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Abstract. For maintaining the safe operation of structures, it is necessary to develop SHM 
methods that can detect not only the presence of cracks in the structure but also any alterations of 
its fastening conditions. The current paper presents a method for developing an Artificial 
Intelligent model that can detect if a beam is affected by transverse cracks and at the same time, 
by improper boundary conditions. To this aim, a cantilever steel beam is considered as the in the 
current study. The training data for the artificial neural network (ANN) is created using an original 
analytic method which allows calculating the natural frequency loss caused by the occurrence of 
transverse cracks even if the beam is improperly fastened. The intelligent model is trained by 
employing the MATLAB software and tested using data acquired from numerical simulations. 
The results show very high accuracy in determining the presence of transverse cracks, and the 
capability of detecting the presence and severity of improper clamping conditions. 
Keywords: clamping conditions, machine learning, modal parameters, severity, transverse crack. 

1. Introduction 

The loss of integrity of structures can be attributed not only to the presence of cracks but also 
to joint failure, especially for beam-type structures [1]. The use of modal parameters has been 
proven reliable for the detection and evaluation of transverse cracks in beams by applying several 
techniques like the frequency response function FRF [2], others by considering the derived 
stiffness matrix [3], the local flexibility matrix [4], and flexibility coefficients [5]. Due to the 
nature of engineering structures, preventive maintenance plays a very important role in assuring 
their overall integrity. Structural Health Monitoring methods should also consider, besides the 
degradation of the structure, the possibility of joint loosening [6], which is a type of damage that 
is difficult to model and even more difficult to detect by using traditional non-destructive methods 
such as ultrasonic methods. 

In the current paper, we present an analytic method for determining the frequency loss in 
cantilever beams that are affected by transverse cracks and joint loosening [7] by considering the 
Relative Frequency Shift (RFS) determined by applying an energy loss method developed by our 
research team [8]. After the severity values for the cracks and improper clamping conditions are 
determined, the RFS values are generated for various damage scenarios, and a database is created. 
Considering the modal approach in damage detection, a large amount of data is usually necessary, 
making it difficult to establish the damage signature [5]. To overcome this shortcoming, machine 
learning methods can be applied to develop intelligent damage detection models [6, 9]. 

In this research for analyzing the data and finding a model that is suitable for the detection of 
weak clamping and transverse cracks, the Machine Leaning module integrated into MATLAB 
software is used. After the intelligent model is developed, we tested this approach by considering 
steel cantilever beams having transverse cracks with or without weak clamping. The proposed 
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method is verified by using results obtained involving the finite element method. 

2. RFS database 

The Relative Frequency Shift values for a damaged cantilever are determined for any mode of 
transverse vibration by considering the natural frequency of the structure both in damage and 
undamaged state [10, 11].  

The natural frequency drop is dependent to the crack depth 𝑎 and location 𝑥 along the beam, 
as shown in relation 1, where 𝛾 𝑎  represents the severity of the crack and 𝜙′′ (𝑥) the normalized 
modal curvature: 

Δ𝑓̅ (𝑥,𝑎) = 𝑓 − 𝑓 (𝑥,𝑎)𝑓 = 𝛾(𝑎) 𝜙 (𝑥) . (1)

The relations for the modal curvatures depend on the boundary conditions and are well known; 
examples for different are presented in [12]. Here we discuss the case of the cantilever beam, but 
the method can be likewise applied for double-clamped beams if the right curvature relations for 
the curvatures are used. In earlier studies, see for instance paper [8], our research team developed 
a method to evaluate the severity of transverse cracks. The relation used considers the deflection 
under own weight of the cantilever both in damaged 𝛿 (𝑎) and undamaged state 𝛿 : 

𝛾(𝑎) = 𝛿 (𝑎) − 𝛿𝛿 (𝑎) . (2)

Furthermore, for determining the RFS values in case of an improper fastening condition, we 
consider the weak clamping acting like a transverse crack which is always located at the fixed end 
of the beam [13]. In this case, the frequency drop is: Δ𝑓̅ (0,𝑎 , 𝑥 ,𝑎 ) = 𝛾 (𝑎 ) + 𝛾 (𝑎 ) 𝜙 (𝑥 ) . (3)

In relation Eq. (3) the severity of the clamping condition is denoted 𝛾 (𝑎 ) and the severity of 
the transverse crack 𝛾 (𝑎 ). The method for determining 𝛾 (𝑎 ) is presented in the paper [14]. 

In the current research, we determine the RFS values for the first eight weak-axis vibration 
modes for different damage scenarios, as shown in Fig. 1. For perfect clamping the RFS for a 
damage located on inflection points and at the free end of the beam is 0, hence the horizontal axis 
for this case is marked with Min. ideal clamping. The weaker the clamping, the greater the RFS 
values for the above-mentioned points and consequently the displacement of the axis downward. 

We consider in this study six classes of damaged beams, as described below.  
For the ideal clamping conditions, the RFS minimum and maximum values are close to the 0 

axis, in the light blue region in Fig. 1 and the crack severity is less than 20 %, damage scenario 
that we denote as Case 1. If the crack depth increases, the maximum value of the RFS will shift in 
the dark blue region and the output will be Case 2. If a slight alteration of the clamping condition 
is present, with the maximum severity value of 12 % and at the same time a crack with severity 
below 20 % the 0 axis will be displaced downward in the light red region, and the minimum and 
maximum intervals will increase, thus Case 3 is defined. Case 4 is for the same clamping condition 
but with the maximum RFS value in the dark blue region, thus indicating a more severe transverse 
crack. When the clamping conditions worsens, the 0 axis shifts to the dark red region in Fig. 1 
thus indicating a weak clamping condition with severity over 12 %. For the weak clamping 
scenarios, depending on the crack depth, we can have Case 5 for crack severity up to 20 % and 
Case 6 when the crack severity is over 20 %. 
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Fig. 1. The RFS values for proper and improper clamping 

Table 1. Damage scenarios and considered output 

Damage type Transverse crack 
severity 𝛾 (𝑎 ) [%] Clamping type Weak clamping 𝛾 (𝑎 ) [%] 

Output 
(Case) 

Small damage 10 to 20 Ideal clamping 0 1 
Large damage 20 to 36 Ideal clamping 0 2 
Small damage 10 to 20 Strong clamping 10 to 12 3 
Small damage 10 to 20 Weak clamping 12 to 20 4 
Large damage 20 to 36 Strong clamping 10 to 12 5 
Large damage 20 to 36 Weak clamping 12 to 20 6 

The RFS values are calculated for damage scenarios consisting of transverse cracks with or 
without ideal clamping conditions. These values are used as input data for training the ANN. As 
output, we consider the classification of the damage type, where we consider six classifiers 
numbered from Case 1 to Case 6, describing the presence of a transverse crack, its severity, and 
the clamping condition. All possible outputs are shown in Table 1, relative to Fig. 1. 

3. ANN model 

The intelligent model is developed to detect transverse cracks and alterations in the fastening 
of beams while also evaluating the severity of the overall damage. For this objective, the machine 
learning module from MATLAB software is used. The development process consists of the 
training phase, learning phase and model testing. The type of artificial neural network used is 
feedforward-backpropagation with two hidden layers.  

The feedforward network performs the required mathematical operations, to achieve the 
desired outcome. After performing the initial learning, the error between the resulted and desired 
outcome is determined and the backpropagation algorithm is employed for minimizing the error 
by changing the values of the weights and biases so that the network will give more accurate 
results. To construct a model structure as simple as possible for avoiding overfitting, the Bayesian 
Regularization training function is used. The number of neurons defined for the network is 
established by using Eq. (4): 𝑁 = 𝑁(𝛼 ⋅ (𝑁 + 𝑁 )), (4)
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where: 𝑁  – the number of hidden neurons, 𝑁  – number of samples, 𝑁  – the number of input 
neurons, 𝑁  – the number of output neurons, 𝛼 – scaling factor, which is set to 𝛼 = 100. 

The model is trained by introducing two inputs consisting of the minimum and maximum RFS 
values for each damage case and one output value from 1 to 6, relative to the severity of the 
damage. 

The considered scenarios are determined for a cantilever steel beam that is affected at first only 
by a transverse crack with the severity range 𝛾 (𝑎 ) considered for a crack depth of  𝑎 = 0,1…0,36 ⋅ 𝐻 [mm], where 𝐻 represents the beams thickness. The range of the dataset is 
calculated for the severity values in relation to the crack depth 𝑎, starting with the position of the 
crack near the fixed end at a distance 𝑥 = 2 mm with a step of 𝑠 = 2 mm until it reaches 𝑥 = 998 
mm resulting in 4000 damage signatures just for the cases with one crack and ideal clamping. 
Furthermore, we generate damage scenarios for a beam with a transverse crack that is affected by 
improper clamping also by considering the severity 𝛾 (𝑎 ) as if a transverse crack was present 
exactly at the fixed end. The considered severity values for the damaged cantilever cases with the 
structure affected by weak clamping, are  equal to 10 %, 12 %, 16 % respectively 20 % of the 
beam section. Every damage scenario is denoted as 𝐶 𝑥, 𝛾 (𝑎 ), 𝛾 (𝑎 ) , where 𝑥 represents the 
position of the crack, 𝛾 (𝑎 ) the transverse crack severity and 𝛾 (𝑎 ) the weak clamping severity.  

To evaluate the gravity of the damage the model is trained to give as output an evaluation of 
the amount of damage, as defined in Table 1. 

By considering the damage scenarios presented, we used Eq. (3) to generate a database 
consisting of the RFS values for the first eight weak axis bending vibration modes. As input values 
for the artificial neural network, for each scenario, we have considered two entries, the minimum 
and maximum RFS values, resulting in 20.000 input values. With the help of Eq. (4) we define 
the number of hidden neurons resulting in a network architecture consisting of two hidden layers, 
each containing 33 neurons, as presented in Fig. 2. After the architecture of the network is defined, 
the model is trained and evaluated with the help of the plotted validation graph provided by the 
MATLAB software. 

 
Fig. 2. Artificial neural network architecture 

4. Experimental validation of the intelligent model 

After the training phase, the developed neural network is tested by considering different 
damage scenarios generated through FEM simulations. All experimental values can be found in 
the free available online database [15]. 

We have conducted several simulations, in the ANSYS software, by defining specific damage 
scenarios. The structure considered is a prismatic cantilever beam with the length 𝐿 = 1 m, width 𝐵 = 0.02 m, and thickness 𝐻 = 0.005 m, made of S355 JR steel applied from the ANSYS 
database. It is the same beam as that used for training but the training was made with results 
obtained involving the analytical method. 

The damage scenarios consist of a transverse crack of different depths (severities) and in some 
cases, the beam is also affected by a known degree of weak clamping, comprised between 10 % 
and 20 % of the thickness of the beam. For this purpose, a fine mesh of hexahedral elements with 
a 1 mm maximum edge size is considered. The crack geometry is generated by cutting of material 
using a width of 0.04 mm at the desired location and depth with the Extruded Cut command. For 
the cases with weak clamping, the surface is split by a projection line and the desired clamping 
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alteration is realized by defining the percent of the free surface, marked with red arrows, as 
presented in Fig. 3. A more detailed explanation of the simulation’s configuration is presented in 
the paper [16]. After the modal simulations are performed the natural frequencies for the first eight 
transverse modes of vibrations, for the beam, in an undamaged and damaged state, are recorded 
and the RFS values are calculated using Eq. (1). For all damage scenario the minimum and 
maximum values are given to the neural network and the outcome is evaluated. 

 
Fig. 3. Simulation beam model 

All damage scenarios and the prediction given by the network are shown in Table 2. 
From the results shown, one can observe that all predictions are correct, demonstrating the 

accuracy of the developed method for detecting an alteration in the fastening condition of a beam-
type structure. 

Table 2. Obtained results for the FEM damage scenarios 
Defined 
scenario 

Expected 
output 

Predicted 
output 

Defined 
scenario 

Expected 
output 

Predicted 
Output 

C(81, 12, 0) 1 1 C(81, 10, 20) 4 4 
C(173, 10, 0) 1 1 C(760, 20, 16) 4 4 
C(687, 24, 0) 2 2 C(173, 24, 12) 5 5 
C(760, 36, 0) 2 2 C(687, 32, 10) 5 5 
C(81, 10, 12) 3 3 C(173, 30,16) 6 6 
C(760, 20, 10) 3 3 C(687, 36, 20) 6 6 

5. Conclusions 

In the current paper, the authors propose to develop an intelligent model for detecting 
transverse cracks and the existence of improper clamping in beam-like structures. To this aim, an 
analytical method for generating the training data consisting of the minimum and maximum RFS 
values for each damage scenario is presented. The intelligent model relies on a machine learning 
algorithm that is developed in the MATLAB software. The model is trained to give specific output 
regarding the extent of the damage. From the results presented, the model demonstrates not only 
a high accuracy in detecting the presence of damages but also a precise classification of weak 
clamping and damage severities. The current model could easily be implemented in a more 
extended intelligent algorithm using the method presented in paper [9], thus predicting the severity 
and location of the crack and the presence of weak or strong clamping. 
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