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Abstract. This paper presents the development of physics-informed machine learning models for 
subsurface flows, specifically for determining pressure variation in the subsurface without the use 
of numerical modeling schemes. The numerical elliptic operator is replaced with a neural network 
operator and includes comparisons of several different machine learning models, along with linear 
regression, support vector regression, lasso, random forest regression, decision tree regression, 
light weight gradient boosting, eXtreme gradient boosting, convolution neural network, artificial 
neural network, and perceptron. The mean of absolute error of all models is compared, and error 
residual plots are used as a measure of error to determine the best-performing method.  
Keywords: porous media, elliptic pressure equation, machine learning, CNN, ANN, neural 
network, deep learning, physics informed. 

1. Introduction 

Over the years, significant progress has been made in understanding multiscale physics 
through the numerical solution of partial differential equations. However, traditional numerical 
methods face challenges when dealing with real-world physics problems that have missing or 
noisy boundary conditions. In contrast, machine learning can explore large design spaces, identify 
correlations in multi-dimensional data, and manage ill-posed problems. 

Deep learning tools [5] are particularly effective at extracting useful information from 
enormous amounts of data and linking important features with approximate models. They are 
especially useful for multi-dimensional subsurface flow problems because of their inverse nature. 
Nevertheless, current machine learning approaches often lack the ability to extract interpretable 
information and knowledge from the data, leading to poor generalization and physically 
inconsistent predictions. 

To overcome these issues, physics-informed machine learning techniques [1-3] can 
incorporate physical constraints and domain knowledge into machine learning models. By 
“teaching” ML models about the governing physical rules, this approach can provide informative 
priors, such as strong theoretical constraints and inductive biases, that improve the performance 
of learning algorithms [4]. This process requires physics-based learning, which refers to the use 
of prior knowledge derived from observational, empirical, physical, or mathematical 
understanding of the world to improve machine learning algorithms' performance. 

Machine learning methods can be categorized into supervised learning, unsupervised learning, 
and reinforcement learning. Supervised learning involves training a model using labeled input and 
output data and can be further divided into regression and classification. Examples of regression 
models include linear regression [6], Lasso [7], support vector regression [8], and random forest 
regression [9], while examples of classification models include logistic regression [10], naive 
Bayes classifier, and KNN classifier [11]. Unsupervised learning is used for unlabeled output data, 
with examples including principal component analysis [12] and singular value decomposition 
[13]. Reinforcement learning, on the other hand, learns from the environment based on reward 
and penalty. 

https://crossmark.crossref.org/dialog/?doi=10.21595/mme.2023.23174&domain=pdf&date_stamp=2023-05-05
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In this paper we aim to apply Machine learning models to solve Single-phase Darcy’s flow 
equation. The Darcy flow equation is given as: 

𝑣 =  𝐾 ∇𝑝 + 𝜌𝑔∇𝑧𝜇 , (1)

where 𝐾 is permeability or conductivity of the porous medium, 𝜐 – Darcy’s flow velocity, 𝑝 – 
pressure, 𝜌 – fluid density, 𝜇 – dynamic viscosity of the fluid, 𝑔 – gravitational constant, 𝑧 – 
spatial direction. The given equation can be solved by assuming constant porosity of the porous 
media domain and incompressibility, which reduces the equation into an elliptic pressure equation. 
The elliptic pressure equation’s solution can be approximated via machine learning models. The 
equation’s solution is relevant for understanding flow in subsurface hydrogeology, hydrocarbon 
reservoirs, and geothermal systems. In recent times researchers have tried to use machine learning 
models for modelling porous media flow, a comparative analysis of recent research work is 
presented in Table 1. 

Table 1. Comparison of work done in this field 
Title Author Remark 

Physics-Informed 
Deep Neural 
Networks for 
Learning 
Parameters and 
Constitutive 
Relationships in 
Subsurface Flow 
Problems ([1]) 

A. M. Tartakovsky, 
C. Ortiz Marrero, 
Paris Perdikaris, 
G. D. Tartakovsky, 
and 
D. Barajas-Solano 

The authors propose a physics-informed machine 
learning method for estimating hydraulic conductivity in 
both saturated and unsaturated flows governed by 
Darcy’s law. By adding physics constraints to the 
training of deep neural networks, the accuracy of DNN 
parameter estimation could increase by up to 50 %. The 
proposed method uses conservation laws and data to 
train DNNs representing the state variables, 
space-dependent coefficients, and constitutive 
relationships for two specific scenarios: saturated flow in 
heterogeneous porous media with unknown conductivity 
and unsaturated flow in homogeneous porous media with 
an unknown relationship between capillary pressure and 
unsaturated conductivity. 

Physics-constrained 
deep learning for 
data assimilation of 
subsurface transport 
([2]) 

Haiyi Wu∗, Rui 
Qiao∗ 

The authors developed a modeling approach that uses 
sparse measurements of observables to predict full-scale 
hydraulic conductivity, hydraulic head, and concentration 
fields in porous media. The structure is described by a 
system parameter vector and a solution vector, with 
measurement data that consists of the vectors at the 
system boundaries and sparse measurements of the 
vectors inside the system. The goal is to estimate the 
full-scale system parameter when solution vectors are 
using the measured data, with an average relative error 
achieved by the modeling approach of 0.1. 

Computing 
Challenges in Oil 
and Gas Field 
Simulation ([26]) 

Jeroen C. Vink This paper discusses current simulation challenges and 
emerging computing strategies in the oil and gas industry 
to accurately model and optimize hydrocarbon 
production while minimizing environmental impact and 
maximizing resource recovery. Large-scale computer 
simulations are critical for mitigating risks associated 
with developing reservoirs in remote and hostile 
locations, but current techniques must be improved to 
meet the demands of today’s reservoirs. This includes 
simulating larger models with more geological detail, 
capturing fluid chemistry and thermodynamics in more 
detail, and reliably estimating uncertainty ranges in 
simulated results. 
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The Neural 
Upscaling Method 
for Single-Phase 
flow in Porous 
Medium ([27]) 

M. Pal, P. 
Makauskas, 
P. Saxena, P. Patil 

The paper presents the development of a Neural 
upscaling network for upscaling heterogeneous 
permeability fields using a feed-forward neural network 
with hidden layers trained using backpropagation. The 
Perlin noise function is used to generate a sub-surface 
permeability distribution, which is applied at each grid 
level to ensure self-consistency and comparability across 
resolutions. The algorithm generates a random pattern of 
values to create smooth, organic-looking surfaces. Mean 
square error is used to optimize neural network 
performance. 

Neural solution to 
elliptic PDE with 
discontinuous 
coefficients for flow 
in porous media 
([28]) 

M. Pal, P. 
Makauskas, M. 
Ragulskis, 
D. Guerillot 

The paper proposes a neural solution method for solving 
tensor elliptic PDEs with discontinuous coefficients. The 
method is based on a deep learning multi-layer neural 
network, which is claimed to be more effective than 
TPFA [29] or MPFA [29] type schemes. The paper 
presents a series of 2D test cases, comparing the Neural 
solution method with numerical solutions using TPFA 
and MPFA schemes with different degrees of 
heterogeneity. The accuracy and order of convergence of 
the method are analyzed, and a physics-informed neural 
network based on a CNN is proposed to improve 
accuracy. The method is evaluated on one and 
two-dimensional cases involving varying degrees of 
fine-scale permeability heterogeneity, and mean square 
error is used to optimize the network performance. 

This paper addresses the challenges of numerical simulation for subsurface flow and transport 
problems in porous media, emphasizing the complexity of domain modeling required for accurate 
representation of real-world entities and relationships. Traditional numerical simulations involve 
solving PDEs on a network of networks, which increases computational complexity and 
necessitates the creation of large matrices. To address this, the paper proposes the use of machine 
learning as a cost-effective and time-saving alternative for solving these problems. The 
finite-volume approach generates data for the study, and Fig. 1 shows the permeability distribution 
and pressure in a 2×8 grid. 

The strength of this approach lies in the comparative analysis of several machine learning 
models for solving single-phase Darcy’s flow equation. The objective is to develop a machine 
learning model that replicates numerical reservoir simulator outputs for single-phase flow 
problems, utilizing deep learning tools such as the Perceptron [14], Convolution Neural Network 
[15-22], and Artificial Neural Network models. The presented models are robust enough to predict 
pressure variation in the reservoir based on given permeability variations. The proposed approach 
removes challenges associated with numerical methods such as numerical diffusion, dispersion, 
and computational cost. 

The paper is organized as follows: subsurface flow problem is described in Section 2. Flow 
equations are described in Section 3. Machine learning methodology used in this paper is 
described in Section 4. Results are presented in Section 5 and conclusions follow in Section 6. 
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a) 

 
b) 

Fig. 1. a) Shows 1-D linear permeability distribution, b) pressure solution on a 2×8 grid 

2. Single-phase Darcy flow equation 

To derive an equation for flow in 1D, we assume that the cross-section area 𝐴 for flow as well 
as the depth 𝐷, are functions of the variable 𝑥 in our 1D space. Additionally, we introduce a term 
for the injection 𝑞 of fluid, which is equal to the mass rate of injection per unit volume of reservoir. 
Consider a mass balance in a small box shown in Fig. 2. The length of the box is ∆𝑥, the left side 
has area 𝐴 𝑥 , the right side has area 𝐴 𝑥 + ∆𝑥 . 

 
Fig. 2. Differential elements of volume for a one-dimensional flow 

Rate at which fluid mass enters the box at the left face is given by: 𝜌 𝑥 𝐴 𝑥 𝑣 𝑥 . (2)

Rate at which fluid mass leaves at the right face: 𝜌 𝑥 + Δ𝑥 𝐴 𝑥 + Δ𝑥 𝑣 𝑥 + Δ𝑥 . (3)

If we define the average value of 𝐴 and 𝑞 between 𝑥 and 𝑥 + ∆𝑥 as 𝐴∗and 𝑞∗, we get, that the 
volume of the box is 𝐴∗∆𝑥. 

Rate at which fluid mass is injected into the box is: 𝑞∗𝐴∗∆𝑥. (4)

The mass contained in the box is 𝜙∗𝜌∗𝐴∗∆𝑥. So, we get the rate of accumulation of mass in 
the box: 𝜕 𝜙∗𝜌∗𝜕𝑡 𝐴Δ𝑥. (5)

From conservation of mass: rate of mass in – rate of mass out + mass injection = mass accumulation. (6)

Putting values from Eq. (2-5) in Eq. (6), we yield: 
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𝜌 𝑥 𝐴 𝑥 𝑣 𝑥 − 𝜌 𝑥 + Δ𝑥 𝐴 𝑥 + Δ𝑥 𝑣 𝑥 + Δ𝑥 + 𝑞∗𝐴∗∆𝑥 = 𝜕 𝜙∗𝜌∗𝜕𝑡 𝐴Δ𝑥. (7)

Divided by Δ𝑥, assuming area is constant, and taking limit 𝑥 → 0, we will get: 

−∇ 𝜌𝑣 + 𝑞 = 𝜕 𝜙𝜌𝜕𝑡 , (8)

or 

∇ 𝜌𝑣 + 𝜕(𝜙𝜌)𝜕𝑡 = 𝑞. (9)

Here the source term 𝑞 models sources and sinks, that is, outflow and inflow per volume at 
designated well locations. For the incompressible single-phase flow assume that the porosity 𝜙 of 
the rock is constant in time and that the fluid is incompressible, which means density is constant. 
Then the time dependent derivative vanishes, and we obtain the elliptic equation for the water 
pressure. Putting value of 𝑣 from Eq. (1) into Eq. (9), we will get: 

∇ −𝐾(∇𝑝 − 𝜌𝐺)𝜇 = 𝑞𝜌. (10)

When solving fluid flow problems, it is common practice to specify boundary conditions to 
ensure that the system is well-defined, and that the solution is physically meaningful. In this case, 
a no-flow boundary condition is imposed on the reservoir boundary, which means that the fluid 
velocity vector 𝑣  must be perpendicular to the boundary, as indicated by the dot product 𝑣 ,  𝑛 = 0, where n is the normal vector pointing out of the boundary. This condition ensures that no 
fluid can enter or exit the reservoir through the boundary, and the system is effectively isolated. 
Other types of boundary conditions, such as constant pressure or velocity, could also be used 
depending on the specific problem being solved. 

2.1. Numerical solution: finite volume approach 

In finite-difference methods, the domain is discretized into a grid of points and the partial 
derivatives are approximated using difference formulas at each grid point. The solution is then 
obtained by solving a system of algebraic equations obtained from discretizing the PDE at each 
grid point. In contrast, the finite-volume method (FVM) divides the computational domain into a 
finite number of small control volumes, or cells. The fluxes of fluid through the boundaries of 
each cell are then calculated, and the equation is discretized over the entire domain, see Fig. 3. 
The resulting set of algebraic equations can be solved using iterative methods to obtain a numerical 
solution. There are several variations of the FVM, such as the two-point flux method (TPFM) [29] 
and the multi-point flux method (MPFM) [29], which differ in the way they approximate the 
fluxes. In the TPFM, the fluxes across each face of a control volume are approximated using a 
two-point approximation, which assumes that the flux at a face is proportional to the pressure 
difference between the neighboring control volumes. The TPFM is based on the principle of 
conservation of flux, which states that the total flux into a control volume must be equal to the 
total flux out of the control volume. 

We derive an equation that models flow of a fluid, say, water (𝑤), through a porous medium 
characterized by a permeability field 𝐾 and 𝑎 corresponding porosity distribution. So, Eq. (10) 
can be written as: 
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∇(𝑣 ) = 𝑞𝜌 . (11)

To derive a set of FV (finite volume) mass-balance equations for Eq. (11), denote a grid cell 
by Ω  and consider the following integral over Ω : 𝑞𝜌  −  ∇(𝑣 ) 
Ω 𝑑𝑥 =  0. (12)

 
Fig. 3. Notation of finite volume method 

Applying divergence theorem: 𝑣 
Ω 𝑛𝑑𝑣 =  𝑞𝜌 𝑑𝑥 

Ω , (13)

or −  ∇𝐾(𝑥,𝑦)∇(𝑝)𝑑𝑠 = 𝑞𝑑𝑠 = 𝑀 ,      Ω = 0 𝑥 1, 0 𝑦 1 , (14)

where Ω  is the interior, ∂Ω  is the boundary of control volume 𝑥 and 𝑛 denotes the outward-
pointing unit normal on ∂Ω . On writing Eq. (12) in more compact form, we get: −∇𝜆∇𝑢 =  𝑞𝜌  , (15)

where 𝜆 is mobility of water: 𝜆 =  𝐾𝜇 . (16)

Flow potential: 𝑢 = ∇𝑝 + 𝜌 𝑔ℎ. (17)

Approximation of flux between 𝑥 and 𝑦: 𝑣 =  − (𝜆∇𝑢)𝑛𝑑𝑣 . (18)
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The gradient ∇𝑢 on 𝛾  in the TPFA method have been replaced with: 

𝛿𝑢 =  2(𝑢 −  𝑢 )Δ𝑥 +  Δ𝑥 , (19)

where Δ𝑥  and Δ𝑥  denote the respective cell dimensions in the 𝑥-coordinate direction. 
Permeability 𝐾 can be calculated using distance weighted harmonic average of the respective 

directional cell permeability, 𝜆 , = 𝑛 𝜆 𝑛  and 𝜆 , = 𝑛 𝜆 𝑛 . 𝑛  directional permeability 𝜆  on 𝛾 : 

𝜆 = Δ𝑥 +  Δ𝑥 Δ𝑥𝜆 , +  Δ𝑥𝜆 , . (20)

So: 

𝑣 =  − (𝜆∇𝑢)𝑛 𝑑𝑣 = 𝛾 | 𝜆  𝛿𝑢 = 2| 𝛾 | 𝑢 −  𝑢 Δ𝑥𝜆 , +  Δ𝑥𝜆 , . (21)

Interface Transmissibility: 

𝑡 = 2  𝛾 Δ𝑥𝜆 , +  Δ𝑥𝜆 , . (22)

We get that Eq. (14) can be written as: 𝑡 𝑢 − 𝑢 = 𝑞. (23)

We will get linear equation in form of: 𝐴 𝑃 = 𝑄 , (24)

where 𝐴 is coefficient matrix, 𝐴 = 𝑎  where: 

𝑎 = 𝑡  ,     𝑘 = 𝑥,−𝑡  ,       𝑘 ≠ 𝑥, (25)

where 𝑃  is the vector of pressure at each node, and [𝑄] is the vector of flow rate at each node. 

3. Machine learning method: solution methodology 

The objective of this paper is to predict the pressure variation in reservoir with permeability 
using machine learning. It can be done using various methods, but ML is one of the best methods 
to do this task as conventional methods are time consuming. Fig. 4 shows workflow of the 
approach that we used to get Machine Learning result. 

3.1. Example problem investigated using machine learning  

In this paper, the given problem can be formulated as an elliptic Darcy PDE bounded by the 



PREDICTING FLOW IN POROUS MEDIA: A COMPARISON OF PHYSICS-DRIVEN NEURAL NETWORK APPROACHES.  
SHANKAR LAL DANGI, VILTĖ KARALIŪTĖ, NEETISH KUMAR MAURYA, MAYUR PAL 

 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627 59 

2-dimensional domain Ω. Eq. (14) can be written into a given form: −  ∇𝐾(𝑥,𝑦)∇(𝑝)𝑑𝑠 =  𝑞𝑑𝑠 = 𝑀,     Ω = 0 𝑥 1,    0 𝑦 1 . 

 
Fig. 4. Methodology workflow diagram 

Table 2. Parameter and values 
Parameter Values 

Pressure Bar, 1 bar = 14.7 psi 
Inflow rate 1 m3/sec 
Outflow rate 1m3/sec 
Permeability Millidarcy 
Length 1 m 
Height 1 m 
Width 1 m 
Viscosity of water 1 cp 

Table 2 presents the parameter values used in the problems discussed in this paper, while 
Table 3 shows the corresponding boundary conditions. The specific inflow and outflow rates used 
were both 1 m3/sec. The focus of the study was on investigating changes in pressure, which was 
specified at the corners of a simple 2D flow model using injection and production wells. The main 
objective was to solve equation 2 for pressure p over an arbitrary domain Ω, subject to appropriate 
boundary conditions (either Neumann or Dirichlet) on boundary 𝜕Ω. The term 𝑀 represents a 
specified flow rate, while ∇ = (𝜕𝑥,𝜕𝑦). The matrix 𝐾 can be a diagonal or a full cartesian tensor 
with a general form that can be expressed as: 𝐾 =  𝐾 𝐾𝐾 𝐾 . (26)

The full tensor pressure equation is assumed to be elliptic such that 𝐾 𝐾 𝐾 . The tensor 
can be discontinuous across internal boundaries of Ω ([25]). 
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Table 3. Boundary condition 𝑝(0,0) = 1 𝑝(1,1) = –1  𝑑𝑝(0, 𝑦)𝑑𝑥 = 0 
𝑑𝑝(1, 𝑦)𝑑𝑥 = 0 0 < 𝑦 < 1 𝑑𝑝(𝑥, 0)𝑑𝑦 = 0 
𝑑𝑝(𝑥, 1)𝑑𝑦 = 0 0 < 𝑥 < 1 

3.2. Data collection for machine learning method 

In this study, we utilized the Finite-volume approach to solve the elliptic PDE and gather data 
using MATLAB for various scenarios based on the problem stated in Section 3.1. We assumed 
the following while collecting data:  

1) Permeability was assumed to be symmetrical and constant within each cell. 
2) We placed an injection well at the origin and production wells at the points (±1, ±1).  
3) No-flow conditions were specified at all other boundaries.  
4) These boundary conditions resulted in the same flow as if we extended the five-spot well 

pattern to infinity in every direction. The flow in the five-spot is symmetric about both the 
coordinate axes.  

5) We approximated the pressure pw with a cell-wise constant function 𝑝 = 𝑝 , 𝑖  and 
estimated 𝑣 · 𝑛 across cell interfaces 𝛾 = 𝜕Ω ∩ 𝜕Ω  using a set of neighboring cell pressures 
to obtain Finite-volume methods. 

3.3. Data preprocessing 

The preprocessing of data is a critical task for machine learning algorithms. It involves 
transforming raw data into usable and understandable data. Raw data may contain missing values 
or erroneous entries that could lead to errors in the model. Therefore, it is essential to clean the 
data before feeding it into a machine learning model. In this step, we check for any missing values 
and erroneous entries in the data collected from the series of cases simulated using the 
Finite-Volume Method (FVM) approach for training and testing. Fig. 5 displays the presence or 
absence of missing values in our dataset for the 8×8 grid. Additionally, Fig. 6 presents a 
conceptual workflow for handling missing values and verifying erroneous entries. 

3.4. Data splitting 

Dividing the dataset into training and testing sets is a crucial step in any machine learning 
approach. The data is divided into two subsets: the training data and the testing data. To perform 
data splitting, we can utilize the inbuilt sklearn library. In our study, we partitioned the dataset into 
90 % for training data and 10 % for validation data. Additionally, we generated additional datasets 
for testing purposes to evaluate the performance of our model on previously unseen data. 

3.5. Feature scaling 

Data scientists often assume that their data follows a Gaussian (normal) distribution, which 
forms the basis of many machine learning models. Therefore, it is essential to convert the dataset 
into a normal distribution form. This is achieved by applying appropriate transformations to the 
dataset. To verify normality in the dataset, we can use a histogram or QQ plot. Feature scaling is 
a technique that standardizes the independent or dependent features of the data to a fixed range. If 
feature scaling is not applied, the machine learning algorithm may assign higher weights to greater 
values and lower weights to smaller values, regardless of their units. Feature scaling is performed 
during data preprocessing to handle data with varying units, magnitudes or values. 
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Fig. 5. Checking for missing values in grid 8×8 

 
Fig. 6. Workflow for Handling missing values 

3.6. Model selection 

Regression model in supervised machine learning is used to predict continues values. There 
are many types of regression models in machine learning. Selection of the model is mainly 
dependent upon the dataset. Seaborn, the visualization library of Python can be used to check the 
dependence of target variable on features. It requires a lot of experience to choose the model. The 
other method to select a model depends on the errors. This is an easy method. Lower the error, 
better the performance of the model. The names of the machine learning models on which we 
work in this paper are: 

– Linear regression. 
– Lasso regression. 
– Support vector regression. 
– Random forest regression. 
– XG Boosting. 
– Lightweight boosting. 
– Decision tree regressor. 
– Perceptron. 
– ANN. 
– CNN. 

3.7. Machine learning model training 

As discussed in the Data splitting section, data is split into two parts where training data used 
to train the model. After selecting the model, training data is used to find the relationship between 
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the target variable and the features. Model tries to fit the data according to selected model. Then 
the model finds the relationship between features and target and stores it in a variable. Model 
training is done for all three models one by one. 

3.8. Machine learning model testing 

Relationship between target variable and the features found from model training is used to 
predict the target by using testing data. Then the target variable in testing data and the predicted 
values of target variable with help of testing features data are compared. The model is evaluated 
by finding the various type of error between above two data. To check the performance of the 
model three types of errors are useful: 

– Mean absolute error. 
– Mean squared error. 
– Root mean squared error. 

3.8.1. Mean absolute error 

It is the mean of sum of Absolute errors. It can be expressed as the formula given below: 

𝑀𝐴𝐸 = 1𝑛 (|𝑦 − 𝑦 |), (27)

where 𝑦 – actual target value, 𝑦  – predicted target value, 𝑛 – number of data. 

3.8.2. Mean squared error 

It is the mean of sum of square of the errors. It can be expressed as the formula given below: 

𝑀𝑆𝐸 = 1𝑛 𝑦 − 𝑦 . (28)

3.8.3. Root mean squared error 

It is the square-root of the mean of sum of square of the errors. It can be expressed as the 
formula given below: 

𝑅𝑀𝑆𝐸 =  1𝑛 𝑦 − 𝑦 . (29)

In this paper we will work mean absolute error and mean squared error.  

4. Results 

Next, we present the results of our machine learning approaches. Table 4 shows the 
architecture of CNN model for 2×8 grid, 8×8 grid, 32×32 grid and 64×64 grid dimensions. We 
used Relu. Activation function in hidden layers for all dimensions of grid and linear activation in 
output layers for all dimension of grid. For 2×8 grid, which means that grid has 2 layers in 𝑦 
direction and 8 cells in 𝑥 direction, support vector regression model works best with a mean 
absolute error of 0.69. SVR works better than linear regression because it uses kernel function, so 
our model can work on non-linear datasets too. Kernel function which we used in the model is 
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radial basis function (RBF). Without the hyper-tuning Decision tree regression model having an 
over-fitting problem on 2×8 Grid, we get very low errors in the training dataset of order 10-16 and 
we get extremely high errors on validation and testing datasets. Best Parameters which minimize 
over-fitting are max depth = 3, min samples leaf = 1, and min samples split = 2. We found thar 
our model for comparison in higher dimension grid gives larger errors. 

 
Fig. 7. a) 2D view of permeability distribution using FVM, b) CNN predicted pressure,  

c) actual pressure using FVM and d) Lasso predicted pressure for 8×8 grid 

4.1. Mean absolute and mean squared errors 

The results are compared for different models on grid dimensions of 2×8, 8×8, 32×32, and 
64×64 using mean absolute errors (presented in Figs. 8-11) and mean squared errors (presented in 
Figs. 11-15). Results indicated that the models performed well, and there was not a significant 
difference in mean absolute error between validation and testing. The 2D results obtained from 
machine learning models are compared to actual pressure on 8×8, 32×32, and 64×64 grids (shown 
in Fig. 7 and Fig. 16-17). The (a) part shows input permeability, the (c) part shows the actual 
pressure output obtained from the Finite-Volume approach, and the (b) and (d) parts show the 
pressure predicted through machine learning model. 

Table 4. Architecture of CNN model 

Grid No. of hidden layers Activation Kernel 
size kernel_regularizer Learning 

rate Hidden layer Output layers 

2×8 

5 (4 CNN layers 
(filters=512,256, 128,64) 

and 1 Dense  
layers (filters = 32)) 

Relu Linear 3 L2 Regularizer with an 
alpha value of   

.01 at the Dense Layer 

1e-06 

8×8 

6 (5 CNN layers 
(filters=1024,512,256 
,128,64) and 1 Dense 
layers (filters = 32)) 

Relu Linear 3 L2 Regularizer with an 
alpha value of 

.01 at the last layer of 
CNN layers 

1e-03 

32×32 

4 (3 CNN layers 
(filters = 256, 128, 

64) and 1 Dense layers) 

Relu Linear 3 L2 Regularizer with an 
alpha value of  

.01 at the last layer of 
CNN layers 

1e-06 

64×64 

3 (2 CNN layers 
(filters = 128, 64) and 1 

Dense layers (filters 
= 32)) 

Relu Linear 3 L2 Regularizer with an 
alpha value of  

.01 at the last layer of 
CNN layers 

1e-03 
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Fig. 8. Mean absolute error on 2×8 grid 

 
Fig. 9. Mean absolute error on 8×8 grid 

 
Fig. 10. Mean absolute error on 32×32 grid 

 
Fig. 11. Mean absolute error on 64×64 grid 
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Fig. 12. Mean squared error on 2×8 grid 

 
Fig. 13. Mean squared error on 8×8 grid 

 
Fig. 14. Mean squared error on 32×32 grid 

 
Fig. 15. Mean squared error on 64×64 grid 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 16. a) 2D view of permeability distribution, b) CNN predicted pressure,  
c) actual pressure, d) lasso predicted pressure for 32×32 grid 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 17. a) 2D view of permeability distribution, b) ANN predicted pressure,  
c) actual pressure, d) CNN predicted pressure for 64×64 grid 

4.2. Residual errors 

To verify our result, we used residual plot. The residual plot shows the difference between the 
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observed response and the fitted response values. Simply if our model can predict actual pressure 
then it shows zero difference, in our plot this can be shown by white color. The residual plots are 
shown for 8×8 grid, 32×32 and 64×64 grids for different methods that are presented in Figs. 18-21. 

 
Fig. 18. Residual plot for CNN, ANN, random forest and decision tree regression for 8×8 on a grid 

 
Fig. 19. Residual plot for perceptron, support vector regression, linear regression, Lasso regression,  

light weight gradient, eXtreme Gradient Boosting on an 8×8 grid 
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Fig. 20. Residual plot for a) random forest, b) eXtreme gradient boosting, c) Lasso regression,  

d) CNN model, e) ANN Model, f) support vector regression model for 32×32 grid 

 
Fig. 21. Residual plot for CNN, ANN, perceptron, linear regression, random forest regression, eXtreme 

gradient boosting, Lasso regression, light weight gradient boosting for 64×64 grid 

5. Conclusions 

The paper begins by generating a material balance equation and defining a finite volume 
approach mathematically for Darcy's equation. To predict pressure variation in a reservoir based 
on permeability variation in different grid sizes, several machine learning approach have been 
tested. Ten different machine learning models, including linear regression, support vector 
regression, random forest regression, lasso regression, light weight gradient boosting, extreme 
gradient boosting, decision tree regression, perceptron, artificial neural network (ANN), and 
convolutional neural network (CNN) were used to predict pressure. The analysis shows that CNN, 
linear regression, and lasso regression had the lowest mean absolute error (MAE) and mean 
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squared error (MSE) values, while the decision tree regression model had the highest error. The 
CNN model demonstrated the best performance on the validation dataset for most grid 
dimensions, and both the CNN and ANN models performed well on a 64×64 grid. In conclusion, 
the lower the error values, the better the model performance, and the CNN and ANN models 
demonstrated good performance for this particular prediction task. 
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