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Abstract. Software test cases are one of the most critical aspects of software testing in the product 
development process. As software products are updated several times, the same test requirement 
may be covered by multiple test cases, so this aspect is often redundant, yet the approximate test 
case set has an impact on its error detection rate. This study proposes the idea of using redundant 
test cases in software error location, introduces a coupling metric, analyses its program slicing and 
establishes a second coverage criterion in order to balance the relationship between the reduced 
test suite and the false detection rate the test case set. The results show that the size of test set and 
the number of error detection by the Ruby On Rails (ROR) method used in this study are larger 
than those of other commonly used reduction algorithms. The test suite has the lowest error 
detection loss rate, with an average of 17.96 % across the six test case sets. The highest error 
detection capability of individual test cases was found in the reduced test set, with a mean value 
of 90.63 % in the test set. The method also has the highest average reduction efficiency of 91.05 %. 
Compared with other simplification methods, the research method has a better balance between 
the size and false detection rate of the reduced test suite and the advantages of simplification. 
Keywords: error location, coupling metrics, test case set simplification, error detection rate, 
software debugging. 

1. Introduction 

With the boom in computer technology, software testing has become an important way of 
ensuring software quality in the software industry, throughout the software maintenance and 
development cycle [1-2]. Software errors can occur in a variety of places, and the main method of 
locating errors based on program slicing is to analyse the program’s data flow and control flow to 
decompose the program to be tested and identify statements related to a subset of the program's 
behaviour, thus narrowing down the scope of statement checking [3]. In addition, in the actual 
software testing process, redundancies in test suite can occur due to product updates and therefore 
test suite needs to be reduced. Maintaining a balanced relationship between the impact of test case 
set simplification on its error detection rate is an important study today [4]. It has been shown that 
software programs are prone to errors at locations with high coupling and that applying coupling 
to test case set simplification can help improve the error detection rate of test case sets, but existing 
coupling measures based on program slices do not distinguish between different types of nodes in 
the coupled common parts [5-6]. To this end, an improved coupling metric based on program 
slicing in software error location is proposed, aiming to improve the efficiency of test case set 
reduction while better balancing its relationship with the size of the reduced test case set. 

2. Related work 

As software testing has received more and more attention in the development of software 
products, software use case testing has also received sufficient attention. As software products 
need to be updated and upgraded several times, the number of test cases also increases. Therefore, 
how to improve the parsimony rate of the test case set and achieve a balance between it and the 
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parsimony size of the test case set has become a hot topic of research today. Tempero E. et al. 
proposed a coupling model that relies on the concretization of concepts as the basic unit in order 
to solve the problem caused by incomplete metric definitions, and experiments have shown the 
superiority of this model [7]. Dutta et al. proposed a mutation-based fault location technique that 
can identify incorrect statements by calculating the proximity to different mutants [8]. Yan et al. 
established a framework based on entropy, which was called Efilter and could filter untagged test 
cases to solve the problem of filtering untagged test cases. The efficiency of fault location was 
significantly improved with the use of Efilter [9]. Pradhan et al. proposed to determine the priority 
of test cases by defining the fault detection capability and test case dependency score, and by 
considering the results of run-time test case execution in order to obtain higher fault detection 
capability. The results showed that the method is effective and applicable [10]. Yong et al. 
determine the priority of test cases by defining the fault detection capability and test case 
dependency score, and by considering the results of run-time test case execution to reduce the 
execution cost of mutation-based error location techniques, a mutation execution method was 
proposed to prioritize implementation of variants and test suite. The experimental proved that this 
method can effectively reduce the execution cost of mutation tests while ensuring the error 
location rate [11]. 

Kumar L. et al. scholars put forward a framework of software fault prediction model based on 
cost and efficiency evaluation of testing phase, and experimental results showed that the model 
selected the best set of source code metrics for fault prediction [12]. Hellhake et al. researchers 
analysed the relationship that was between coupling measures of different components and 
interfaces and fault distribution in automobile system integration test. There is a positive 
correlation between fault propensity, the results verified that coupling is a valid indicator of fault 
propensity [13]. Yu et al. scholars proposed a new process metric based on evolutionary data of 
object-oriented programs, from the historical package defect rate and the degree of class variation, 
and the results verified that the method can improve the performance of evolution-oriented defect 
prediction [14]. Chiang et al. proposed an algorithm to improve fault detection. A four-weighted 
combination algorithm and a linear programming model were proposed to improve the 
effectiveness of fault detection. Experimental showed the fault detection rate of the software was 
improved, and the test set is significantly reduced [15]. Rathee et al. proposed an artificial 
intelligence metaheuristic-based algorithm to optimise the test sequence in order to reduce the 
time, effort, and redundancy used to design an optimised test sequence. The algorithm was shown 
to be effective [16]. 

The research on test case reduction techniques by scholars at home and abroad shows that there 
are relatively few research results on their use in software error location. As it is necessary to 
reduce the test suite, the change in size of the test suite will affect the error detection rate, the 
coupling metric can help the error detection rate, and the high coupling position can help detect 
software errors. The study therefore proposes a coupling metric-based test case reduction method 
for software error location, aiming to improve the reduction rate of the test suite, and balance the 
change of test suite size after reduction. 

3. A Study of test case minimization methods based on coupling metrics in software error 
location 

3.1. Coupling metrics and test case set simplification methods in software error location 

Software error location is a dynamic software debugging process in which the tester usually 
needs to record information generated by a particular test suite during the runtime of various 
program entities and locate the location of software errors based on this information [17-18]. 
During the run of the software, the information collected may be the number of times a program 
entity has been executed by a test case, covered by a test case. Then, according to different 
program spectrum formulas, this information is used to calculate the suspiciousness of the 
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program entity, which are ranked, and the program statements are examined one at a time in rank 
order until an erroneous statement is found [19]. Firstly, the program to be tested is represented 
by 𝑃 and the entity representation formula for 𝑃 is given in Eq. (1): 𝑃 = 𝑆 , 𝑆 , 𝑆 , … , 𝑆 , (1)

where, 𝑆 can be interpreted in various ways, such as a statement, method, class or a code fragment 
in a program. The program entity under study is the statement in the test program 𝑃 and 𝑛 
represent the number of rows. The test suite of the program to be tested is shown in Eq. (2): 𝑇 = 𝑡 , 𝑡 , 𝑡 , … , 𝑡 , (2)

where, 𝑚 represents the number of test suite, where 1 ≤ 𝑖 ≤ 𝑚 and 𝑡  represent the 𝑖 test case in 
the test case set. The result of the test case execution is shown in Eq. (3): 𝑅 = 𝑟 , 𝑟 , 𝑟 , … , 𝑟 , (3)

where, 𝑟  indicates the result of the first test case, where 1 ≤ 𝑖 ≤ 𝑚. If 𝑟 = 1, the output of the 𝑖 
test case is different from the expected output, which means that the result of the test case fails. 
Conversely, if 𝑟 = 0 indicates that the test suite was successful. The program spectrum can be 
expressed as a coverage matrix, as in Eq. (4): 𝑀 = 𝑀 , (4)

where, 𝑀 represents the matrix of coverage relationships between the set of test cases and program 
entities, and 𝑀 is the matrix of 𝑚 × 𝑛. 𝑀 the first row of 𝑖 indicates that when the 𝑖 test case is 
executed, whether the statements in 𝑃 are executed or not is determined by the coverage vector of 
the test case. The 𝑗 column in 𝑀 can be represented as the execution of the 𝑗 statement in 𝑃 by the 
test cases. If 𝑀 = 1, then the 𝑖 test case executes to the 𝑗 executable code line. If 𝑀 = 0, the 𝑖 
test case is not executed to the 𝑗 line of executable code during the run. 

Software metrics are studied in a wide range of ways, and software metrics can be divided into 
structure-oriented metrics, object-oriented metrics, methods, classes and objects are modules in 
object-oriented programming, and software design metrics are a node of object-oriented and 
process-oriented metrics. Coupling is a key point in the metrics. There are five types of coupling, 
which represent two types of interdependent metrics, namely inherited coupling, combined 
coupling, aggregated coupling, associative coupling, and usage coupling [20]. The coupling 
information between various classes includes the number of access attributes, the number of 
different methods called, the number of return types, and the number of parameters passed. Based 
on these four parameters the dependency between the client class and the service class can be 
measured by integrating the four parameters into one expression using "⋅ " and using this to 
express the coupling between the classes 𝐶  and 𝐶  as in Eq. (5): 𝐶𝑀 = 𝐶 ,𝐶 = 𝑉 ⋅ 𝑀 ⋅ 𝑅 ⋅ 𝑃, (5)

where, 𝑉 indicates the number of common variables of class 𝐶  used between classes 𝐶  and 𝑀 
indicates the number of methods of class 𝐶  called by class. 𝐶 𝑅 indicates the number of different 
return types that occur in and 𝑀𝑃 indicates the number of different parameters that occur in 𝑀. 
The normalized estimation method for a complexity 𝐶𝑝𝑙𝑥   is denoted 𝐶𝑝𝑙𝑥   and can be 
expressed in its normalized form by Eq. (6): 

𝐶𝑝𝑙𝑥 𝑖, 𝑗 = 𝐶𝑝𝑙𝑥 𝑖, 𝑗𝐶𝑝𝑙𝑥 − 𝐶𝑝𝑙𝑥 , (6)
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where, 𝐶𝑝𝑙𝑥 𝑖, 𝑗  represents the complexity information matrix of the test pile, and the rows and 
columns represent the dependencies of each class𝑖 and class on class𝑗 respectively. Where 𝐶𝑝𝑙𝑥 = 𝑀𝑖𝑛 𝐶𝑝𝑙𝑥 𝑖, 𝑗 , 𝑖, 𝑗 = 1,2,⋯ , 𝐶𝑝𝑙𝑥 = 𝑀𝑎𝑥 𝐶𝑝𝑙𝑥 𝑖, 𝑗 , 𝑖, 𝑗 = 1,2,⋯ . A test pile 
is estimated as shown in Eq. (7): 𝑆𝐶𝑝𝑙𝑥 𝑖, 𝑗 = 𝑊 × 𝑉 𝑖, 𝑗 + 𝑊 × 𝑀 𝑖, 𝑗 + 𝑊 × 𝑅 𝑖, 𝑗 + 𝑊 × 𝑃 𝑖, 𝑗 , (7)

where, 𝑊 , 𝑊 , 𝑊 , 𝑊  represents the weights and 𝑊 + 𝑊 + 𝑊 + 𝑊 = 1. 𝑉 𝑖, 𝑗 , 𝑀 𝑖, 𝑗  
is calculated according to Eq. (8): 

⎩⎪⎨
⎪⎧𝑉 𝑖, 𝑗 = 𝑉 𝑖, 𝑗𝑉 − 𝑉 ,𝑀 𝑖, 𝑗 = 𝑀 𝑖, 𝑗𝑀 −𝑀 , (8)

where, the values of 𝑉 𝑖, 𝑗 , 𝑀 𝑖, 𝑗  are obtained with the opener tool SOOT, and the values of 𝑉 , 𝑉  and 𝑀 , 𝑀  are obtained with the opener tool SOOT, representing the maximum 
and minimum values of the attribute and method coupling matrix, respectively, of the statistical 
data. Respectively, constituted by the statistical data. 𝑅 𝑖, 𝑗 , 𝑃 𝑖, 𝑗  is calculated according to 
Eq. (9): 

⎩⎪⎨
⎪⎧𝑅 𝑖, 𝑗 = 𝑅 𝑖, 𝑗𝑅 − 𝑅 ,𝑃 𝑖, 𝑗 = 𝑃 𝑖, 𝑗𝑃 − 𝑃 ,  (9)

where, the values of 𝑅 𝑖, 𝑗 , 𝑃 𝑖, 𝑗  are obtained through the opener tool SOOT, and the values of 𝑅 , 𝑅  and 𝑃 , 𝑃  are obtained through the opener tool SOOT, representing the 
maximum and minimum values of the return value coupling matrix and the parameter coupling 
matrix constituted by the statistical data, respectively. For the weights 𝑊 , 𝑊 , 𝑊 , 𝑊 , the study 
proposes a calculation method as in Eq. (10): 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑊 = 𝑉𝑉 = 𝑀 + 𝑅 + 𝑃 ,𝑊 = 𝑀𝑉 = 𝑀 + 𝑅 + 𝑃 ,𝑊 = 𝑅𝑉 = 𝑀 + 𝑅 + 𝑃 ,𝑊 = 𝑃𝑉 = 𝑀 + 𝑅 + 𝑃 .

 (10)

For a given test sequence 𝑜, breaking the dependent edge 𝑑, the overall test stub complexity 
for this test sequence is calculated as in Eq. (11): 

𝑂𝐶𝑝𝑙𝑥 𝑜 = 𝑆𝐶𝑝𝑙𝑥 𝑘 . (11)

There are two main types of use case set simplification methods: direct simplification of the 
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test suite, and analysis of each test requirement first to find out its interconnection, and then 
simplification of the test case based on its connection line about the test requirement [21]. The 
requirements-based simplification algorithm requires first delineating the relationships between 
the test requirements, as shown in Fig. 1. 

1r

4r
2r 3r

 
Fig. 1. Relationship division between test requirements 

As in Fig. 1, if the test requirement contains 𝑟 𝑟 , then any test case covering the test 
requirement 𝑟  will cover 𝑟 , and the test style will only test the requirement 𝑟 . If the test 
requirements 𝑟  and are mutually inclusive, then 𝑟 𝑟  and 𝑟  are said to be equivalent test 
requirements and only one of them needs to be tested. If there is an overlap between the test 
requirements 𝑟  and, then the intersection of and 𝑟 𝑟 𝑟  is tested as one test requirement and 𝑟  and 𝑟  are removed. If they are independent of each other, then there is no intersection between their 
test cases and it is not possible to simplify the test requirements. After them have been reduced, 
the resulting test requirements and test cases are then reduced according to the hairpin algorithm. 

3.2. Test case set simplification based on improved coupling metrics in software error 
location 

After the test cases have been reduced, a key issue to consider is the test suite error detection 
rate. Numerous studies have shown that the error detection capability of the test suite is 
proportional to the size of the test case set, and increases with its increase [22-23]. Therefore, it is 
essential to ensure the error detection rate of the test suite when it is reduced. Traditional methods 
of computing coupling are based on information flow metrics, in contrast to slice-based metrics 
which are more accurate [24]. Mark Harman proposes to use slicing to compute slices for each 
primary variable in method 𝑚, and defines 𝑓𝜏  to denote the flow from 𝑝 into a function 𝐹𝑙𝑜𝑤 . 
Its formula for calculating the coupling, as in Eq. (12): 

𝑓𝜏 = 𝜓 ⋃ 𝑆𝑆 𝑝, 𝑣 ,𝐸 𝑓 − 𝑁 𝑓∈ 𝑁 𝑝 − 𝑁 𝑓 , (12)

where, 𝐸 reference program, 𝑁 indicates the number of slice statements. 𝜓 represents the set 
potential operation (cardinalit), i.e. the operation that gets the number of elements in the collection 
takes the number of elements in a set. 𝑓𝑓 ,  definition stream represents the stream from 
functions 𝑓 to 𝑔, where 𝑝 represents the program containing 𝑓,𝑔. 𝑓𝑓 ,  is calculated as Eq. (13): 

𝑓𝑓 , = 𝜓 ⋃ 𝑆𝑆 𝑝, 𝑣 ,𝐸 𝑔 |𝑁 𝑓∈ 𝑁 𝑓 . (13)

Define 𝐶 ,  to represent the coupling between the functions 𝑓 and 𝑔, which is calculated as 
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in Eq. (14): 

𝐶 , = 𝑓𝑓 , .𝑁 𝑓 + 𝑓 , .𝑁 𝑔𝑁 𝑓 .𝑁 𝑔 . (14)

The coupling that exists between different modules in an object-oriented program is analysed 
by replacing with 𝐵𝑆 𝑃, 𝑐 ,𝑉 𝑐 𝐹𝑆 𝑃, 𝑐 ,𝑉 𝑐  and 𝑖 = 1,2 respectively. This is shown in 
Eq. (15): 𝐼𝐹𝑙𝑜𝑤 𝑐 , 𝑐 = 𝑆 < 𝑃, 𝑐 ,𝑉 𝑐 > ∩ 𝑆 𝑃, 𝑐 ,𝑉 𝑐 . (15)

In Eq. (15), 𝐵𝑆 𝑃, 𝑐 ,𝑉 𝑐  represents a backward slice, i.e. an utterance that is influenced by 
the variable 𝑉 𝑐 . 𝐹𝑆 𝑃, 𝑐 ,𝑉 𝑐  represents a forward slice, i.e. a statement that is influenced 
by the variable 𝑉 𝑐 . If Eq. (15) is not ∅, then there is a coupling between 𝑐  and 𝑐 , which leads 
to a formula as in Eq. (16): 

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑣 , 𝑣 = 𝜓 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑣 ∩ 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑣𝜓 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑣 ∪ 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑣 , (16)

where, 𝐿, 𝑣  denotes the slicing criterion, 𝐿 denotes the statement number of the slicing point in 
the program, 𝑣 denotes the attribute variable there, and 0 ≤ 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑣 , 𝑣 ≤ 1. 𝑚 , 𝑚  the 
coupling between the two is calculated as shown in Eq. (17): 

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑚 ,𝑚 = 𝜓 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 , 𝑣 ∩ 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 ,𝑣𝜓 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 , 𝑣 ∪ 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 ,𝑣 , (17)

where, 𝐿,𝑚, 𝑣  denotes the slicing criterion, 𝑚 denotes the method of slicing out, and 𝑣 
represents the significant variable or set of variables for 𝑚. The study analyses the backward 
slicing of 𝑠𝑙𝑖𝑐𝑒 𝐿,𝑚, 𝑣  in Eq. (17) and finds that it does not explore the different types of 
statement nodes in the common part of the slices in depth. For example, Fig. 2 shows the slice 
diagram corresponding to the method 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 and the method 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 in a program. 

S22 S23 S25 S26

S4S2 S18
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S6 S8

S15

ME21 ME24

ME4 ME17 ME3
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Fig. 2. Slice corresponding to method 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 in the program 

As shown in Fig. 2, it based on program slicing and found the coupling of the method pairs 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 in this program by first computing the slices of these two methods 
with the slicing criteria 21, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1, 𝑎, 𝑏, 𝑒,𝑓  and 24, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛4, 𝑐,𝑑,𝑔,ℎ  
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respectively 21, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1, 𝑎, 𝑏, 𝑒,𝑓 . The result of the slicing of the graph consists of the 
remaining nodes 25, 24, 26, 3, 4 with the nodes removed in Fig. 2 24, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛4, 𝑐,𝑑,𝑔,ℎ . 
The result of the slicing of the graph consists of the remaining nodes 21, 22, 23, 1, 2 after removing 
the nodes in that graph. The intersection of the two slicing criteria is a directed graph with 
statement 17 as the root, and node 18 is used as a judgment statement, with a true result executing 
statement 19. Conversely, statement 20 is executed. If 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 executes statement 18 as true 
during execution and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 executes statement 18 as false during execution, the two 
methods affect only statements 17, 18, 9, 10, and must jointly affect statements 9, 10, 17, 18. 

The coupling calculation must consider all possible intersections of slices between two 
modules and distinguish their nodes by the probability of being affected. In case of coupling, the 
intersection of slices must be represented separately for nodes that will be executed and for nodes 
that are likely to be executed. Finding the set of nodes that must be executed when the method 𝑚1 
is coupled with the method 𝑚2, the remaining node 𝐺 − 𝑝𝑑𝑜𝑚 𝑁  in 𝐺 represents the node that 
has a certain probability of being affected, thus transforming Eq. (17) into Eq. (18): 

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑚 ,𝑚 = 𝜓 𝑝𝑑𝑜𝑚 𝑁 + 𝑟𝜓 𝐺 − 𝑝𝑜𝑑𝑚 𝑁𝜓 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 , 𝑣 ∪ 𝑠𝑙𝑖𝑐𝑒 𝐿 ,𝑚 ,𝑣 . (18)

In Eq. (18), 𝑟 represents the average probability that the remaining nodes in the slice graph 
intersection 𝐺 are affected. The probability of each point in 𝐺 − 𝑝𝑑𝑜𝑚 𝑁  being affected is 0.5. 
To simplify the process of calculating the metric value, the study takes to be 0.5. The improved 
coupling calculation is more rigorous and better represents the degree of coupling between 
modules, as in Eq. (19): 

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑚 ,𝑚 = 4 + 1/2 16 − 426 = 513. (19)

In order to the relationship between the size of the test suite and its error detection rate, it has 
been proposed to add redundant test cases to the test suite [15]. The GE reduction algorithm was 
chosen to reduce the test suite through the first coverage standard, and then retain the second 
coverage standard for the generated redundant test cases. This reduced scale of test suite and 
ensured its error detection capability, as shown in Fig. 3. 

 
Fig. 3. Algorithm flow of adding redundant test case set 

It can be seen from Fig. 3, first, select the basic test case from the test suite 𝑇 to add to the 
reduced set 𝑇 , and to remove the test requirements met by these test cases from 𝑅 . If the test 
case 𝑡 can meet the test requirement that has been removed, it will be added to the redundant test 
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cases to be retained at 𝑇 . The second step is to select the redundant test cases from 𝑇  using the 
second coverage criterion and add them to 𝑇 . The test case from 𝑇  that meets the highest number 
of test requirements from the second coverage criterion is selected and added to 𝑡 𝑇 . Then delete 
the test conditions met by 𝑡 . Until the remaining test suite at 𝑇  do not meet the test requirements 
for the new second coverage criterion, empty 𝑇 . Finally go to the next step and use the greedy 
algorithm [25-26] on the test case set 𝑇. If the first sub-criterion is not fully covered, find the test 
case that can meet the highest number of remaining test conditions at 𝑡 and add it to 𝑇 , while 
removing the test conditions from the first coverage criterion covered by 𝑡. If all the requirements 
met by an 𝑡∗ are removed, it is added to 𝑇 . Enter the second step if the second coverage criterion 
is not fully covered [27-28]. Conversely, the last step continues until the test requirements in the 
first coverage criterion are completely covered. 

4. Analysis of experimental results of coupling metric-based test case simplification in 
software error location 

The experiments start with the implementation of a program slicing and coupling metric tool, 
with the program slicing part starting with the analysis of the source program lexicography and 
syntax. The experiments use the open source compiler generation tool ANTLR, which is able to 
automatically generate a compiler based on a given grammar. The grammar of the auxiliary code 
segment was then embedded in ANTLR to construct a lexical and syntactic analyser for the text. 
In this experiment 700 test cases satisfying branch coverage were constructed and the satisfaction 
relationship between each test case and the score coverage was maintained during the construction 
process. This group of test cases is called test case library, which has a high level of redundancy. 
A group of six test cases is then constructed from the test case library bms0, bms0 − 0.1,  bms0 − 0.2, bms0 − 0.3, bms0 − 0.4, bms0 − 0.5. During construction, the test cases from the 
library are then selected from 𝛼 and added to 𝑇. If not all of the scores covered by 𝛼 are met, then 
select test cases from the library that meet other conditions and added to 𝑇 until all requirements 
are met. This experiment compared the coupling metric-based test case set reduction algorithm 
with four other reduction algorithms, as shown in Fig. 4. 

 
Fig. 4. Experimental process of reduction algorithm comparison 

As shown in Fig. 4, fractional coverage was used as the first coverage criterion. And use each 
of the five reduction algorithms to reduce each group of test cases MINbr + cp The GE algorithm 
can reduce the test suite, RSR was reduced using the add redundant test cases algorithm, and the 
second coverage criterion was unstated coverage RUR. The algorithm for adding redundant test 
cases was used, the second coverage criterion was all-useful coverage, and the ATAC tool was 
used. RTR the second coverage criterion was not analysed for critical points in the program. 
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RORA coupling metric based test case set simplification algorithm was able to simplify the 
algorithm for adding test cases, and the second coverage criterion was not used to analyse the 
coupling paths obtained by the algorithms with higher coupling in this study. Experiments were 
conducted on the definition of error points in the program, and various methods were used to 
simplify 𝑇 to obtain the test suite 𝑇  and to record the number of test cases and the number of 
tests contained in 𝑇 . The raw data for each test case set 𝑇 is shown in Fig. 5. 
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Fig. 5. Raw data of each test case set 

According to Fig. 5, there are six test case sets 𝑇 and each 𝑇 corresponds to its own number of 
use case sets and number of error checks, the number of which increases with each use case set. 
The number of test cases ranged from 18.32-134.27 and the number of error checks ranged from 
11.13-21.25. The experiments were conducted eight times for each set of 𝑇 using the five methods, 
and the average of the experiments was taken. Fig. 6 shows scale of test case set and number of 
errors detected after reduction of five methods. 

 
a) Number of test cases and number of error 

detections after reduction of MINIbr+cp, RUR, RSP 

 
b) Number of test cases and number of error 

detections after reduction of RTS, ROR 
Fig. 6. Scale of test suite and number of error detection after reduction by five methods 

As shown in Fig. 6, the ROR simplification algorithm used in this study had more test case 
sets in all six test case sets than the other four simplification methods, with the number ranging 
from 15.02 to 23.27, and the average number in the six test sets was 19.8. The average number of 
test suite in the six test case sets for the MINbr+cp, (Rank-sum ratio) RSR, (Rational Unified 
Process) RUR, and (Real Time Operating System) RTS simplification algorithms were 18.98, 
19.31, 19.405, and 19.43, respectively. Similarly, the studied parsimony algorithm has more error 
checks in all six test case sets than the other four parsimony methods and has the highest average 
number of error checks in the six test sets at 13.64. The average number of error checks in the six 
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test case sets for the MINbr+cp, RSR, RUR, and RTS parsimony algorithms is 12.52. The average 
error detection values for the six test case sets of MIN, RSR, RUR, and RTS were 12.52, 12.69, 
12.90, and 12.95, respectively. The reduction rate of test suite after the five methods are reduced 
is shown in Fig. 7. 

 
Fig. 7. Reduction rate of test case set after reduction by five methods 

As shown in Fig. 7, among the five simplification methods, MINbr+cp has the highest test 
case set simplification rate in each test case set, up to 92.98. Its average simplification rate across 
the six test case sets is about 85.225. The average of the six test case set simplification rates for 
the RSR, RUR, RTS, and ROR simplification algorithms are 72.16, 71.98, 71.93, and 71.185, 
respectively. As the redundancy in the positive initial use case set increases with the scale of test 
suite, the simplification algorithm increases its simplification rate. Since the simplification does 
not use the method of adding redundant test cases, the reduced redundancy is the smallest and the 
corresponding simplification rate is the highest. As shown in Table 1, it is the result of the error 
detection loss rate of the test suite reduced by five methods. 

Table 1. Shows the result of error detection loss rate of test suite after reduction by one method 
Test case set T MINbr+cp RSR RUR RTS ROR 

Bms 0 16.28 % 18.14 % 16.81 % 16.52 % 13.28 % 
Bms 0-0.1 22.30 % 22.10 % 20.82 % 20.56 % 16.76 % 
Bms 0-0.2 23.96 % 22.87 % 21.63 % 21.32 % 17.25 % 
Bms 0-0.3 26.11 % 24.74 % 23.47 % 23.15 % 18.87 % 
Bms 0-0.4 27.42 % 26.01 % 24.78 % 24.48 % 20.01 % 
Bms 0-0.5 29.98 % 24.53 % 26.32 % 26.02 % 21.63 % 

As shown in Table 1, the error loss rate of the five approximate methods increases with the 
scale of test suite, while the ROR approximate method in this study has the smallest error detection 
loss rate compared to the other four methods in each set of use case test sets, with an average error 
detection loss rate of 17.96 % across the six test sets. In contrast, the mean values for the number 
of test cases in the six test sets for the MINbr+cp, RSR, RUR, and RTS approximate algorithms 
were approximately 24.341 %, 23.065 %, 22.305 %, and 22.008 %, respectively. This indicates 
that the approximate simplification of the studied RORs was the most effective in detecting error 
loss. Based on the ROR reduction method in software error location, the number of errors detected 
after reduction is statistically analyzed for individual test case set samples extracted in the 
experiment. The error range of the algorithm is further observed and studied from the whole data. 
The relationship between the error detection rate of the ROR reduction algorithm and the number 
of reduced test cases is shown in Fig. 8. 

From Fig. 8, when the number of test cases set is 9.98 after reduction by the research method, 
the error detection rate of the research model in software error location can reach 92.3 %. With 
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the increase of test case set, the detection rate of research model decreases accordingly. Moreover, 
when the test case set is less than 9.98, the error detection rate of the research model also decreases. 
Thus, in order to achieve the best error detection effect of the research model, the number of test 
cases should be within the range of 8.97-13.26. As Fig. 9 shows the individual use case error 
detection capability of the test case sets after the five methods were approximately simplified. 
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Fig. 8. Error detection range of the reduction algorithm based on ROR 
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Fig. 9. Error detection capability of single test case set after five methods reduction 

As can be seen in Fig. 9, the ROR reduction method proposed in the study has a higher error 
detection capability for individual use cases than the other four methods for the reduced test set, 
and has a mean capability of 90.63 % across the six test sets, which is on average 4.97 %-3.94 % 
higher than the error detection capability of the other methods. Fig. 10 shows the results of the 
overall efficiency comparison of the five methods of simplifying case test suite. 

As can be seen from Fig. 10, the combined simplification efficiency of the six test case sets of 
the ROR simplification method studied ranged from 88.25 % to 94.46 %, with an average 
simplification efficiency of 91.05 %. Its simplification efficiency is better than other methods. 
which are all less than 90 %. The results show that the scale of the reduced use case set of the 
ROR reduction algorithm is higher than the other methods. The false detection rate of this method 
is smaller, and the reduction capability and efficiency are higher than the other four methods. It 
also provides a better balance between the size and error detection rate of the reduced test suite. 
For any test case set, the study method adds test cases with error detection capability, and the 
number of error detection cases after simplification is large, and the error detection capability of 
a single test case set is high. When the size of the test case set is small, the ROR introduces a 
coupling metric, so its individual use case error detection capability is higher. This shows the 
validity and superiority of the study of coupling metric based test case set simplification. 
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Fig. 10. Comprehensive efficiency results of five methods to reduce test set of use cases 

5. Conclusions 

Software test cases are one of the most critical aspects of software testing, which are often 
redundant, yet the approximate test case set has an impact on its error detection rate. This study 
proposes the idea of redundant test cases in software error location and introduces a coupling 
metric for test suite reduction to balance the relationship between the reduced test suite and the 
false detection rate of the test case set. The experiments have proved that the size and number of 
false detection of the reduced test suite using the research method ROR are larger than those of 
the other four reduction methods. Since the reduction method uses the addition of redundant test 
cases, the reduced redundancy of the research method is larger and the corresponding reduction 
rate is the smallest among the four methods. However, its test suite error detection loss rate is also 
the smallest, with an average of 17.96 % across the six test case sets. And the study method has 
the highest error detection capability for individual test cases in the reduced test set, with a mean 
value of 90.63 % across the six test sets. The combined reduction efficiency of the method in the 
six test sets ranged from 88.25 % to 94.46 %, with an average reduction efficiency of 91.05 %, 
which is higher than other methods. The proposed test case set reduction based on coupling metric 
in software error location is effective and efficient, and has a good balance between the size and 
false detection rate of the reduced test suite. This study focuses on the analysis of the innovative 
and improved method of software coupling measurement in software error location, and verifies 
the effectiveness and superiority of the improved method through experiments. Secondly, the 
important research and application point of this paper is to introduce the coupling measure based 
on program slicing into the reduction of test case set. This method can achieve a better balance 
between the size of test case set and the error detection rate after reduction, so as to improve the 
efficiency of software testing in product development. Although this study has achieved good 
results, there is still room for improvement. Due to the limitation of the length of the paper, only 
C++ programming language is considered in this study, and the analysis of other languages is 
missing. In future studies, the differences between algorithms and frameworks applied in other 
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programming languages will be further discussed, and a method to eliminate the differences will 
be designed. 
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