat than qbirths.dat (Fig. 5). Short optimal time delays for 
time series qbirths.dat 1, 2, 2  show that independent components of the trajectory matrix cannot 
be separated far away without destroying the information about dynamic properties of the 
embedded time series. Of course, a thorough investigation of the search space of time delays 
would be required to identify how strong is the global maximum 1, 2, 2  in respect to other local 
maximums. That would help to determine how different is this time series from the random noise 
[17]. Nevertheless, the fact that Spearman’s rank correlation coefficient for births.dat is lower than 
for nv515.dat is not astonishing. On the other hand, the comparison of Spearman’s rank correlation 
coefficient for Fig. 5(b) and Fig. 5(d) is meaningless because computational experiments depicted 
in Fig. 5(b) are based on unacceptable embeddings. 

 
Fig. 8. Two-dimensional patterns of PE for nv515.dat time series (𝑚 = 5; 𝑇 = 14, 14, 33, 12). Pairwise 

relaxation of time delays [A] results into six plane images: 14,14,i,j (part A); 14,i,33,j (part B);  
14,i,j,12 (part C); i,14,33,j (part D); i,14,j,12 (part E); i,j,33,12 (part F) ); 𝑖, 𝑗 = 1...50.  

The average of all six parts is shown in part G 

Optimal non-uniform time delays can be also useful for estimating basic ordinal quantifiers 
(PE, WPE, MPE, WMPE) – not only the proposed discriminant statistic based on the relation 
between MPE and WMPE. However, optimal non-uniform time delays are also useful for the 
extraction of much more complex ordinal features (two-dimensional patterns of PE could be a 
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typical application discussed in detail in [16, 7]. 
In other words, feature extraction algorithms based on ordinal quantifiers can be conditionally 

classified into the following multiscale structure according to their complexity. The basic ordinal 
quantifiers (PE, WPE, MPE, WMPE) could be considered as the basic elements of such a 
multiscale feature extraction structure. The discriminant statistic (relating MPE and MWPE) can 
be placed in the middle of this multiscale structure. Finally, two-dimensional patterns of PE would 
be the most complex elements in this structure of ordinal quantifiers. 

 
Fig. 9. Two-dimensional patterns of PE for qbirths.dat time series (𝑚 = 5; 𝑇 = 2, 1, 2, 2). Pairwise 

relaxation of time delays [A] results into six plane images: 2,1,i,j (part A); 2,i,2,j (part B); 2,i,j,2 (part C); 
i,1,2,j (part D); i,1,j,2 (part E); i,j,2,2 (part F) ); 𝑖, 𝑗 = 1...50. The average of all six parts is shown in part G 

Two-dimensional patterns of PE for nv515.dat and qbirths.dat time series are depicted in 
Fig. 7(g) and Fig. 8(g) accordingly (the resolution of those patterns is set to 50×50 pixels). As 
mentioned previously, the optimal embedding dimension for both time series is 𝑚 = 5 (the set of 
optimal time delays for nv515.dat is 𝑇 = 14, 14, 33, 12; the set of optimal time delays for 
qbirths.dat is 𝑇 = 2, 1, 2, 2). Pairwise relaxation of time delays [16] results into six plane images 
for each time series: 14,14,i,j (Fig. 7(a)); 14,i,33,j (Fig. 7(b)); 14,i,j,12 (Fig. 7(c)); i,14,33,j 
(Fig. 7(d)); i,14,j,12 (Fig. 7(e)); i,j,33,12 (Fig. 7(f)); 2,1,i,j (Fig. 8(a)); 2,i,2,j (Fig. 8(b)); 2,i,j,2 
(Fig. 8(c)); i,1,2,j (Fig. 8(d)); i,1,j,2 (Fig. 8(e)); i,j,2,2 (Fig. 8(f)); 𝑖, 𝑗 = 1,...,50. It is shown in [7] 
that deep learning based convolutional neural networks can classify the averaged patterns of PE 
(Fig. 7(g) and Fig. 8(g)) with an extremely high accuracy. Indeed, a naked eye can observe clear 
differences between Fig. 7(g) and Fig. 8(g). 

The main objective of this article is to highlight the fact that non-uniform time delays play a 
central role not only at the top level (in terms of complexity) of ordinal quantifiers. A proper 
assessment of optimal time delays is crucial also in the middle level of this structure (the 
discriminant statistic). The latter observation is even more important because the original 
discriminant statistic presented in [2] does not pay any attention to non-uniform embeddings. 

7. Conclusions 

Some problems regarding the use of non-overlapping windows for coarse graining, for the 
original MSE algorithm, are addressed in [4]. For example, the embedding problems related to the 
length of the time series could be almost completely eliminated if the coarse-grained time series 
would be constructed using overlapping windows. However, such a construction of a 
coarse-grained time series would result into a simple moving average – what would induce another 
problems discussed in [8]. Therefore, the construction of coarse-grained time series in this paper 
is performed using non-overlapping windows only. 

The discriminant statistic presented in [2] is an interesting statistical parameter which can be 
used to characterize time series. However, this discriminant statistic is a result of a statistical 
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algorithm. Therefore, it must be used with care (that statement holds true for any statistical 
algorithm in general). In particular, one should determine the optimal embedding dimension and 
the optimal set of time delays before running this algorithm for any time series. 

In any case, it is always recommended to couple feature extraction algorithms based on ordinal 
quantifiers with the optimal parameters of non-uniform embeddings (the optimal embedding 
dimension and the optimal set of non-uniform time delays). 
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