

 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635 113

Test case simplification based on coupling metrics in
software bug location

Xiaohui Hu
School of Information Engineering, Jiangxi Vocational College of Mechanical and Electrical Technology,
Nanchang 330013, China
E-mail: hu17775960084@126.com
Received 23 December 2022; accepted 15 May 2023; published online 21 June 2023
DOI https://doi.org/10.21595/jme.2023.23133

Copyright © 2023 Xiaohui Hu. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Software test cases are one of the most critical aspects of software testing in the product
development process. As software products are updated several times, the same test requirement
may be covered by multiple test cases, so this aspect is often redundant, yet the approximate test
case set has an impact on its error detection rate. This study proposes the idea of using redundant
test cases in software error location, introduces a coupling metric, analyses its program slicing and
establishes a second coverage criterion in order to balance the relationship between the reduced
test suite and the false detection rate the test case set. The results show that the size of test set and
the number of error detection by the Ruby On Rails (ROR) method used in this study are larger
than those of other commonly used reduction algorithms. The test suite has the lowest error
detection loss rate, with an average of 17.96 % across the six test case sets. The highest error
detection capability of individual test cases was found in the reduced test set, with a mean value
of 90.63 % in the test set. The method also has the highest average reduction efficiency of 91.05 %.
Compared with other simplification methods, the research method has a better balance between
the size and false detection rate of the reduced test suite and the advantages of simplification.
Keywords: error location, coupling metrics, test case set simplification, error detection rate,
software debugging.

1. Introduction

With the boom in computer technology, software testing has become an important way of
ensuring software quality in the software industry, throughout the software maintenance and
development cycle [1-2]. Software errors can occur in a variety of places, and the main method of
locating errors based on program slicing is to analyse the program’s data flow and control flow to
decompose the program to be tested and identify statements related to a subset of the program's
behaviour, thus narrowing down the scope of statement checking [3]. In addition, in the actual
software testing process, redundancies in test suite can occur due to product updates and therefore
test suite needs to be reduced. Maintaining a balanced relationship between the impact of test case
set simplification on its error detection rate is an important study today [4]. It has been shown that
software programs are prone to errors at locations with high coupling and that applying coupling
to test case set simplification can help improve the error detection rate of test case sets, but existing
coupling measures based on program slices do not distinguish between different types of nodes in
the coupled common parts [5-6]. To this end, an improved coupling metric based on program
slicing in software error location is proposed, aiming to improve the efficiency of test case set
reduction while better balancing its relationship with the size of the reduced test case set.

2. Related work

As software testing has received more and more attention in the development of software
products, software use case testing has also received sufficient attention. As software products
need to be updated and upgraded several times, the number of test cases also increases. Therefore,
how to improve the parsimony rate of the test case set and achieve a balance between it and the

https://crossmark.crossref.org/dialog/?doi=10.21595/jme.2023.23133&domain=pdf&date_stamp=2023-06-21

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

114 JOURNAL OF MEASUREMENTS IN ENGINEERING. JUNE 2023, VOLUME 11, ISSUE 2

parsimony size of the test case set has become a hot topic of research today. Tempero E. et al.
proposed a coupling model that relies on the concretization of concepts as the basic unit in order
to solve the problem caused by incomplete metric definitions, and experiments have shown the
superiority of this model [7]. Dutta et al. proposed a mutation-based fault location technique that
can identify incorrect statements by calculating the proximity to different mutants [8]. Yan et al.
established a framework based on entropy, which was called Efilter and could filter untagged test
cases to solve the problem of filtering untagged test cases. The efficiency of fault location was
significantly improved with the use of Efilter [9]. Pradhan et al. proposed to determine the priority
of test cases by defining the fault detection capability and test case dependency score, and by
considering the results of run-time test case execution in order to obtain higher fault detection
capability. The results showed that the method is effective and applicable [10]. Yong et al.
determine the priority of test cases by defining the fault detection capability and test case
dependency score, and by considering the results of run-time test case execution to reduce the
execution cost of mutation-based error location techniques, a mutation execution method was
proposed to prioritize implementation of variants and test suite. The experimental proved that this
method can effectively reduce the execution cost of mutation tests while ensuring the error
location rate [11].

Kumar L. et al. scholars put forward a framework of software fault prediction model based on
cost and efficiency evaluation of testing phase, and experimental results showed that the model
selected the best set of source code metrics for fault prediction [12]. Hellhake et al. researchers
analysed the relationship that was between coupling measures of different components and
interfaces and fault distribution in automobile system integration test. There is a positive
correlation between fault propensity, the results verified that coupling is a valid indicator of fault
propensity [13]. Yu et al. scholars proposed a new process metric based on evolutionary data of
object-oriented programs, from the historical package defect rate and the degree of class variation,
and the results verified that the method can improve the performance of evolution-oriented defect
prediction [14]. Chiang et al. proposed an algorithm to improve fault detection. A four-weighted
combination algorithm and a linear programming model were proposed to improve the
effectiveness of fault detection. Experimental showed the fault detection rate of the software was
improved, and the test set is significantly reduced [15]. Rathee et al. proposed an artificial
intelligence metaheuristic-based algorithm to optimise the test sequence in order to reduce the
time, effort, and redundancy used to design an optimised test sequence. The algorithm was shown
to be effective [16].

The research on test case reduction techniques by scholars at home and abroad shows that there
are relatively few research results on their use in software error location. As it is necessary to
reduce the test suite, the change in size of the test suite will affect the error detection rate, the
coupling metric can help the error detection rate, and the high coupling position can help detect
software errors. The study therefore proposes a coupling metric-based test case reduction method
for software error location, aiming to improve the reduction rate of the test suite, and balance the
change of test suite size after reduction.

3. A Study of test case minimization methods based on coupling metrics in software error
location

3.1. Coupling metrics and test case set simplification methods in software error location

Software error location is a dynamic software debugging process in which the tester usually
needs to record information generated by a particular test suite during the runtime of various
program entities and locate the location of software errors based on this information [17-18].
During the run of the software, the information collected may be the number of times a program
entity has been executed by a test case, covered by a test case. Then, according to different
program spectrum formulas, this information is used to calculate the suspiciousness of the

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635 115

program entity, which are ranked, and the program statements are examined one at a time in rank
order until an erroneous statement is found [19]. Firstly, the program to be tested is represented
by 𝑃 and the entity representation formula for 𝑃 is given in Eq. (1): 𝑃 = 𝑆 , 𝑆 , 𝑆 , … , 𝑆 , (1)

where, 𝑆 can be interpreted in various ways, such as a statement, method, class or a code fragment
in a program. The program entity under study is the statement in the test program 𝑃 and 𝑛
represent the number of rows. The test suite of the program to be tested is shown in Eq. (2): 𝑇 = 𝑡 , 𝑡 , 𝑡 , … , 𝑡 , (2)

where, 𝑚 represents the number of test suite, where 1 ≤ 𝑖 ≤ 𝑚 and 𝑡 represent the 𝑖 test case in
the test case set. The result of the test case execution is shown in Eq. (3): 𝑅 = 𝑟 , 𝑟 , 𝑟 , … , 𝑟 , (3)

where, 𝑟 indicates the result of the first test case, where 1 ≤ 𝑖 ≤ 𝑚. If 𝑟 = 1, the output of the 𝑖
test case is different from the expected output, which means that the result of the test case fails.
Conversely, if 𝑟 = 0 indicates that the test suite was successful. The program spectrum can be
expressed as a coverage matrix, as in Eq. (4): 𝑀 = 𝑀 , (4)

where, 𝑀 represents the matrix of coverage relationships between the set of test cases and program
entities, and 𝑀 is the matrix of 𝑚 × 𝑛. 𝑀 the first row of 𝑖 indicates that when the 𝑖 test case is
executed, whether the statements in 𝑃 are executed or not is determined by the coverage vector of
the test case. The 𝑗 column in 𝑀 can be represented as the execution of the 𝑗 statement in 𝑃 by the
test cases. If 𝑀 = 1, then the 𝑖 test case executes to the 𝑗 executable code line. If 𝑀 = 0, the 𝑖
test case is not executed to the 𝑗 line of executable code during the run.

Software metrics are studied in a wide range of ways, and software metrics can be divided into
structure-oriented metrics, object-oriented metrics, methods, classes and objects are modules in
object-oriented programming, and software design metrics are a node of object-oriented and
process-oriented metrics. Coupling is a key point in the metrics. There are five types of coupling,
which represent two types of interdependent metrics, namely inherited coupling, combined
coupling, aggregated coupling, associative coupling, and usage coupling [20]. The coupling
information between various classes includes the number of access attributes, the number of
different methods called, the number of return types, and the number of parameters passed. Based
on these four parameters the dependency between the client class and the service class can be
measured by integrating the four parameters into one expression using "⋅ " and using this to
express the coupling between the classes 𝐶 and 𝐶 as in Eq. (5): 𝐶𝑀 = 𝐶 ,𝐶 = 𝑉 ⋅ 𝑀 ⋅ 𝑅 ⋅ 𝑃, (5)

where, 𝑉 indicates the number of common variables of class 𝐶 used between classes 𝐶 and 𝑀
indicates the number of methods of class 𝐶 called by class. 𝐶 𝑅 indicates the number of different
return types that occur in and 𝑀𝑃 indicates the number of different parameters that occur in 𝑀.
The normalized estimation method for a complexity 𝐶𝑝𝑙𝑥 is denoted 𝐶𝑝𝑙𝑥 and can be
expressed in its normalized form by Eq. (6):

𝐶𝑝𝑙𝑥 𝑖, 𝑗 = 𝐶𝑝𝑙𝑥 𝑖, 𝑗𝐶𝑝𝑙𝑥 − 𝐶𝑝𝑙𝑥 , (6)

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

116 JOURNAL OF MEASUREMENTS IN ENGINEERING. JUNE 2023, VOLUME 11, ISSUE 2

where, 𝐶𝑝𝑙𝑥 𝑖, 𝑗 represents the complexity information matrix of the test pile, and the rows and
columns represent the dependencies of each class𝑖 and class on class𝑗 respectively. Where 𝐶𝑝𝑙𝑥 = 𝑀𝑖𝑛 𝐶𝑝𝑙𝑥 𝑖, 𝑗 , 𝑖, 𝑗 = 1,2,⋯ , 𝐶𝑝𝑙𝑥 = 𝑀𝑎𝑥 𝐶𝑝𝑙𝑥 𝑖, 𝑗 , 𝑖, 𝑗 = 1,2,⋯ . A test pile
is estimated as shown in Eq. (7): 𝑆𝐶𝑝𝑙𝑥 𝑖, 𝑗 = 𝑊 × 𝑉 𝑖, 𝑗 + 𝑊 × 𝑀 𝑖, 𝑗 + 𝑊 × 𝑅 𝑖, 𝑗 + 𝑊 × 𝑃 𝑖, 𝑗 , (7)

where, 𝑊 , 𝑊 , 𝑊 , 𝑊 represents the weights and 𝑊 + 𝑊 + 𝑊 + 𝑊 = 1. 𝑉 𝑖, 𝑗 , 𝑀 𝑖, 𝑗
is calculated according to Eq. (8):

⎩⎪⎨
⎪⎧𝑉 𝑖, 𝑗 = 𝑉 𝑖, 𝑗𝑉 − 𝑉 ,𝑀 𝑖, 𝑗 = 𝑀 𝑖, 𝑗𝑀 −𝑀 , (8)

where, the values of 𝑉 𝑖, 𝑗 , 𝑀 𝑖, 𝑗 are obtained with the opener tool SOOT, and the values of 𝑉 , 𝑉 and 𝑀 , 𝑀 are obtained with the opener tool SOOT, representing the maximum
and minimum values of the attribute and method coupling matrix, respectively, of the statistical
data. Respectively, constituted by the statistical data. 𝑅 𝑖, 𝑗 , 𝑃 𝑖, 𝑗 is calculated according to
Eq. (9):

⎩⎪⎨
⎪⎧𝑅 𝑖, 𝑗 = 𝑅 𝑖, 𝑗𝑅 − 𝑅 ,𝑃 𝑖, 𝑗 = 𝑃 𝑖, 𝑗𝑃 − 𝑃 , (9)

where, the values of 𝑅 𝑖, 𝑗 , 𝑃 𝑖, 𝑗 are obtained through the opener tool SOOT, and the values of 𝑅 , 𝑅 and 𝑃 , 𝑃 are obtained through the opener tool SOOT, representing the
maximum and minimum values of the return value coupling matrix and the parameter coupling
matrix constituted by the statistical data, respectively. For the weights 𝑊 , 𝑊 , 𝑊 , 𝑊 , the study
proposes a calculation method as in Eq. (10):

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑊 = 𝑉𝑉 = 𝑀 + 𝑅 + 𝑃 ,𝑊 = 𝑀𝑉 = 𝑀 + 𝑅 + 𝑃 ,𝑊 = 𝑅𝑉 = 𝑀 + 𝑅 + 𝑃 ,𝑊 = 𝑃𝑉 = 𝑀 + 𝑅 + 𝑃 .

 (10)

For a given test sequence 𝑜, breaking the dependent edge 𝑑, the overall test stub complexity
for this test sequence is calculated as in Eq. (11):

𝑂𝐶𝑝𝑙𝑥 𝑜 = 𝑆𝐶𝑝𝑙𝑥 𝑘 . (11)

There are two main types of use case set simplification methods: direct simplification of the

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635 117

test suite, and analysis of each test requirement first to find out its interconnection, and then
simplification of the test case based on its connection line about the test requirement [21]. The
requirements-based simplification algorithm requires first delineating the relationships between
the test requirements, as shown in Fig. 1.

1r

4r
2r 3r

Fig. 1. Relationship division between test requirements

As in Fig. 1, if the test requirement contains 𝑟 𝑟 , then any test case covering the test
requirement 𝑟 will cover 𝑟 , and the test style will only test the requirement 𝑟 . If the test
requirements 𝑟 and are mutually inclusive, then 𝑟 𝑟 and 𝑟 are said to be equivalent test
requirements and only one of them needs to be tested. If there is an overlap between the test
requirements 𝑟 and, then the intersection of and 𝑟 𝑟 𝑟 is tested as one test requirement and 𝑟 and 𝑟 are removed. If they are independent of each other, then there is no intersection between their
test cases and it is not possible to simplify the test requirements. After them have been reduced,
the resulting test requirements and test cases are then reduced according to the hairpin algorithm.

3.2. Test case set simplification based on improved coupling metrics in software error
location

After the test cases have been reduced, a key issue to consider is the test suite error detection
rate. Numerous studies have shown that the error detection capability of the test suite is
proportional to the size of the test case set, and increases with its increase [22-23]. Therefore, it is
essential to ensure the error detection rate of the test suite when it is reduced. Traditional methods
of computing coupling are based on information flow metrics, in contrast to slice-based metrics
which are more accurate [24]. Mark Harman proposes to use slicing to compute slices for each
primary variable in method 𝑚, and defines 𝑓𝜏 to denote the flow from 𝑝 into a function 𝐹𝑙𝑜𝑤 .
Its formula for calculating the coupling, as in Eq. (12):

𝑓𝜏 = 𝜓 ⋃ 𝑆𝑆 𝑝, 𝑣 ,𝐸 𝑓 − 𝑁 𝑓∈ 𝑁 𝑝 − 𝑁 𝑓 , (12)

where, 𝐸 reference program, 𝑁 indicates the number of slice statements. 𝜓 represents the set
potential operation (cardinalit), i.e. the operation that gets the number of elements in the collection
takes the number of elements in a set. 𝑓𝑓 , definition stream represents the stream from
functions 𝑓 to 𝑔, where 𝑝 represents the program containing 𝑓,𝑔. 𝑓𝑓 , is calculated as Eq. (13):

𝑓𝑓 , = 𝜓 ⋃ 𝑆𝑆 𝑝, 𝑣 ,𝐸 𝑔 |𝑁 𝑓∈ 𝑁 𝑓 . (13)

Define 𝐶 , to represent the coupling between the functions 𝑓 and 𝑔, which is calculated as

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

118 JOURNAL OF MEASUREMENTS IN ENGINEERING. JUNE 2023, VOLUME 11, ISSUE 2

in Eq. (14):

𝐶 , = 𝑓𝑓 , .𝑁 𝑓 + 𝑓 , .𝑁 𝑔𝑁 𝑓 .𝑁 𝑔 . (14)

The coupling that exists between different modules in an object-oriented program is analysed
by replacing with 𝐵𝑆 𝑃, 𝑐 ,𝑉 𝑐 𝐹𝑆 𝑃, 𝑐 ,𝑉 𝑐 and 𝑖 = 1,2 respectively. This is shown in
Eq. (15): 𝐼𝐹𝑙𝑜𝑤 𝑐 , 𝑐 = 𝑆 < 𝑃, 𝑐 ,𝑉 𝑐 > ∩ 𝑆 𝑃, 𝑐 ,𝑉 𝑐 . (15)

In Eq. (15), 𝐵𝑆 𝑃, 𝑐 ,𝑉 𝑐 represents a backward slice, i.e. an utterance that is influenced by
the variable 𝑉 𝑐 . 𝐹𝑆 𝑃, 𝑐 ,𝑉 𝑐 represents a forward slice, i.e. a statement that is influenced
by the variable 𝑉 𝑐 . If Eq. (15) is not ∅, then there is a coupling between 𝑐 and 𝑐 , which leads
to a formula as in Eq. (16):

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑣 , 𝑣 = 𝜓 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑣 ∩ 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑣𝜓 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑣 ∪ 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑣 , (16)

where, 𝐿, 𝑣 denotes the slicing criterion, 𝐿 denotes the statement number of the slicing point in
the program, 𝑣 denotes the attribute variable there, and 0 ≤ 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑣 , 𝑣 ≤ 1. 𝑚 , 𝑚 the
coupling between the two is calculated as shown in Eq. (17):

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑚 ,𝑚 = 𝜓 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 , 𝑣 ∩ 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 ,𝑣𝜓 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 , 𝑣 ∪ 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 ,𝑣 , (17)

where, 𝐿,𝑚, 𝑣 denotes the slicing criterion, 𝑚 denotes the method of slicing out, and 𝑣
represents the significant variable or set of variables for 𝑚. The study analyses the backward
slicing of 𝑠𝑙𝑖𝑐𝑒 𝐿,𝑚, 𝑣 in Eq. (17) and finds that it does not explore the different types of
statement nodes in the common part of the slices in depth. For example, Fig. 2 shows the slice
diagram corresponding to the method 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 and the method 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 in a program.

S22 S23 S25 S26

S4S2 S18

S19 S20

S13 S16

S10

S12

S6 S8

S15

ME21 ME24

ME4 ME17 ME3

ME11 ME14

ME9ME5 ME7

Fig. 2. Slice corresponding to method 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 in the program

As shown in Fig. 2, it based on program slicing and found the coupling of the method pairs 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 in this program by first computing the slices of these two methods
with the slicing criteria 21, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1, 𝑎, 𝑏, 𝑒,𝑓 and 24, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛4, 𝑐,𝑑,𝑔,ℎ

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635 119

respectively 21, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1, 𝑎, 𝑏, 𝑒,𝑓 . The result of the slicing of the graph consists of the
remaining nodes 25, 24, 26, 3, 4 with the nodes removed in Fig. 2 24, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛4, 𝑐,𝑑,𝑔,ℎ .
The result of the slicing of the graph consists of the remaining nodes 21, 22, 23, 1, 2 after removing
the nodes in that graph. The intersection of the two slicing criteria is a directed graph with
statement 17 as the root, and node 18 is used as a judgment statement, with a true result executing
statement 19. Conversely, statement 20 is executed. If 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 executes statement 18 as true
during execution and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 executes statement 18 as false during execution, the two
methods affect only statements 17, 18, 9, 10, and must jointly affect statements 9, 10, 17, 18.

The coupling calculation must consider all possible intersections of slices between two
modules and distinguish their nodes by the probability of being affected. In case of coupling, the
intersection of slices must be represented separately for nodes that will be executed and for nodes
that are likely to be executed. Finding the set of nodes that must be executed when the method 𝑚1
is coupled with the method 𝑚2, the remaining node 𝐺 − 𝑝𝑑𝑜𝑚 𝑁 in 𝐺 represents the node that
has a certain probability of being affected, thus transforming Eq. (17) into Eq. (18):

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑚 ,𝑚 = 𝜓 𝑝𝑑𝑜𝑚 𝑁 + 𝑟𝜓 𝐺 − 𝑝𝑜𝑑𝑚 𝑁𝜓 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 , 𝑣 ∪ 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 ,𝑣 . (18)

In Eq. (18), 𝑟 represents the average probability that the remaining nodes in the slice graph
intersection 𝐺 are affected. The probability of each point in 𝐺 − 𝑝𝑑𝑜𝑚 𝑁 being affected is 0.5.
To simplify the process of calculating the metric value, the study takes to be 0.5. The improved
coupling calculation is more rigorous and better represents the degree of coupling between
modules, as in Eq. (19):

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑚 ,𝑚 = 4 + 1/2 16 − 426 = 513. (19)

In order to the relationship between the size of the test suite and its error detection rate, it has
been proposed to add redundant test cases to the test suite [15]. The GE reduction algorithm was
chosen to reduce the test suite through the first coverage standard, and then retain the second
coverage standard for the generated redundant test cases. This reduced scale of test suite and
ensured its error detection capability, as shown in Fig. 3.

Fig. 3. Algorithm flow of adding redundant test case set

It can be seen from Fig. 3, first, select the basic test case from the test suite 𝑇 to add to the
reduced set 𝑇 , and to remove the test requirements met by these test cases from 𝑅 . If the test
case 𝑡 can meet the test requirement that has been removed, it will be added to the redundant test

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

120 JOURNAL OF MEASUREMENTS IN ENGINEERING. JUNE 2023, VOLUME 11, ISSUE 2

cases to be retained at 𝑇 . The second step is to select the redundant test cases from 𝑇 using the
second coverage criterion and add them to 𝑇 . The test case from 𝑇 that meets the highest number
of test requirements from the second coverage criterion is selected and added to 𝑡 𝑇 . Then delete
the test conditions met by 𝑡 . Until the remaining test suite at 𝑇 do not meet the test requirements
for the new second coverage criterion, empty 𝑇 . Finally go to the next step and use the greedy
algorithm [25-26] on the test case set 𝑇. If the first sub-criterion is not fully covered, find the test
case that can meet the highest number of remaining test conditions at 𝑡 and add it to 𝑇 , while
removing the test conditions from the first coverage criterion covered by 𝑡. If all the requirements
met by an 𝑡∗ are removed, it is added to 𝑇 . Enter the second step if the second coverage criterion
is not fully covered [27-28]. Conversely, the last step continues until the test requirements in the
first coverage criterion are completely covered.

4. Analysis of experimental results of coupling metric-based test case simplification in
software error location

The experiments start with the implementation of a program slicing and coupling metric tool,
with the program slicing part starting with the analysis of the source program lexicography and
syntax. The experiments use the open source compiler generation tool ANTLR, which is able to
automatically generate a compiler based on a given grammar. The grammar of the auxiliary code
segment was then embedded in ANTLR to construct a lexical and syntactic analyser for the text.
In this experiment 700 test cases satisfying branch coverage were constructed and the satisfaction
relationship between each test case and the score coverage was maintained during the construction
process. This group of test cases is called test case library, which has a high level of redundancy.
A group of six test cases is then constructed from the test case library bms0, bms0 − 0.1, bms0 − 0.2, bms0 − 0.3, bms0 − 0.4, bms0 − 0.5. During construction, the test cases from the
library are then selected from 𝛼 and added to 𝑇. If not all of the scores covered by 𝛼 are met, then
select test cases from the library that meet other conditions and added to 𝑇 until all requirements
are met. This experiment compared the coupling metric-based test case set reduction algorithm
with four other reduction algorithms, as shown in Fig. 4.

Fig. 4. Experimental process of reduction algorithm comparison

As shown in Fig. 4, fractional coverage was used as the first coverage criterion. And use each
of the five reduction algorithms to reduce each group of test cases MINbr + cp The GE algorithm
can reduce the test suite, RSR was reduced using the add redundant test cases algorithm, and the
second coverage criterion was unstated coverage RUR. The algorithm for adding redundant test
cases was used, the second coverage criterion was all-useful coverage, and the ATAC tool was
used. RTR the second coverage criterion was not analysed for critical points in the program.

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635 121

RORA coupling metric based test case set simplification algorithm was able to simplify the
algorithm for adding test cases, and the second coverage criterion was not used to analyse the
coupling paths obtained by the algorithms with higher coupling in this study. Experiments were
conducted on the definition of error points in the program, and various methods were used to
simplify 𝑇 to obtain the test suite 𝑇 and to record the number of test cases and the number of
tests contained in 𝑇 . The raw data for each test case set 𝑇 is shown in Fig. 5.

18.32

34.45

56.32

82.2

104.78

134.27
11.13

14.27

16.65
17.82

19.34

21.25
1

10

100

1000
bms 0

bms0-0.1

bms0-0.2

bms0-0.3

bms0-0.4

bms0-0.5

Number of test case sets Error detection quantity

Fig. 5. Raw data of each test case set

According to Fig. 5, there are six test case sets 𝑇 and each 𝑇 corresponds to its own number of
use case sets and number of error checks, the number of which increases with each use case set.
The number of test cases ranged from 18.32-134.27 and the number of error checks ranged from
11.13-21.25. The experiments were conducted eight times for each set of 𝑇 using the five methods,
and the average of the experiments was taken. Fig. 6 shows scale of test case set and number of
errors detected after reduction of five methods.

a) Number of test cases and number of error

detections after reduction of MINIbr+cp, RUR, RSP

b) Number of test cases and number of error

detections after reduction of RTS, ROR
Fig. 6. Scale of test suite and number of error detection after reduction by five methods

As shown in Fig. 6, the ROR simplification algorithm used in this study had more test case
sets in all six test case sets than the other four simplification methods, with the number ranging
from 15.02 to 23.27, and the average number in the six test sets was 19.8. The average number of
test suite in the six test case sets for the MINbr+cp, (Rank-sum ratio) RSR, (Rational Unified
Process) RUR, and (Real Time Operating System) RTS simplification algorithms were 18.98,
19.31, 19.405, and 19.43, respectively. Similarly, the studied parsimony algorithm has more error
checks in all six test case sets than the other four parsimony methods and has the highest average
number of error checks in the six test sets at 13.64. The average number of error checks in the six

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

122 JOURNAL OF MEASUREMENTS IN ENGINEERING. JUNE 2023, VOLUME 11, ISSUE 2

test case sets for the MINbr+cp, RSR, RUR, and RTS parsimony algorithms is 12.52. The average
error detection values for the six test case sets of MIN, RSR, RUR, and RTS were 12.52, 12.69,
12.90, and 12.95, respectively. The reduction rate of test suite after the five methods are reduced
is shown in Fig. 7.

Fig. 7. Reduction rate of test case set after reduction by five methods

As shown in Fig. 7, among the five simplification methods, MINbr+cp has the highest test
case set simplification rate in each test case set, up to 92.98. Its average simplification rate across
the six test case sets is about 85.225. The average of the six test case set simplification rates for
the RSR, RUR, RTS, and ROR simplification algorithms are 72.16, 71.98, 71.93, and 71.185,
respectively. As the redundancy in the positive initial use case set increases with the scale of test
suite, the simplification algorithm increases its simplification rate. Since the simplification does
not use the method of adding redundant test cases, the reduced redundancy is the smallest and the
corresponding simplification rate is the highest. As shown in Table 1, it is the result of the error
detection loss rate of the test suite reduced by five methods.

Table 1. Shows the result of error detection loss rate of test suite after reduction by one method
Test case set T MINbr+cp RSR RUR RTS ROR

Bms 0 16.28 % 18.14 % 16.81 % 16.52 % 13.28 %
Bms 0-0.1 22.30 % 22.10 % 20.82 % 20.56 % 16.76 %
Bms 0-0.2 23.96 % 22.87 % 21.63 % 21.32 % 17.25 %
Bms 0-0.3 26.11 % 24.74 % 23.47 % 23.15 % 18.87 %
Bms 0-0.4 27.42 % 26.01 % 24.78 % 24.48 % 20.01 %
Bms 0-0.5 29.98 % 24.53 % 26.32 % 26.02 % 21.63 %

As shown in Table 1, the error loss rate of the five approximate methods increases with the
scale of test suite, while the ROR approximate method in this study has the smallest error detection
loss rate compared to the other four methods in each set of use case test sets, with an average error
detection loss rate of 17.96 % across the six test sets. In contrast, the mean values for the number
of test cases in the six test sets for the MINbr+cp, RSR, RUR, and RTS approximate algorithms
were approximately 24.341 %, 23.065 %, 22.305 %, and 22.008 %, respectively. This indicates
that the approximate simplification of the studied RORs was the most effective in detecting error
loss. Based on the ROR reduction method in software error location, the number of errors detected
after reduction is statistically analyzed for individual test case set samples extracted in the
experiment. The error range of the algorithm is further observed and studied from the whole data.
The relationship between the error detection rate of the ROR reduction algorithm and the number
of reduced test cases is shown in Fig. 8.

From Fig. 8, when the number of test cases set is 9.98 after reduction by the research method,
the error detection rate of the research model in software error location can reach 92.3 %. With

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635 123

the increase of test case set, the detection rate of research model decreases accordingly. Moreover,
when the test case set is less than 9.98, the error detection rate of the research model also decreases.
Thus, in order to achieve the best error detection effect of the research model, the number of test
cases should be within the range of 8.97-13.26. As Fig. 9 shows the individual use case error
detection capability of the test case sets after the five methods were approximately simplified.

0.00
86420 16141210 18

Number of test cases after reduct ion

Er
ro

r d
et

ec
tio

n
ra

te
 a

fte
r r

ed
uc

tio
n(

%
)

0.20

0.40

0.60

0.80

1.00

y=92.3%x=9.98

(8.97,13.26)

Fig. 8. Error detection range of the reduction algorithm based on ROR

85.85 85.66 86.25 86.69

90.63

70

75

80

85

90

95

76

78

80

82

84

86

88

90

92

94

96

MINbr+cp RSR RUR RTS ROR

A
verage error detection capability of 6 use case sets(%

)
Si

ng
le

 u
se

 c
as

e
er

ro
r d

et
ec

tio
n

ca
pa

bi
lit

y
of

 re
du

ce
d

us
e

ca
se

 s
et

(%
)

Test suite T

bms 0 bms0-0.1 bms0-0.2 bms0-0.3

bms0-0.4 bms0-0.5 Average value

Fig. 9. Error detection capability of single test case set after five methods reduction

As can be seen in Fig. 9, the ROR reduction method proposed in the study has a higher error
detection capability for individual use cases than the other four methods for the reduced test set,
and has a mean capability of 90.63 % across the six test sets, which is on average 4.97 %-3.94 %
higher than the error detection capability of the other methods. Fig. 10 shows the results of the
overall efficiency comparison of the five methods of simplifying case test suite.

As can be seen from Fig. 10, the combined simplification efficiency of the six test case sets of
the ROR simplification method studied ranged from 88.25 % to 94.46 %, with an average
simplification efficiency of 91.05 %. Its simplification efficiency is better than other methods.
which are all less than 90 %. The results show that the scale of the reduced use case set of the
ROR reduction algorithm is higher than the other methods. The false detection rate of this method
is smaller, and the reduction capability and efficiency are higher than the other four methods. It
also provides a better balance between the size and error detection rate of the reduced test suite.
For any test case set, the study method adds test cases with error detection capability, and the
number of error detection cases after simplification is large, and the error detection capability of
a single test case set is high. When the size of the test case set is small, the ROR introduces a
coupling metric, so its individual use case error detection capability is higher. This shows the
validity and superiority of the study of coupling metric based test case set simplification.

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

124 JOURNAL OF MEASUREMENTS IN ENGINEERING. JUNE 2023, VOLUME 11, ISSUE 2

Fig. 10. Comprehensive efficiency results of five methods to reduce test set of use cases

5. Conclusions

Software test cases are one of the most critical aspects of software testing, which are often
redundant, yet the approximate test case set has an impact on its error detection rate. This study
proposes the idea of redundant test cases in software error location and introduces a coupling
metric for test suite reduction to balance the relationship between the reduced test suite and the
false detection rate of the test case set. The experiments have proved that the size and number of
false detection of the reduced test suite using the research method ROR are larger than those of
the other four reduction methods. Since the reduction method uses the addition of redundant test
cases, the reduced redundancy of the research method is larger and the corresponding reduction
rate is the smallest among the four methods. However, its test suite error detection loss rate is also
the smallest, with an average of 17.96 % across the six test case sets. And the study method has
the highest error detection capability for individual test cases in the reduced test set, with a mean
value of 90.63 % across the six test sets. The combined reduction efficiency of the method in the
six test sets ranged from 88.25 % to 94.46 %, with an average reduction efficiency of 91.05 %,
which is higher than other methods. The proposed test case set reduction based on coupling metric
in software error location is effective and efficient, and has a good balance between the size and
false detection rate of the reduced test suite. This study focuses on the analysis of the innovative
and improved method of software coupling measurement in software error location, and verifies
the effectiveness and superiority of the improved method through experiments. Secondly, the
important research and application point of this paper is to introduce the coupling measure based
on program slicing into the reduction of test case set. This method can achieve a better balance
between the size of test case set and the error detection rate after reduction, so as to improve the
efficiency of software testing in product development. Although this study has achieved good
results, there is still room for improvement. Due to the limitation of the length of the paper, only
C++ programming language is considered in this study, and the analysis of other languages is
missing. In future studies, the differences between algorithms and frameworks applied in other

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635 125

programming languages will be further discussed, and a method to eliminate the differences will
be designed.

Acknowledgements

The research is supported by: Science and Technology Research Project of Education
Department of Jiangxi Province in 2020 (No. GJJ204203).

Data availability

The datasets generated during and/or analyzed during the current study are available from the
corresponding author on reasonable request.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] V. Alizadeh, M. Kessentini, and M. Mkaouer, “An interactive and dynamic search-based approach to
software refactoring recommendations,” IEEE Transactions on Software Engineering, Vol. 46, No. 9,
pp. 932–961, 2018.

[2] A. Lekova, P. Tsvetkova, T. Tanev, P. Mitrouchev, and S. Kostova, “Making humanoid robots teaching
assistants by using natural language processing (NLP) cloud-based services,” Journal of Mechatronics
and Artificial Intelligence in Engineering, Vol. 3, No. 1, pp. 30–39, Jun. 2022,
https://doi.org/10.21595/jmai.2022.22720

[3] Haoxiang Shi, Wu Liu, Jingyu Liu, J. Ai, and Chunhui Yang, “A software defect location method based
on static analysis results,” 9th International Conference on Dependable Systems and Their
Applications (DSA), Vol. 14, pp. 876–886, 2022.

[4] O. Banias, “Test case selection-prioritization approach based on memoization dynamic programming
algorithm,” Information and Software Technology, Vol. 115, pp. 119–130, Nov. 2019,
https://doi.org/10.1016/j.infsof.2019.06.001

[5] M. Iyyappan et al., “A component selection framework of cohesion and coupling metrics,” Computer
Systems Science and Engineering, Vol. 44, No. 1, pp. 351–365, 2022.

[6] S. Kalantari, H. Motameni, E. Akbari, and M. Rabbani, “Optimal components selection based on
fuzzy-intra coupling density for component-based software systems under build-or-buy scheme,”
Complex and Intelligent Systems, Vol. 7, No. 6, pp. 3111–3134, Dec. 2021,
https://doi.org/10.1007/s40747-021-00449-z

[7] E. Tempero and P. Ralph, “A framework for defining coupling metrics,” Science of Computer
Programming, Vol. 166, pp. 214–230, Nov. 2018, https://doi.org/10.1016/j.scico.2018.02.004

[8] A. Dutta, A. Jha, and R. Mall, “MuSim: mutation-based fault localization using test case proximity,”
International Journal of Software Engineering and Knowledge Engineering, Vol. 31, No. 5,
pp. 725–744, 2021.

[9] Xiaobo Yan, B. Liu, Shihai Wang, Dong An, Feng Zhu, and Yelin Yang, “Efilter: an effective fault
localization based on information entropy with unlabelled test cases,” Information and Software
Technology, Vol. 134, No. 8, pp. 11–19, 2021.

[10] D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, “Employing rule mining and multi-objective search
for dynamic test case prioritization,” Journal of Systems and Software, Vol. 153, pp. 86–104, Jul. 2019,
https://doi.org/10.1016/j.jss.2019.03.064

[11] Y. Liu, Z. Li, R. Zhao, and P. Gong, “An optimal mutation execution strategy for cost reduction of
mutation-based fault localization,” Information Sciences, Vol. 422, pp. 572–596, Jan. 2018,
https://doi.org/10.1016/j.ins.2017.09.006

[12] L. Kumar, A. Tirkey, and S.-K. Rath, “An effective fault prediction model developed using an extreme
learning machine with various kernel methods,” Frontiers of Information Technology and Electronic
Engineering, Vol. 19, No. 7, pp. 864–888, Jul. 2018, https://doi.org/10.1631/fitee.1601501

TEST CASE SIMPLIFICATION BASED ON COUPLING METRICS IN SOFTWARE BUG LOCATION.
XIAOHUI HU

126 JOURNAL OF MEASUREMENTS IN ENGINEERING. JUNE 2023, VOLUME 11, ISSUE 2

[13] D. Hellhake, J. Bogner, T. Schmid, and S. Wagner, “Towards using coupling measures to guide black-box
integration testing in component-based systems,” Software Testing, Vol. 32, No. 4, pp. 13–20, 2022.

[14] Q. Yu, S. Jiang, J. Qian, L. Bo, L. Jiang, and G. Zhang, “Process metrics for software defect prediction
in object‐oriented programs,” IET Software, Vol. 14, No. 3, pp. 283–292, Jun. 2020,
https://doi.org/10.1049/iet-sen.2018.5439

[15] C. L. Chiang, C. Y. Huang, C. Y. Chiu, K. W. Chen, and C. H. Lee, “Analysis and assessment of
weighted combinatorial criterion for test suite reduction,” Quality and Reliability Engineering
International, Vol. 38, No. 1, pp. 358–388, 2021.

[16] N. Rathee and R. S. Chhillar, “Optimization of favourable test path sequences using bio-inspired
natural river system algorithm,” Journal of Information Technology Research, Vol. 14, No. 2,
pp. 85–105, Apr. 2021, https://doi.org/10.4018/jitr.2021040105

[17] C. G. Burande, O. K. Kulkarni, S. Jawade, and G. M. Kakandikar, “Process parameters optimization
by bat inspired algorithm of CNC turning on EN8 steel for prediction of surface roughness,” Journal
of Mechatronics and Artificial Intelligence in Engineering, Vol. 2, No. 2, pp. 73–85, Dec. 2021,
https://doi.org/10.21595/jmai.2021.22148

[18] A. Alam Khan and Qamar-Ul-Arfeen, “Linux Kali for social media user location: a target-oriented
social media software vulnerability detection,” Journal of Cyber Security, Vol. 3, No. 4, pp. 201–205,
2021, https://doi.org/10.32604/jcs.2021.024614

[19] B. Cheng and M. Melgaard, “Poisson wave trace formula for Dirac resonances at spectrum edges and
applications,” Asian Journal of Mathematics, Vol. 25, No. 2, pp. 243–276, 2021,
https://doi.org/10.4310/ajm.2021.v25.n2.a5

[20] S. Jiang, M. Zhang, Y. Zhang, R. Wang, Q. Yu, and J. W. Keung, “An integration test order strategy to
consider control coupling,” arXiv, Vol. 47, No. 7, p. arXiv:2103.09471, 2021,
https://doi.org/10.48550/arxiv.2103.09471

[21] Y. Mu, X. Gao, and M. Shen, “Research of reuse technology of test case based on function calling
path,” Chinese Journal of Electronics, Vol. 27, No. 4, pp. 768–775, Jul. 2018,
https://doi.org/10.1049/cje.2018.04.012

[22] L. Saganowski, “Effective test case minimization and fault detection capability using multiple
coverage technique,” Advances in Computational Sciences and Technology, Vol. 11, No. 10,
pp. 873–886, 2018.

[23] T. S. Stelljes, D. Poppinga, J. Kretschmer, L. Brodbek, H. Looe, and B. Poppe, “Experimental
determination of the "collimator monitoring fill factor" and its relation to the error detection
capabilities of various 2D rrays,” Medical Physics, Vol. 46, No. 4, pp. 1863–1873, 2019.

[24] D.-L. Miholca, G. Czibula, and V. Tomescu, “COMET: A conceptual coupling based metrics suite for
software defect prediction,” Procedia Computer Science, Vol. 176, pp. 31–40, 2020,
https://doi.org/10.1016/j.procs.2020.08.004

[25] R. He, W. Ma, X. Ma, and Y. Liu, “Modeling and optimizing for operation of CO2-EOR project based
on machine learning methods and greedy algorithm,” Energy Reports, Vol. 7, pp. 3664–3677,
Nov. 2021, https://doi.org/10.1016/j.egyr.2021.05.067

[26] S. Suzuki, M. Fujiwara, Y. Makino, and H. Shinoda, “Radiation pressure field reconstruction for
ultrasound midair haptics by greedy algorithm with brute-force search,” IEEE Transactions on
Haptics, Vol. 14, No. 4, pp. 914–921, Oct. 2021, https://doi.org/10.1109/toh.2021.3076489

[27] N. Rezazadeh, M.-R. Ashory, and S. Fallahy, “Identification of shallow cracks in rotating systems by
utilizing convolutional neural networks and persistence spectrum under constant speed condition,”
Journal of Mechanical Engineering, Automation and Control Systems, Vol. 2, No. 2, pp. 135–147,
Dec. 2021, https://doi.org/10.21595/jmeacs.2021.22221

[28] N. Rezazadeh, M.-R. Ashory, and S. Fallahy, “Classification of a cracked-rotor system during start-up
using Deep learning based on convolutional neural networks,” Maintenance, Reliability and Condition
Monitoring, Vol. 1, No. 2, pp. 26–36, Dec. 2021, https://doi.org/10.21595/marc.2021.22030

Xiaohui Hu received Master degree in Information Science and Engineering Institute from
Jiangxi Normal University, Nanchang, China. She is working as an Associate Professor in
the School of Information Engineering, Jiangxi Vocational College of MET. Her current
research interests include Software Engineering, Software Testing, Software Quality
Assurance, and Big Data.

