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Abstract. Artificial neural networks are becoming more popular with the development of artificial 
intelligence. These networks require large amounts of data to function effectively, especially in 
the field of computer vision. The quality of an object detector is primarily determined by its 
architecture, but the quality of the data it uses is also important. In this study, we explore the use 
of novel data set enhancement technique to improve the performance of the YOLOv5 object 
detector. Overall, we investigate three methods: first, a novel approach using synthetic object 
replicas to augment the existing real data set without changing the size of the data set; second - 
rotation augmentation data set propagating technique and their symbiosis, third, only one required 
class is supplemented. The solution proposed in this article improves the data set with a help of 
supplementation and augmentation. Lower the influence of the imbalanced data sets by data 
supplementation with synthetic yeast cell replicas. We also determine the average 
supplementation values for the data set to determine how many percent of the data set is most 
effective for the supplementation. 
Keywords: micro-robot, robotic systems, object detection, artificial neural networks, YOLOv5, 
object supplementation, data set augmentation, synthetic object generation. 

1. Introduction 

Computer vision in micro-robotics [1] is a challenging task as images and video streams in 
such settings are usually low resolution and may prove difficult to be used for identifying objects 
of various classes [2], [3]. Furthermore, the gathering of real yeast cell images can be a difficult 
and very time-consuming task as it includes the preparation of yeast solution and manual 
acquisition of data in a controlled environment [4]. Therefore, we explore if a combination of raw 
and supplemented synthetic data can improve the precision of yeast cell detection and ease the 
data preparation process. 

With the recent progress in the field of artificial intelligence [5], new perspectives have arisen 
in numerous directions. One of the most studied and applied topics is connected to computer 
vision-related problems for example in industrial robot control [6], [7]. Even though the precision 
of AI-based computer vision solutions has been remarkably improved in the last decade [8], [9], 
several drawbacks can be observed when the training data is hard to obtain. One of the problems, 
in this case, is connected to imbalanced classes in the training data sets. Such situations can arise 
in many real-world problems, for example, in disease diagnostics as the cases of the disease 
usually are rare compared to healthy samples [10]. Most machine learning algorithms are designed 
to maximize accuracy when the number of samples in each class is about equal. Therefore, 
typically the imbalance in classes leads to comparatively high accuracy in predicting the majority 
class but fails to accurately detect the minority class [11]. Currently, this challenge has been 
tackled by oversampling and different learning techniques [12], generative adversarial networks 
[13], [1], or fully synthetically generated datasets [15], [16]. In this article, we explore how class 
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supplementation with synthetic object replicas can increase the precision of object detection tasks. 
In essence, the problem we are dealing with in this article is connected to these low-ranking classes 
that are poorly detected by the object detector or not detected at all. The aim is to increase the 
detection precision of low-performing classes by supplementing synthetic replicas into existing 
images. Moreover, the research is supplemented by analyzing how the augmentation of synthetic 
yeast cells can contribute to increasing the precision of this task. In addition, the detection 
precision is directly connected to the precision of a micro-robot trajectory, where the key points 
in the trajectory e.g., manipulation position, approach and retreat positions directly depend on the 
results of the yeast cell detection task. 

2. Proposed approach 

2.1. Object replica supplementation 

As many machine learning algorithms are designed to maximize overall accuracy, the minority 
classes tend to achieve remarkably lower results. In this research, the number of underrepresented 
objects in training data sets is artificially increased to improve the accuracy of the object detector. 
The data sets are also additionally augmented to further increase the accuracy. These techniques 
are the basis of this article and complement each other in an accuracy improvement.  

2.2. Synthetic data 

2.2.1. Data generation and augmentation 

For image generation, the free and open-source 3D creation software Blender is used. It 
supports the entirety of the 3D pipeline – modelling, rigging, animation, simulation, rendering, 
compositing and motion tracking, video editing and 2D animation pipeline. 

 
Fig. 1. Synthetic object replica generation process: a) synthetic object preforms,  

b) generated synthetic objects (random scale, rotation) 

The whole generation process can be divided into three phases- creating preforms, alteration 
of said preforms and blurring. All phases of the process are visualized in Fig. 2 using yeast cell 
images as reference. 

In the first phase, visible in Fig. 2(a), the preforms are created similar in size and proportion 
to the real objects seen in real-world data. They are created consisting of smaller points in their 
outline so they could be easily altered in the following phase. 

The second phase, Fig. 2(b), is the alteration of the preform. This is done to make the data 
appear more realistic. The object is altered by many different manipulations in an automated 
process, but to a degree, so that the object would still appear as close to real data as possible.  

The third phase, Fig. 2(c), consists of blurring the object and placing it on the real image. The 
blurring is done to completely blend the two making it appear as real as possible. This can be done 
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in many ways, for example, using algorithms or image editing software. The blurring technique is 
dependent on the specific image generated, so for better results, an object detector that focuses 
more on the shape and relationship of the objects rather than specific colours is to be used. 

 
Fig. 2. Synthetic object replica generation and augmentation process:  

a) first phase, b) second phase, c) third phase 

 
Fig. 3. Block diagram describing the training and validation data set’s augmentation 

Round objects have an advantage over those of different shapes in that when augmented by 
rotation, it can be easily done within their bounding box. In this way, the original size and 
boundary stay the same. The process behind the augmentation of the data set used in this article is 
illustrated in Fig. 3. 

2.2.2. Supplementation 

The process of supplementing synthetic object replicas into real-world images can be 
accomplished through various approaches, including the three-dimensional gravitational method, 
manual insertion, and fully automated supplementation. This paper focuses on the 
three-dimensional gravitational method, which involves several steps carried out in Blender. The 
first step in this method is importing real, labelled images into Blender, as shown in Fig. 4(a, d). 
The labelled objects in these images are then automatically converted into passive 3D objects, 
either in cube or sphere form, as visible in Fig. 4(b, e, c, f). This conversion ensures that the 
synthetic objects don't overlap with the labelled objects, and it also adds a factor of randomness 
to the process. The next step involves adding the synthetic data, which is generated according to 
the approach described in Section 2.2.1. A three-dimensional gravitational method is used, 
synthetic objects are spawned above the image and dropped using gravity simulation. The physics 
engine in Blender calculates the motion of these objects under the influence of gravity, taking into 
account their mass and the force of gravity. The previously extruded, labelled objects in the real 
image ensure that the synthetic ones don’t overlap with them, and the physics simulation adds a 
factor of randomness to the supplementation process. Blender also allows for the customization 
of the physics simulation, including adjusting the strength of gravity, the friction of surfaces, and 
the collision properties of objects. This enables users to fine-tune the physics simulation to achieve 
their desired results. In the final step, the generated data is acquired as an image for further use. 
The imported background image is deleted, leaving only transparent synthetic data. These images 
are then blurred and placed on their respective real images and saved. 

Fig. 4 illustrates the supplementation process using screenshots from Blender. Fig. 4(a) shows 
the original image from the microscope, while Fig. 4(b, c) and (e, f) show the tagged objects in 
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the 3D environment with the boundary beams in cube and sphere form, respectively, stretched 
along the 𝑍 axis. Fig. 4(d, e, f) shows how the 3D environment is used to add object replicas into 
existing images, rotated by 20 degrees along the 𝑥 and 𝑦 axes. 

While the three-dimensional gravitational method is effective, it is not the only approach for 
supplementing synthetic object replicas into real-world images. The manual method requires the 
user to insert each synthetic object replica manually, which is time-consuming. The fully 
automated method, on the other hand, is an algorithmic method that automatically inserts the 
generated synthetic object in free spaces. 

 
Fig. 4. Supplementation process of synthetic object replicas 

2.3. Training setup 

A wide variety of machine learning algorithms are currently available to detect objects in 
images. At the beginning of the study, YOLOv5 was one of the most popular real-time, 
single-stage object detection algorithms with the best AP scores and FPS trade-offs [17], which is 
why it was used for all the following experiments. YOLOv5 is a family of object detection 
architectures and models pretrained on the COCO data set. Training and evaluation were 
performed on Linux OS workstations with A100 GPUs. 

3. Experimental setup 

The experimental setup is connected to an important issue in automated equipment for living 
cell manipulation where the detection of living cells highly dictates the precision of the whole 
system. To perform a manipulation task the end-effector of the automated equipment or, in this 
case, a microrobot, must be positioned close to the cell, therefore exact location of the cell must 
be found, with a typical precision of micrometres. The living cells are mostly placed in growth 
mediums, which are transparent therefore increasing the difficulty of the object detection task. 
Furthermore, the gathering of real yeast cell images for training purposes can be a difficult and 
very time-consuming task. It includes the preparation of a yeast solution, which often requires 
more effort and competencies from the researchers than the research itself. Also, the data has to 
be manually acquired in a controlled environment, which can result in some classes being 
underrepresented, therefore resulting in an overall worse dataset. Yeast cell (Saccharomyces 
cerevisiae) is a very common and cheap live cell material, available in the market. In addition to 
that, yeast cells are very strong mechanically [18] and can survive in harsh conditions; they can 
hibernate in the dry state and revive in favourable ambient conditions. The size of these cells is 
about 5 micrometres, and they are round in shape, therefore our choice falls to these live single-cell 
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organisms. For the training of the manipulation systems and trial of various manipulation methods 
yeast cells seem very suitable objects. 

3.1. Data acquisition 

An original design four-axis micro-robot with scanning electrochemical microscope 
possibilities was used for the experiments. It consists of the following core modules: mechanical 
manipulating system, optical system, motion controller, electrochemical signal reader, and main 
control unit. The main controller, which is realized on a PC, generally controls the system, runs 
the user interface and generates robot movement trajectory and measurement commands. They 
are used by the motion controller and signal reader. Lower-level controllers and devices perform 
the more specific tasks assigned to them. The hardware for this task was the original design of the 
manipulating system with the microscope. The mechanical system of the developed microscope 
has four degrees of freedom. It is based on the kinematic scheme of the typical orthogonal 
manipulator like a 3D printer or similar CNC machine. An optical microscope made from cast 
iron was used as a housing for the device to ensure high thermal stability and sufficient stiffness. 
During the redesign, new precisely controlled drives were installed, simultaneously maintaining 
their minimal position deviation ensured by the precisely machined fixing point on the microscope 
base. As a result, an orthogonal manipulation system with a movable table (𝑥-𝑦 axes) and two 
parallel 𝑧-axes was developed. The first 𝑧-axis is used to control the focal distance of the optical 
microscope. The second one moves the electrode or any sensor or gripper up and down. The 
optical microscope and the measuring electrode are mounted on separate parallel axes due to the 
need for asynchronous motion. The 𝑥 and 𝑦-axis have a resolution of about 1 micrometre and 
control the movements of the table on which the test specimen is placed. 𝑍-axes have a resolution 
of about 0.75 micrometres. The high accuracy and resolution of the drives are ensured by using 
micrometre’s pitch ball-screw drives controlled by stepper motors operating at 1/256 micro-step 
mode and advanced control methods. Therefore, using commercially available modules, relatively 
low-cost components, design, and software solutions proven in other fields and an original control 
and data fusion algorithm, automated scanning of the microscopic size biological or technical 
objects was utilized in the data acquisition process. 

3.2. Yeast cell classes 

The primary class, the highest in priority to detect in this study is the individual class of the 
yeast cell (YC_individual). As a result of biological processes, other classes of these objects are 
derived from this class. The different derivations of these classes are listed in Fig. 5. In essence, 
every combination contains this individual yeast cell, however, we change how we address the 
remaining yeast cells. Overall, the different impacts on the detection results made by the various 
classes are investigated and compared with the results achieved using supplementation of 
underrepresented classes.  

 
Fig. 5. Different breakdowns of the data set from most detailed to the most abstract 
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4. Tests and results 

Three approaches were explored for this research. A supplementation of under-represented 
classes, a supplementation of under-represented classes with rotational augmentation, and a 
supplementation of classes of interest. 

4.1. Data sets 

Data sets are in different ratios, to experimentally evaluate if the ratio has an impact on the 
precision of the object detection. In the beginning, the training data sets consist of 70 raw images 
only. On every iteration, the percentage of supplemented images in the data set is increased by 
10 % until the data set is 100 % supplemented images. The same gradual replacement is also 
applied to the validation data set. In total 200 raw images were used, 70 for training (unaltered, 
raw images), 70 were devoted to supplementation purposes, 30 for validation and 30 for testing. 

4.1.1. Supplementation of under-represented classes with and without rotational 
augmentation 

 
a) Raw image 

 
b) Synthetic image 

 
c) Supplemented image 

Fig. 6. Images for the under-represented classes data set 

Table 1. Objects in data sets for underrepresented classes 
Percent of supplemented images YC_individual YC_parent YC_child YC_group YC_other 

0 % 655 85 85 917 492 
20 % 683 152 152 917 492 
40 % 712 220 220 917 492 
60 % 740 290 290 917 492 
80 % 768 360 360 917 492 

100 % 798 430 430 917 492 

The data set was supplemented with objects from 3 under-represented classes: YC_individual, 
YC_parent, and YC_child. The number of objects per image is two YC_individual objects, five 
YC_parent and five YC_child objects. 

4.1.2. Supplement of classes of interest 

Fig. 7(a) illustrates a raw image from the small-scale objects data set, Fig. 7(b) illustrates an 
image from the small-scale object's data set with supplemented objects, Fig. 7(c) illustrates a raw 
image from the large-scale object's data set and Fig. 7(d) illustrates an image from the large-scale 
object’s data set with supplemented objects. Images were supplemented with objects representing 
the YC_individual class. 
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Fig. 7. Images for classes of interest data set: a) raw image objects,  

b) supplemented objects, c) raw image, d) supplemented objects 

Table 2. Objects in data sets for classes of interest 
Object size = 115×115 pixels 

Small-scale objects data set YC_individual YC_group YC_part Total objects 
Raw data set 140 150 120 410 

Supplemented data set 280 150 120 550 
Object size = 230×230pixels 

Large-scale objects data set YC_individual YC_group YC_part Total objects 
Raw data set 650 1080 470 2200 

Supplemented data set 1350 1080 470 2900 

4.2. Evaluation metrics 

The detection is primarily evaluated using mean Average Precision (mAP) parameters. 
mAP@50 is the mean average precision with an IOU (Intersection Over Union) of 0.5. mAP@50-
95 is the mean average precision with an IOU of 0.5 with step 0.05 till 0.95. Precision = True 
Positive / (True Positives + False Positives). Recall = True Positives / (True Positives + False 
Negative). Metrics like mAP@50 and mAP@50-95 allow to quickly see improvements and give 
a complete picture of the effectiveness of data sets [19]. mAP@50 and mAP@50-95 are absolute 
metrics, while precision and recall are relative metrics. mAP@50 is the official VOC [20] metric 
and mAP@50-95 is the official COCO metric [21]. 

4.3. Results 

To train and test the effects of supplementation, the training and validation data sets were also 
supplemented and augmented by rotation. In such a way as to verify and subtract a single set of 
data. In total 3 subsets were evaluated to study different aspects and respective results of the 
supplementation. For supplementation of classes of interest, two data sets of objects of various 
sizes (small-scale and large-scale objects data sets) were also studied, and YOLO models were 
trained and evaluated.  

4.3.1. Supplementation of under-represented classes 

Fig. 8 illustrates the achieved results of the data set supplementation with object replicas of 
underrepresented classes with the metric mAP@50. Supplementation without rotation 
augmentation is illustrated with dashed lines and data with 5-time rotation augmentation with 
continuous lines. Supplementation was done with a step of 10 %. Even though on average the 
precision increase is observed through all the classes when the rotational augmentation is applied, 
the highest precision increase can be observed for the under-represented classes. 

Fig. 9 illustrates the achieved results of the data set supplementation with synthetic object 
replicas of underrepresented classes such as YC_individual, YC_parent, and YC_child with the 
metric mAP@50-95. The validation dataset was also supplemented. The supplementation step 
was 20 %. All the variations when the validation data set is supplemented with synthetically 
generated yeast cells show higher precision ratings when compared to the baseline where no 
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training nor the validation data was supplemented. 

 
Fig. 8. mAP@50 for detecting objects with 5 classes, without rotation augmentation,  

with rotation augmentation = x5 

 
Fig. 9. Average results at mAP@50-95 for validation data set supplemented by step of 20 percent 

4.3.2. Results supplementation of classes of interest 

This subsection describes the achieved results of an approach where only objects in the class 
of interest are supplemented. The primary class, that is the highest priority to detect is the yeast 
cell individual, we called it YC_individual. There are also two other classes, YC_group, where 
multiple yeast cells are close together and YC_part for partially visible yeast cells. 
Supplementation is only done for the YC_individual class. The distribution of classes is shown in 
Fig. 5 and in Table 2.  

 
Fig. 10. mAP@50 for detecting objects with 3 classes 
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Fig. 10 illustrates the achieved results of the experiment where real-world images were 
supplemented with synthetic yeast cell replicas, with the supplementation step of 10 %. Solid lines 
are for the results of the large-scale object dataset, however, the dashed lines are from the results 
of the small-scale object data set, thus the mean results are illustrated with grey lines. Overall, the 
improvement is visible from the first supplementation step. Notably, the large-scale dataset 
achieved a remarkably higher precision rating than the small-scale dataset. 

5. Conclusions 

Imbalanced data sets can lead to decreased detection precision in the minority classes. In real-
world scenarios, such imbalance in data set classes is a well-known problem, and the possible 
solutions can vary across different use cases. Data sets that require primary detection of one of the 
classes are also characteristic. In the experiments performed in this article, we approach these 
problems by supplementing real data with synthetically generated object replicas. 

For small-scale data sets, supplementation with synthetic object replicas is a difficult and time-
consuming task. Small-scale data sets require a careful, almost individual approach to 
supplementing each image with object replicas for good results. The supplemented images must 
be as realistic as possible for the best possible results. The smaller the objects are in the data sets, 
the greater the number of supplemented objects should be for better results. Supplementing a data 
set of large-scale objects with synthetic object replicas is a much more efficient task and the results 
are also more rewarding from a smaller amount of supplemented object replicas. 

In the experimental setup, we test our approach on yeast cells. As it is rather difficult to obtain 
real yeast cell images, such imbalance in the data sets naturally arises, however, the precision of 
the detection of these cells should be equal among all the classes. In experiments with real-world 
data, the imbalance is observed and, thus, the detection precision for minority classes is rather 
poor. By supplementing the real-world data with additional synthetic objects from classes that 
originally have been underrepresented we observe an increase in the overall precision of object 
detection. The study found that supplementing the data with underrepresented classes and objects, 
as well as using rotational augmentation, improved the precision of the object detection task. The 
improvement was greater for the data set that included rotational augmentation. In cases where 
the data was not augmented and was small, increasing the validation data set with supplemented 
images had a significant impact on the improvement. However, when the data set was larger, the 
effect of supplementing the validation data set was less pronounced. Overall, the supplementation 
and augmentation techniques were effective for all data classes and data sets. 

Also, precision improvements were achieved when only the class of interest was 
supplemented. With the supplementation step of 10 %, improvements were observed in each step 
of the supplementation. Adding synthetic data to real data requires testing to find the peak of 
precision, as adding more synthetic images can result in lower precision. Even though the 
performed tests have been described with the yeast cells, the proposed approach is object agnostic 
and can be extended to different use cases by respective image generation. Overall, in this study, 
we have achieved more precise object detection which serves for increased precision of 
microrobot trajectory key points. 
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