

40 MATHEMATICAL MODELS IN ENGINEERING. JUNE 2023, VOLUME 9, ISSUE 2

Research and design of program complexity
measurement technology based on OINK framework

Liping Qiao1, Xuejun Zou2, Rui Duan3, Xueting Jia4
1, 4Department of Information Engineering, Xingtai Polytechnic College, Xingtai, Hebei, China
2, 3Wuhan Electricity Services Department of Wuhan Railway Administration, Wuhan, Hubei, China
1Corresponding author
E-mail: 1s976811080@163.com, 2397818434@qq.com, 3whdr1984@163.com, 4594837257@qq.com
Received 11 January 2023; accepted 24 March 2023; published online 4 April 2023
DOI https://doi.org/10.21595/mme.2023.23162

Copyright © 2023 Liping Qiao, et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. With the expansion of software system scale, the study of software complexity has
become a hot topic in software engineering. However, the domestic research on software
complexity analysis technology is not mature, especially the measurement and evaluation methods
of software complexity are not perfect. In order to solve the problem of prediction and evaluation
of program structure complexity in software engineering more effectively, this paper proposed a
program complexity measurement technique based on OINK framework. The technology uses the
data sharing interface design to analysis target program by extracting the complex relationship
between OINK components. On this basis, the technology adopts the layered software architecture
to realize the automatic design of the function of the measurement data acquisition module, the
complexity measurement module and the data management module of measurement results, thus,
the structure complexity of the target program can be analyzed more clearly and accurately. At
the same time, this technique applies multiple measurement methods to quantify the complexity
of program structure, such as McCabe, HalStead, and Line Count. Experimental results show that
this method can effectively measure the complexity of program structure. The solution on software
complexity based on the open source ONIK framework will be open up worldwide, and will be
continuously supported and improved by global communities and teams under the constraints of
common driving forces.
Keywords: complexity, OINK, static analysis, McCabe.

1. Introduction

Complexity measurement analysis assesses the complexity of a program’s source code in terms
of its structure, length, size, etc. so in a sense complexity measurement analysis also belongs to
the category of program understanding, and is a key part of the software static analysis technology.
Complexity analysis can reflect the error rate in the process of software development and reduce
the possibility of software failure, so as to improve the quality and maintainability of software [1].
The research on program complexity analysis technology should eventually be implemented in
the research on one or more complexity measurement algorithms, so the most concerned problem
is the data measurement element problem [2]. Based on program understanding, these metrics
come directly or indirectly from the abstract syntax tree. Therefore, how to ensure that the data
information on the nodes of the abstract syntax tree is used as measure element of software
complexity after correct and reasonable analysis and statistics is the problem we need to solve.

Program complexity measurement analysis technology belongs to the category of code static
analysis, and the static analysis technology of foreign source code has reached the third generation
[3]. For example, Klocwork Insight, a source code analysis tool belonging to Klocwork, is the first
tool that allows developers to control the entire analysis process and benefit from the accuracy of
centralized analysis. Klocwork Insight allows developers to perform local analysis in the
development environment they are familiar with, and can also achieve the consistency and
analysis accuracy obtained by doing the same analysis steps in the integration verification phase.
The tool for software complexity measurement mainly includes McCabe complexity, Halstead

https://crossmark.crossref.org/dialog/?doi=10.21595/mme.2023.23162&domain=pdf&date_stamp=2023-04-04

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627 41

program measurement, number of code lines, number of inheritance, number of loops and other
basic metrics [4-6]. At present, China’s research on this technology is still in the initial
development stage, the scale is relatively small, and few scientific and technological personnel
participate in the research. From the perspective of technical research, some technologies are still
in the second stage of source code analysis, namely the centralized analysis stage. However, there
are also some excellent tools of China, such as Safe Pro C/C++ developed by the Beihang
University Software Engineering Institute. It provides user working environment with
multi-selection window and single-driven; and supports fast association analysis of several test
information. From the current situation of domestic and foreign research, the software complexity
analysis technology of programs has not yet reached the mature stage [7]. The research of software
complexity analysis technology also needs to be continuously improved. However, these
traditional measurement algorithms can also reflect the complexity of software development to a
certain extent. The key is how to use these measurement methods to evaluate the complexity of
software reasonably and stably, reduce the possibility of software failure and improve the
maintainability of software, so as to achieve the purpose of enhancing software quality.

Based on the above point of view, according to the current software testing requirements, this
paper proposes a program complexity measurement technology based on OINK static analysis
framework by using the principles of semantic analysis, syntax analysis, abstract syntax tree, local
analysis and global analysis in static analysis. This technology can effectively combine the
complexity measurement parameters and static analysis tools, and will be applied to the program
understanding platform, so that the program complexity analysis results are more accurate and
reliable. At the end of the article, the correctness of this technology is proved by designing the test
environment and process, and verifying the results by various measurement methods.

Our technology will be developed based on the open source framework, open up solutions,
and have extremely reliable results, which is a very powerful outstanding advantage. Through
mass discussion and supervision, it will produce stronger and more reliable results, benefit more
enterprises and communities, and promote the vigorous development of process complexity
measurement technology.

2. Program complexity research

Complexity is relative to simplicity, which refers to the characteristics of single, certainty,
fixation, invariance; the complexity refers to the characteristics of diversity, uncertainty,
randomness and variability [8]. Program complexity is a fundamental feature of program, but there
is no accepted precise definition. Most researchers believe that program complexity is the
difficulty of analyzing, designing, testing, maintaining and modifying software, and the difficulty
will increase day by day; and some researchers believe that program complexity is mainly
structural complexity and algorithmic complexity, which gradually occur in the software life
process, especially in the design and coding phase [9]. Therefore, in order to study the program
complexity, the analysis of the process of program structural complexity is the first step, and on
this basis, it determines what kind of measurement method is used to quantify the complexity: 𝑀: ሺ𝐶,𝑅ሻ → ሺ𝑁,𝑃ሻ. (1)

The process of analyzing the generation of program complexity is to generate the mapping
relationship 𝑀, from software code 𝐶 and the relationship between codes 𝑅, to the complexity
measurement results 𝑁, and the numerical relationship between measurement results 𝑃.

Take structured program 𝑆𝑃 as an example: 𝑆𝑃 = ⟨𝑆, 𝑆𝑒𝑞, 𝑆𝑒𝑙,𝑅𝑒𝑝⟩. (2)𝑆 includes basic statements (empty statements, assignment statements, procedure call

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

42 MATHEMATICAL MODELS IN ENGINEERING. JUNE 2023, VOLUME 9, ISSUE 2

statements), sequence control statements 𝑆𝑒𝑞, structure control statements 𝑆𝑒𝑙, and loop control
statements 𝑅𝑒𝑝.

The measurement of program complexity is to give an expression to each program, and use
this expression to describe various characteristics of program complexity. If 𝑆ଵ ∈ 𝑆𝑃, 𝑆ଶ ∈ 𝑆𝑃: 𝑀൫𝑆𝑒𝑞ሺ𝑆ଵ, 𝑆ଶሻ൯ = 𝑀ሺ𝑆ଵሻ × 𝑀ሺ𝑆ଶሻ, (3)

where × represents the multiplication of expressions. 𝑀൫𝑆𝑒𝑙ሺ𝑆ଵ, 𝑆ଶሻ൯ = 𝑀ሺ𝑆ଵሻ + 𝑀ሺ𝑆ଶሻ, (4)

where + represents the addition of expressions. 𝑀൫𝑅𝑒𝑝ሺ𝑆ଵሻ൯ = ሾ𝑀ሺ𝑆ଵ, 1ሻሿ௥≔௥೎ , (5)

where 𝑟 ≔ 𝑟௖represents substituting 𝑟 with 𝑟௖ in the expressions.

2.1. Performance behavior of procedural complexity

The main reasons for program complexity are: the complexity of operating environment,
software requirements, data model, design process, software project management, software
architecture, project testing and non-formal methods [10]. These reasons are ultimately manifested
in the complexity of program code data structure and control structure, where both control flow
and data flow generation are derived from abstract syntax trees in program understanding
techniques. Abstract syntax tree is generated by the input source program through lexical analysis,
syntax analysis and semantic analysis, and transformed and filtered through the basis of the parse
tree. Fig. 1 shows the process of program complexity of the static analysis.

Fig. 1. Program static analysis process

2.2. Program complexity measurement method

Measurement of program complexity is an important work in program understanding and
maintenance. The existing measurement methods include quantitative and qualitative methods.
Quantitative analysis can be divided into four types: program scale measurement, data complexity
measurement, computational complexity measurement, and control complexity measurement.
Qualitative analysis work attempts to explain the root of complexity rather than simply giving the
metric formula [11].

There are many measurements of software complexity algorithms that can be roughly divided

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627 43

into two categories: object-oriented software complexity measurements and process-oriented
software complexity measurements. The most active and fruitful research is process-oriented
software complexity measurements. This paper mainly uses the McCabe structure complexity
measurement method, HalStead software science measurement method and Line Count code line
measurement method. The McCabe measurement method is essentially a measure of the
complexity of the program topological structure, and the strict analysis and calculation of the
control structure of the program. It clearly points out the complex part of the program task
[12-13]. The HalStead measurement method is to take the operators and operands present in the
program as the counting objects, with the number of times they appear as the counting target
directly measured indicators, and then calculate the program length and workload according to the
HalStead complexity formula. The Line Count measurement method is a static analysis of the
physical scale of the program and the code characteristics.

According to Shannon's information theory, if the information source is based on probability 𝑃௝ randomly send the 𝑗-th message from the total of 𝑖 messages (1 ≤ 𝑗 ≤ 𝑖). Entropy is defined as:

𝐻 = −෍ 𝑃௝ logଶ 𝑃௝௜௝ୀଵ . (6)

If all messages are sent with equal probability, 𝑃௝ = 1 𝑖⁄ , so: 𝐻 = − logଶ 𝑖. (7)

In the program with length 𝑁, the vocabulary composition is as follows: 𝑁 = 𝑁ଵ + 𝑁ଶ, (8)

where 𝑁ଵ is the total number of operators, 𝑁ଶ is the total number of operands. These words can be
selected from 𝑛 with equal probability: 𝑛 = 𝑛ଵ + 𝑛ଶ, (9)

where 𝑛ଵ is the number of operator types, 𝑛ଶ is the number of operand types. Therefore:

𝑃௝ = 1𝑛ଵ + 𝑛ଶ. (10)

Then for the program, its entropy is: 𝐻 = 𝑁ு logଶሺ𝑛ଵ + 𝑛ଶሻ. (11)

If the predicted vocabulary is defined as follows: 𝐿𝐸 = 𝑁ு = 𝑛ଵ logଶ 𝑛ଵ + 𝑛ଶ logଶ 𝑛ଶ. (12)

The program volume 𝑉, that is, the minimum amount of information required to solve the
problem, reflects the lexical complexity of the program: 𝑉 = 𝐻 = 𝑁ு logଶሺ𝑛ଵ + 𝑛ଶሻ. (13)

Program level 𝑃𝐿 is the ratio of problem complexity to program complexity, which reflects
the efficiency of the program. The program level of high-level language is close to or up to 1,
where:

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

44 MATHEMATICAL MODELS IN ENGINEERING. JUNE 2023, VOLUME 9, ISSUE 2

𝑁ு = 𝑁 = 𝑁ଵ + 𝑁ଶ = 𝑛ଵ logଶ 𝑛ଵ + 𝑛ଶ logଶ 𝑛ଶ, (14)𝑃𝐿 = 2𝑛ଶ𝑛ଵ𝑁ଶ. (15)

Program language level 𝐿𝐿 is related to 𝑃𝐿 and 𝑉: 𝐿𝐿 = 𝑃𝐿ଶ × 𝑉. (16)

From the predicted vocabulary and program level, it can be concluded that the workload 𝐸 of
the program is: 𝐸 = 𝐿𝐸𝑃𝐿. (17)

According to the above formula, the errors in the program can also be calculated, and the
number of program errors 𝐵 is directly proportional to the program volume:

𝐵 = 𝑉3000 = ሺ𝑁ଵ + 𝑁ଶሻ logଶሺ𝑛ଵ + 𝑛ଶሻ3000 . (18)

3. Analysis and design of OINK frame structure

OINK is an open source program understanding tool, which can complete lexical analysis,
syntax analysis, abstract syntax tree and program flow diagram to realize software complexity
analysis. Its core function is program understanding. OINK can perform many static analysis
methods of C and C++ programs, mainly for data stream analysis. In the program understanding
function, it includes analyzing and processing the data flow at the expression level and type level
of the source program, and the control flow at the statement level (which is realized by the relevant
functions of Elsa). It can also realize the output of the analysis results such as the data flow graph
of program, the control flow graph, and the class inheritance relationship graph (C++).

3.1. Analysis of OINK frame structure

There are many source code files of OINK, which need to be analyzed according to the code
files on which different functions depend. The objects analyzed include function interface
definition, variable declaration and object dependency in the code.

OINK's source package (OINK-Stack) includes smbase, ast, elkhound, elsa, libregion, libqual,
platform-model, and oink. OINK has three main functions, including staticprint, cfgprint and
dfgprint. Staticprint analyzes the inheritance relationship of classes of object-oriented; cfgprint
main analyzes program structure, and outputs program control flow graph; dfgprint analyzes the
data transfer state of the program, and displays the analysis results from the form of data flow
graph of the program. Fig. 2 shows the structure of dependency and reference relationships of
OINK source code files to better help us develop software complexity measurement system.

After understanding the organizational structure of OINK source code file, the OINK platform
interface for developing measurement system can be realized. For example, McCabe complexity
is the complexity measurement of program structure, and the cfgprint.cc file in OINK source code
can output the program control flow graph, so the interface of McCabe complexity measurement
system can be realized in this file.

3.2. Design of OINK data service interface

Through the previous analysis, it can be concluded that OINK can complete semantic analysis,
lexical analysis and abstract syntax tree construction in the process of program understanding. On

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627 45

this basis, the OINK data service interface is designed, which can provide data measurement
element for program complexity measurement technology. Fig. 3 shows the OINK data service
interface. In Fig. 3, the information statistical interface of edge nodes and arc nodes provides
measurement data onto program control structure (i.e., McCabe standard); the information
statistical interface of program operands and operators provides measurement data for the physical
structure of the program (i.e., Halstead standard). These service interfaces are all deployed on the
server in the form of Web Service [14].

Fig. 2. OINK source code file structure

Fig. 3. Design of OINK data service interface

The operations performed by the data service interface can be defined as the following
formula: 𝑅 = 𝐹ሺ𝐶ሻ. (19)𝐹 represents the operation done by the data service interface; 𝐶 represents the incoming data,
that is, the original code; 𝑅 is the operation result: 𝐹 = 〈𝑓ଵ, 𝑓ଶ,𝑓ଷ,𝑓ସ,𝑓ହ〉. (20)𝐹 is divided into 𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑓ସ, 𝑓ହ five steps: 𝑅 = 〈𝑅௘ ,𝑅௔,𝑅௡భ ,𝑅௡మ〉. (21)𝑅 includes edge node information, arc node information, operand information and operator
information.

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

46 MATHEMATICAL MODELS IN ENGINEERING. JUNE 2023, VOLUME 9, ISSUE 2

The specific steps of data service interface are: 𝐶ᇱ = 𝑓ଵሺ𝐶ሻ, (22)

where 𝑓ଵ stands for preprocessing operation, 𝐶 is the original code, 𝐶ᇱ is the code after deleting
preprocessing statements, comments, spaces and macro replacement: 𝑦 = 〈𝑇,𝐴〉 = 𝑓ଶሺ𝐶ᇱሻ. (23)𝑓ଶ represents lexical analysis operation, the result 𝑦 is lexical unit 〈𝑇,𝐴〉, (TokenName,
AttributeValue). 𝐼 = 𝑓ଷሺ𝐶ᇱ,𝑦ሻ, (24)

where 𝑓ଷ represents semantic analysis operation, to match 𝐶ᇱ with 𝑦 for type check. 𝑧 = 𝐴𝑆𝑇 = 𝑓ସሺ𝐼ሻ, (25)

where 𝑓ସ represents the operation of generating an abstract syntax tree, and the abstract syntax tree 𝐴𝑆𝑇 will be obtained. 𝑅 = 𝑓ହሺ𝑧ሻ. (26)

Finally, the abstract syntax tree is analyzed in 𝑓ହ, and send to different interfaces to get 𝑅.

4. Design of program complexity measurement technology based on OINK framework

In order to complete the program complexity measurement technology, the data acquisition
module and complexity analysis module are designed based on OINK data interface. The data
acquisition module is used to collect the necessary data required for complexity calculation, and
the complexity analysis module is used to calculate the complexity data results. Finally, the data
can be stored and queried through data management.

4.1. Design of program measurement data acquisition module based on OINK framework

Data acquisition module needs to complete two tasks: obtaining data onto the intermediate
results of program understanding platform; and storing data onto the form defined by the data
structure. The function structure of the data acquisition module is shown in Fig. 4.

Fig. 4. Function structure of data acquisition module

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627 47

The function of the data acquisition module shown in Fig. 4 includes: collecting data from the
program understanding platform, classifying and storing data according to different types of data
structures, and storing all data into the database. If the system is abnormal in the process of
collecting data, the data acquisition module will receive abnormal information and send it to the
system for processing. The algorithm designed in the data acquisition module is shown in Fig. 5.

Fig. 5 shows the commonly used interface name in the algorithm. The retrieve function judges
that the data to be collected by the system is for Line Count complexity measurement, McCabe
complexity measurement, or HalSteadcomplexity measurement, according to the value of
parameters; then collects different data. The search function can traverse the number of operators
and operands from the abstract syntax tree, and can also obtain the number of nodes and arcs and
the number of branch judgments from the program control flow diagram. The Send function to
send the obtained data onto the complexity measurement system.

Fig. 5. Design of data acquisition interface

4.2. Design of complexity measurement analysis module for target program

The system can support the measurement of Line Count Complexity, McCabe complexity and
HalStead complexity, which are the core function of the system. The functional structure of its
implementation is shown in Fig. 6.

Fig. 6. Functional structure of measurement and calculation

It can be seen from the Fig. 6 that the functional principle of the complexity measurement
system is to send the command parameters for executing complexity measurement of the
human-computer interaction platform, and analyze the types of command parameters through the
analysis command parameter interface of the measurement system. There are three main
commands of complexity measurement: Line Count complexity command, McCabe complexity
command and Halstead complexity command. The measurement system retrieved the
corresponding data measurement element from the database and output the result after calculation.
If the required data cannot be found from the database, the system issues a prompt message of
command execution failure.

The measurement and calculation functions of the system mainly include the calculation

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

48 MATHEMATICAL MODELS IN ENGINEERING. JUNE 2023, VOLUME 9, ISSUE 2

functions of Line Count complexity, McCabe complexity and Halstead complexity. Some specific
differences between these three functions are shown in Table 1.

Due to the complexity of the algorithm structure, after describing the data acquisition
algorithm of McCabe complexity measurement based on OINK platform, the next step is to
analyze the algorithm of calculating cycle complexity measurement of McCabe complexity.

The algorithm mainly uses the cycle complexity to calculate the program control flow diagram.
In formula, 𝑛௖ stands for cycle complexity, 𝑛௔ stands for the number of arcs, 𝑛௡ stands for the
number of nodes: 𝑛௖ = 𝑛௔ − 𝑛௡ + 2. (27)

If the calculated cycle complexity is not equal to the result of judging the number of branches
plus 1, it indicates that the input parameters of the algorithm are wrong, and the error information
report is output. If the calculation is correct, the algorithm returns the value of cycle complexity.

Table 1. Parameter comparison table of complexity measurement method
Parameters measurement Line count complexity McCabe complexity HalStead complexity

Command parameters 001 010 011

Input Code file Program diagram
information

Types of operators and
operands

Output Code line, blank line,
comment line

McCabe measurement
element

HalStead measurement
element

Performance measuring Physical scale of the
program Structure of program Length of program

Data storage mode Database Database Database
Exception handling Support Support Support

5. Experimental analysis

After completing the design of program complexity measurement technology based on OINK
framework, the experimental test is carried out. Firstly, load the test codes AutoCode.c and
AutoCode2.c, and then the abstract syntax tree is generated based on the OINK framework. After
that, the metadata required for program complexity measurement is obtained through the data
service interface. Based on these measurement data, the McCabe measurement results, Line Count
measurement results and Halstead measurement results of test codes are obtained. Finally, the
measurement results are compared with the actual complex measurement data of test codes, as
shown in Table 2, Table 3, Table 4 and Table 5.

Table 2. Comparison table of experimental data in line count measurement
Object measured Experimental data 1 Real data 1 Accuracy 1 Experimental result

Code line 643 643 100 % Completely accurate
Blank line 27 27 100 % Completely accurate

Comment line 15 15 100 % Completely accurate
Object measured Experimental data 2 Real data 2 Accuracy 2 Experimental Result

Code line 1086 1086 100 % Completely accurate
Blank line 67 67 100 % Completely accurate

Comment line 48 48 100 % Completely accurate

Table 3. Comparison table of experimental data in McCabe measurement
Object measured Experimental data 1 Real data 1 Accuracy 1 Experimental result

McCabe cycle complexity 8 8 100 % Completely accurate
Object measured Experimental data 2 Real data 2 Accuracy 2 Experimental result

McCabe cycle complexity 13 13 100 % Completely accurate

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627 49

Table 4. Comparison table of experimental data in Halstead measurement
Object measured Experimental data 1 Real data 1 Accuracy 1 Experimental result
Program volume 209.50 210.68 99.44 % Accurate

Program level 0.13 0.13 99.28 % Accurate
Procedure difficulty 7.45 7.50 99.33 % Accurate

Object measured Experimental data 2 Real data 2 Accuracy 2 Experimental result
Program volume 438.23 442.21 99.10 % Accurate

Program level 0.078 0.079 99.00 % Accurate
Procedure difficulty 12.52 12.67 98.80 % Accurate

Table 5. Comparison table of experimental data in Standardized measurement
Object measured Experimental data 1 Real data 1 Accuracy 1 Experimental result

Standardization complexity 3.37 3.43 98.25 % Accurate
Object measured Experimental data 2 Real data 2 Accuracy 2 Experimental result

Standardization complexity 6.16 6.29 98.01 % Accurate

It can be seen from Table 2 to Table 5 that the results calculated by the program complexity
measurement technology based on the OINK framework are almost completely consistent with
the real data, in which the Line Count measurement and McCabe measurement are completely
consistent, and the accuracy of Halstead and standardized complexity measurement is close to
99.9 %. In order to more clearly illustrate the consistency of the two data, their histogram
comparison and line chart comparison is shown in Fig. 7 and Fig. 8.

Fig. 7. Histogram of comparison between experimental data and real data

Fig. 8. Line chart of accuracy comparison between experimental data and real data

It is shown in the histogram that the experimental data are almost the same as the real data in
the y axis, namely, the direction of the numerical axis. In Fig. 8 the curve direction of accuracy is
almost parallel to 100 %. This further proves the rationality and accuracy of this technology.

0
100
200
300
400
500
600
700

96,00%
96,50%
97,00%
97,50%
98,00%
98,50%
99,00%
99,50%

100,00%

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

50 MATHEMATICAL MODELS IN ENGINEERING. JUNE 2023, VOLUME 9, ISSUE 2

6. Conclusions

The program complexity measurement technology studied in this paper uses OINK framework
to statically analyze the program code. Firstly, based on the abstract syntax tree, the information
statistics interface of edges and arcs of program control structure and the information statistics
interface of program operators and operands are designed. Then, various types of measurement
metadata are classified and summarized through the data acquisition algorithm, and the
complexity results of the program are directly analyzed through the complexity measurement
calculation module. Finally, the data is stored and queried through the measurement data
management module.

This paper extracts the parameter factors required for code complexity analysis through
abstract syntax tree, analyzes and calculates the complexity of software program structure by using
Line Count measurement calculation method, McCabe measurement calculation method and
Halstead measurement calculation method, and gives a comprehensive measurement report. At
the end of this paper, the application testing environment is established, the application testing
process is designed in detail, and then the complexity measurement test is carried out on the
randomly selected program code. Through the analysis of the results, it shows the consistency
between the system test results and the program complexity analysis results. Therefore, from the
perspective of practical application, it proves the accuracy and feasibility of the program
complexity analysis technology based on OINK proposed in this paper.

Acknowledgements

The authors have not disclosed any funding.

Data availability

The datasets generated during and/or analyzed during the current study are available from the
corresponding author on reasonable request.

Author contributions

Liping Qiao: writing – review and editing. Xuejun Zou: writing – original draft preparation.
Rui Duan: prepare experimental materials and collect experimental data. Xueting Jia: data
collation and analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] Y. W. Tang, “Algorithm for introducing test complexity to improve the efficiency of software test
management,” Business Herald, Vol. 21, pp. 29–30, 2015.

[2] W. Wang, “Large-scale software complexity metrics based on complex networks,” Software, Vol. 36,
No. 11, pp. 92–95, 2015.

[3] S. Nalinee, “Complexity measure of software composition framework,” Journal of Software
Engineering and Applications, No. 4, pp. 324–337, 2017.

[4] E. Pira, V. Rafe, and A. Nikanjam, “Deadlock detection in complex software systems specified through
graph transformation using Bayesian optimization algorithm,” Journal of Systems and Software,
Vol. 131, pp. 181–200, Sep. 2017, https://doi.org/10.1016/j.jss.2017.05.128

[5] B. Y. Wang, “Research on Complexity Measurement of software system architecture,” Software Guide,
Vol. 9, No. 10, pp. 7–9, 2010.

RESEARCH AND DESIGN OF PROGRAM COMPLEXITY MEASUREMENT TECHNOLOGY BASED ON OINK FRAMEWORK.
LIPING QIAO, XUEJUN ZOU, RUI DUAN, XUETING JIA

 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627 51

[6] Piqueira and José Roberto C., “Weighting order and disorder on complexity measures,” Journal of
Taibah University for Science, Vol. 11, No. 2, pp. 337–343, Mar. 2017,
https://doi.org/10.1016/j.jtusci.2016.05.003

[7] H. Tian and H. Zhao, “Metrics for software structure complexity based on software weighted network,”
Computer Science, Vol. 43, pp. 506–508, 2016.

[8] C. L. Coyle and M. Peterson, “Learnability testing of a complex software application,” in Design, User
Experience, and Usability: Novel User Experiences, Vol. 9747, pp. 560–568, 2016,
https://doi.org/10.1007/978-3-319-40355-7_53

[9] J. K. Chhabra and V. Gupta, “Evaluation of object-oriented spatial complexity measures,” ACM
SIGSOFT Software Engineering Notes, Vol. 34, No. 3, pp. 1–5, May 2009,
https://doi.org/10.1145/1527202.1527208

[10] N. Cai, “On quantitatively measuring controllability of complex networks,” Physica A: Statistical
Mechanics and its Applications, Vol. 474, pp. 282–292, May 2017,
https://doi.org/10.1016/j.physa.2017.01.053

[11] Jerry Gao, “Complexity metrics for regression testing of component-based software,” Journal of
Software, Vol. 26, No. 12, pp. 3043–3061, 2015.

[12] I. H. Suh, S. H. Lee, N. J. Cho, and W. Y. Kwon, “Measuring motion significance and motion
complexity,” Information Sciences, Vol. 388-389, pp. 84–98, May 2017,
https://doi.org/10.1016/j.ins.2017.01.027

[13] K. Kuramitsu, “Fast, flexible, and declarative construction of abstract syntax trees with PEGs,” Journal
of Information Processing, Vol. 24, No. 1, pp. 123–131, 2015,
https://doi.org/10.48550/arxiv.1507.08610

[14] S. Z. Chen, Z. Y. Feng, C. Xu, and H. Liu, “Research on web services development based on service
network,” Acta Scientiarum Naturalium Universitatis Nankaiensis, Vol. 43, No. 5, pp. 60–66, 2010.

Qiao Liping received master’s degree in computer application technology from Beijing
University of Technology, Beijing, China, in 2010. Now he works in Hebei Vocational
University of Technology and Engineering. His current research interests include Data
Analysis, Software Technology and Application.

Zou Xuejun received bachelor’s degree in railway signal from Lanzhou Jiaotong
University, Lanzhou, China, in 2013. Now he works in Wuhan Electric Service Depot. His
current research interests include Basic equipment information and Equipment operation
safety.

Duan Rui received master’s degree in railway signal from Lanzhou Jiaotong University,
Lanzhou, China, in 2015. Now he works in Wuhan Electric Service Depot. His current
research interests include Basic equipment information and Equipment operation safety

Jia Xueting received master’s degree in software engineering from Beihang University,
Beijing, China, in 2021. Now she works in Hebei Vocational University of Technology
and Engineering. Her current research interests include Computer Software and Theory,
Software Technology and Application.

