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Abstract. The governing equations of motion for an isotropic strain-gradient thermoelastic 
material with diffusion are formulated in context of Lord and Shulman generalization of 
thermoelasticity and are further specialised for a two dimensional plane. Plane harmonic solution 
of the governing equations in two-dimension suggests the existence of five plane waves which 
include four coupled longitudinal waves and a shear vertical wave. A numerical example is 
considered to illustrate graphically the effect of frequency, measure constant of diffusion, measure 
constant of thermo-diffusion, thermal relaxation time, diffusive relaxation time and the 
coefficients of hyperstress tensor on the phase speed and attenuation coefficients of the plane 
waves. 
Keywords: plane wave, phase velocity, attenuation coefficient, thermal and diffusion relaxation 
times, hyperstress coefficients. 

1. Introduction 

Biot [1] gave the theory of coupled thermoelasticty, in which equation of motion and heat 
conduction equation are coupled. This theory eliminates the first shortcoming of uncoupled theory 
that elastic changes have no effect on the temperature. To overcome the second shortcoming of 
uncoupled theory, the non-classical theories of Lord and Shulman [2], Green and Lindsay [3], 
Green and Naghdi [4] and Tzou [5] came in to existence which are also referred as generalized 
thermoelastic theories in the literature. Ezzat and his coworkers [6-9] deveoped various new 
thermoelastic theories by considering various factors including the fractional order, memory-
dependent, variable thermal conductivity and phase lag. 

A spontaneous movement of particles, from high region concentration to low region 
concentration is called as diffusion. The coupling of temperature, mass diffusion and strain 
parameters in an elastic solid is called as thermodiffusion. The diffusion process has many 
application in fields of oil extractions, integrated circuit fabrication, geophysics and 
semiconductor industry. The process of thermodiffusion is applied in exploration of the field 
associated with the advent of semiconductor devices and the advancement of microelectronics. 
Nowacki [10-12] considered the coupling of elastic, thermal and diffusion parameters and 
developed a coupled theory of thermodiffusion. Further, Sherief et al. [13] derived the governing 
equations for a theory of generalized thermodiffusion in elastic solids. Aoudai [14] considered the 
uniqueness and reciprocity theorem in elastic media with generalized thermoelastic diffusion. 
Ezzat and Fayik [15] applied fractional calculus to derive an another theory of thermodiffusion in 
elastic solids. Karamany and Ezzat [16] introduced a theory of generalized thermodiffusion which 
was based on the memory-dependent derivatives. Recently, Li et al. [17] and Abouelregal [18] 
studied the effects of thermodiffusion in various anisotropic devices. 

The gradient theory of elasticity is considered to be adequate for investigating important 
problems related to size effects, chiral materials and nanotechnology. The origin of the strain 
gradient theories of nonsimple elastic solids goes back to works of Toupin [19] and Mindlin and 
Eshel [20]. Aifantis [21] formulated gradient elasticity theories for infinitesimal deformations. 
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Recently, Iesan and Quintanilla [22] developed the strain gradient theory of thermoviscoelasticity. 
There are various applications of strain gradient theories in literature including Ahmadi and 
Firoozbakhsh [23], Aifantis ([24], [25]), Forest et al. [26], Forest and Aifantis [27], Iesan and 
Quintanilla ([28] and [29]). Aouadi et al. [30] developed a consistent nonlinear theory of strain 
gradient theory for thermoelastic diffusion materials and derived the basic equation of nonlinear 
strain gradient theory of thermoelasticity with mass diffusion effect. 

Wave propagation in thermoelastic materials is a topic of interest for many researchers since 
last many decades. Chadwick and Sneddon [31] studied the plane wave in a thermoelastic solid. 
Puri [32] studied the plane waves in generalized thermoelastic solid in context of Lord Shulman 
theory. Agarwal [33] studied the plane waves in generalized thermoelastic solid in context of both 
Green Lindsay and Lord-Shulman theories. Sharma et al. [34] studied the plane harmonic waves 
in orthorhombic heat conducting materials. Verma and Hasebe [35] studied the wave propagation 
in plates of general anisotropic media. Singh ([36], [37]) explored the plane wave characteristics 
in a generalized thermoelastic medium with diffusion in context of Lord-Shulman, Green-Lindsay 
and Green-Nagdhi theories. Various other research works on wave propagation in thermoelastic 
diffusive materials are also available in literature, which include Othman et al. [38], Kumar and 
Gupta [39], Deswal et al. [40]. 

No theoretical/numerical study is traced in literature yet which investigated the characteristics 
of plane waves in a strain-gradient generalized thermoelastic medium with the effects of 
diffusion/mass transfer. Motivated by the strain gradient theory of thermoelastic diffusive material 
given by Aouadi et al. [30], the plane wave characteristics are investigated in an isotropic strain-
gradient thermoelastic diffusive material. In Section 2, the governing equations of an isotropic 
model are derived with the help of Lord and Shulman [2] and Aouadi et al. [30]. In Section 3, the 
governing equations are specialized for a plane. These specialized equations are solved in 
Section 4 to explore the possibility of plane waves in the model. Two velocity equations for plane 
waves are derived which suggest the propagation of four coupled longitudinal waves and a shear 
vertical wave. Some special cases of these velocity equations are also derived in absence of 
diffusion parameters or hyperstress coefficients or both parameters. A numerical example of 
Magnesium is considered in Section 5 to illustrate graphically the phase speeds and attenuation 
coefficients of plane waves. The theoretical and numerical findings of the present work are 
presented in the last section. 

2. Governing equations of an isotropic model 

In absence of body forces and external heat sources, the governing equations of an isotropic 
strain-gradient thermoelastic diffusive material are formulated in context of Aouadi et al. [30] and 
Lord and Shulman [2] theories as. 

(a) Equations of motion: 

𝜌 𝜕 𝑢𝜕𝑡 = 𝜇∇ 𝑢 − 𝜈 ∇ 𝑢 + 𝜇 + 𝜆 𝜕𝑢𝜕𝑥 𝜕𝑥 − 𝜈 ∇ 𝜕𝑢𝜕𝑥 𝜕𝑥 − 𝛾 𝜕Θ𝜕𝑥 − 𝛾 𝜕𝑃𝜕𝑥 . (1)

(b) Heat conduction equation: 

1 + 𝜏 𝜕𝜕𝑡 𝛾 𝜕𝑒𝜕𝑡 + 𝐶 𝜕Θ𝜕𝑡 + 𝑑 𝜕𝑃𝜕𝑡 = 𝜅∇ 𝜃. (2)

(c) Mass diffusion equation: 

1 + 𝜏 𝜕𝜕𝑡 𝛾 𝜕𝑒𝜕𝑡 + 𝑑 𝜕Θ𝜕𝑡 + 𝑟 𝜕𝑃𝜕𝑡 = ℎ∇ 𝑃, (3)
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where: 

𝛾 = 𝛽 + 𝑎𝛽𝑏 ,     𝛾 = 𝛽𝑏 ,     𝜆 = 𝜆 − 𝛽𝑏 ,     𝐶 = 𝜌𝑐𝑇 + 𝑎𝑏 ,      𝑑 = 𝑎𝑏 ,     𝑟 = 1𝑏, 𝛽 = (3𝜆 + 2𝜇)𝛼 ,    𝛽 = (3𝜆 + 2𝜇)𝛼 ,     ∇ = 𝜕𝜕𝑥 + 𝜕𝜕𝑥 + 𝜕𝜕𝑥 , 
in which 𝜌 is the density of material, 𝜆, 𝜇 are the Lame’s constants, 𝜅 is coefficient of thermal 
conductivity, ℎ is the coefficient of mass diffusion conductivity, 𝜈 , 𝜈  are constitutive 
coefficients of hyperstress tensor, 𝑎 is the measure constant of thermo-diffusive effect, 𝑏 is the 
measure constant of diffusive effect, 𝜏  is the thermal relaxation time, 𝜏  is the diffusion 
relaxation time, 𝑐  is the specific heat at constant strain, 𝛼  is coefficient of linear thermal 
expansion, 𝛼  is the coefficient of linear diffusion expansion, 𝑃 is the chemical potential per unit 
mass of diffusive material, Θ is increment in temperature, 𝑇  is the temperature of the body in 
natural state, 𝑢  is the displacement vector, 𝑒  are the components of strain tensor, 𝑒 = 𝑢 , , 𝑥  
and 𝑥  are dependent variables and ∇  is the Laplace operator. 

3. Specialization in two-dimension 

A half-space of an isotropic thermoelastic material with diffusion in strain gradient theory is 
considered in rectangular Cartesian coordinate system (𝑥 , 𝑥 , 𝑥 ) having the surface of the 
half-space as the plane 𝑥 = 0. Therefore, the present analysis is restricted to 𝑥 − 𝑥  plane. The 
following components of displacement vector are taken as Eq. (4): 𝑢 = 𝑢 (𝑥 , 𝑥 , 𝑡), 𝑢 = 𝑢 (𝑥 , 𝑥 , 𝑡), 𝑢 = 0. (4)

Using the Helmholtz decomposition theorem on vectors, the components of displacement 
vectors are written in terms of scalar potentials functions 𝜙 , 𝜙  as Eq. (5): 

𝑢 = 𝜕𝜙𝜕𝑥 − 𝜕𝜙𝜕𝑥 ,    𝑢 = 𝜕𝜙𝜕𝑥 + 𝜕𝜙𝜕𝑥 . (5)

Using Eqs. (4) and (5), the Eqs. (1) to (3) are specialized in 𝑥 − 𝑥  plane as Eqs. (6-9): 

(𝜆 + 2𝜇)∇ − 𝜌 𝜕𝜕𝑡 𝜙 − 𝜈 ∇ 𝜙 − 𝜈 ∇ 𝜙 − 𝛾 Θ − 𝛾 𝑃 = 0, (6)

𝜇∇ 𝜙 − 𝜈 ∇ 𝜙 = 𝜌 𝜕 𝜙𝜕𝑡 , (7)1 + 𝜏 𝜕𝜕𝑡 𝛾 𝑇 ∇ 𝜕𝜙𝜕𝑡 + 𝐶 𝑇 𝜕Θ𝜕𝑡 + 𝑑𝑇 𝜕𝑃𝜕𝑡 = 𝜅∇ 𝜃, (8)1 + 𝜏 𝜕𝜕𝑡 𝛾 ∇ 𝜕𝜙𝜕𝑡 + 𝑑 𝜕Θ𝜕𝑡 + 𝑟 𝜕𝑃𝜕𝑡 = ℎ∇ 𝑃. (9)

Here, the Eqs. (6), (8) and (9) are coupled in 𝜙 , Θ and 𝑃 and Eq. (7) is uncoupled in 𝜙 . 

4. Plane wave solution 

To solve the Eqs. (6) to (9), the plane harmonic waves propagating with wave normal lying in 
the 𝑥 − 𝑥  plane and making an angle 𝜃 with the 𝑥 -axis is considered. Then, the following form 
of plane harmonic solutions are considered as Eq. (10): 
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{𝜙 ,𝜙 ,Θ,𝑃} = {𝜙 ,𝜙 ,Θ,𝑃, } exp(𝑖𝑘(𝑥 sin𝜃 + 𝑥 cos𝜃) − 𝑖𝜔𝑡), (10)

where, 𝑖 = √−1, 𝑘 is wave number, 𝜔 is angular frequency, 𝜙 , Θ, 𝑃 and 𝜙  are arbitrary 
constants and the pair (sin𝜃, cos𝜃) denote the projection of the wave normal on to 𝑥 − 𝑥  plane. 
The homogeneous system of Eqs. (11-14) is obtained by inserting Eq. (10) into Eqs. (6) to (9): [𝑘  𝜈 + (𝑘 𝑐 − 𝜔 )] 𝜙 + �̅�  �̅� + �̅�  𝑃 = 0, (11)𝐾  𝑘  𝜔  𝜙 + (𝐾  𝑘 − 𝜔 ) �̅� − 𝐾  𝜔  𝑃 = 0, (12)𝑑  𝑘  𝜔  𝜙 − 𝑑  𝜔  �̅� + (𝑑  𝑘 − 𝜔 ) 𝑃 = 0, (13)(𝑏 𝑘 + 𝑐 𝑘 − 𝜔 ) 𝜙 = 0, (14)

where: 

𝑐 = 𝜆 + 2𝜇𝜌 , 𝑐 = 𝜇𝜌 , �̅� = 𝛾𝜌 , �̅� = 𝛾𝜌 , 𝐾 = 𝛾𝐶 , 𝐾 = 𝜅𝐶  𝑇  𝜏∗,  𝜈 = 𝜈 + 𝜈 ,     𝐾 = 𝑑𝐶 , 𝑑 = 𝛾𝑟 , 𝑑 = 𝑑𝑟 , 𝑑 = ℎ𝑟 𝜏∗ , 𝜏∗ = 𝜏 + 𝜄𝜔,   𝜏∗ = 𝜏 + 𝜄𝜔 ,     𝑏 = 𝜈𝜌 . 
The system of Eqs. (11) to (13) admits non-trivial solution if and only if determinant of 

coefficient matrix vanishes, i.e.: 𝑘 𝜈 + (𝑘 𝑐 − 𝜔 ) �̅� �̅�𝐾 𝑘 𝜔 (𝐾 𝑘 − 𝜔 ) −𝐾 𝜔𝑑 𝑘 𝜔 −𝑑 𝜔 (𝑑 𝑘 − 𝜔 ) = 0, (15)

which is expanded as following bi-quadratic equation in 𝑘 : 𝑆 (𝑘 ) + 𝑆 (𝑘 ) + 𝑆 (𝑘 ) + 𝑆 (𝑘 ) + 𝑆 = 0, (16)

where: 𝑆 = 𝑑  𝐾  𝜈,     𝑆 = 𝑐  𝑑  𝐾 − (𝑑 + 𝐾 ) 𝜔  𝜈 − 𝐾  𝜔  𝜈, 𝑆 = (𝜔 )  𝜈 − 𝑐  𝑑  𝜔 − 𝑐  𝐾  𝜔 − 𝑑  𝐾  𝜔 − 𝑑  �̅�  𝐾  𝜔 − 𝑑  �̅�  𝐾  𝜔− 𝑑  𝐾  (𝜔 ) 𝜈, 𝑆 = 𝑐  (𝜔 ) + 𝑑  (𝜔 ) + 𝐾  (𝜔 ) + 𝑑  �̅�  (𝜔 ) + �̅�  𝐾  (𝜔 ) − 𝑐  𝑑  𝐾  (𝜔 )− 𝑑  �̅�  𝐾  (𝜔 ) − 𝑑  �̅�  𝐾  (𝜔 ) , 𝑆 = 𝜔  (𝑑  𝐾 − 1). 
The four roots of velocity Eq. (16) correspond to four coupled longitudinal plane waves. The 

phase speed 𝑉  (𝑖 = 1, 2,..., 4) and the attenuation coefficients 𝑄  (𝑖 = 1, 2,..., 4) of the plane waves 𝑃  (𝑖 = 1, 2,…, 4) may be obtained by using following formulae: 𝑉 = 𝜔𝑅𝑒(𝑘 ),    𝑄 = |𝐼𝑚𝑎𝑔(𝑘 )| , (17)

where 𝑅𝑒(𝑘 ) and 𝐼𝑚𝑎𝑔(𝑘 ) are the real and imaginary part of 𝑘𝑖. The solution of Eq. (14) 
correspond to the SV wave with speed: 𝑉5 = 𝑐22 + 𝑏1𝑘2. (18)
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4.1. In absence of hyperstress coefficients 

In absence of hyperstress coefficients, the velocity Eq. (15) reduces to the Eq. (19): (𝑘2𝑐12 − 𝜔2) 𝛾1 𝛾2𝐾1𝑘2𝜔2 (𝐾2𝑘2 − 𝜔2) −𝐾3𝜔2𝑑1𝑘2𝜔2 −𝑑2𝜔2 (𝑑3𝑘2 − 𝜔2) = 0. (19)

The cubic Eq. (19) indicates the propagation of three coupled longitudinal waves. In absence 
of hyperstress coefficients, the speed of SV wave given in Eq. (18) will reduce to the speed of 
classical SV wave as given by Eq. (20): 

𝑉5 = 𝜇𝜌. (20)

The reduced velocity Eqs. (19) and (20) are in agreement with Singh [36].  

4.2. In absence of diffusion parameters 

 In absence of diffusion parameters, the velocity Eq. (15) reduces to Eq. (21): 𝑘4𝜈 + (𝑘2𝑐12 − 𝜔2) 𝛾1𝐾1𝑘2𝜔2 (𝐾2𝑘2 − 𝜔2) = 0 = 0. (21)

The cubic Eq. (21) indicates the propagation of three coupled longitudinal waves. The speed 
of SV wave given by equation (18) is independent of diffusion parameters. 

4.3. In absence of both diffusion and hyperstress coefficients 

 In absence of diffusion and hyperstress coefficients, the Eq. (15) reduces to Eq. (22): (𝑘2𝑐12 − 𝜔2) 𝛾1𝐾1𝑘2𝜔2 (𝐾2𝑘2 − 𝜔2) = 0. (22)

The quadratic Eq. (22) suggests the propagation of two coupled plane waves. In absence of 
diffusion and hyperstress coefficients, the speed of SV wave given in Eq. (18) will reduce to the 
speed of classical SV wave as given by Eq. (20). 

5. Numerical results and discussion 

The objective of present numerical simulations is to check the variations of phase speeds and 
attenuation coefficients for a specific material. The following material constants of Magnesium at 𝑇 = 300 K from Singh [41] are considered to compute the phase speeds and attenuation 
coefficients as in Table 1. 

Using above above physical constants and using Eq. (17), the velocity Eq. (16) is solved to 
obtain the speeds and attenuations coefficients of four coupled longitudinal waves. The velocity 
Eq. (18) is also solved to obtain the speed of the 𝑆𝑉 wave. The wave speeds and attenuation 
coefficients of four coupled longitudinal waves (𝑃 , 𝑃 , 𝑃  and 𝑃 ) are plotted in Fig. 1 against the 
circular frequency 𝜔 for three different values of measure constant of thermo-diffusive effect 𝑎 
For all values of 𝑎, the illustrations in figure 1 shows that the speeds and attenuation coefficients 
of all coupled longitudinal increase nonlinearly as the circular frequency 𝜔 increases. For 
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increasing value of frequency, the rate of increase in speeds of 𝑃  and 𝑃  waves become fast and 
the rate of increase in speeds of 𝑃  and 𝑃  waves becomes slow. The effect of measure constant 
of thermodiffusion 𝑎 is observed on 𝑃  and 𝑃  waves as these waves become faster as value of 𝑎 
is increased at a given frequency 𝜔. This effect of thermodiffusion on 𝑃  and 𝑃  waves becomes 
more considerable as the frequency 𝜔 increases. For the selected range of frequency, the speeds 
of 𝑃  and 𝑃  waves are not influenced considerably by changing the values of constant 𝑎. The 
variations of the attenuation coefficients of the coupled longitudinal waves except 𝑃  wave are 
also affected due to change in values of constant 𝑎 at a given frequency. 

 
Fig. 1. The wave speeds and attenuation coefficients of the 𝑃 , 𝑃 , 𝑃  and 𝑃  waves against frequency 𝜔, 

when measure constant of thermo-diffusive effect 𝑎 = 0.005 (solid line),  𝑎 = 0.05 (dotted line) and 𝑎 = 0.5 (dashed line) 
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Table 1. Material constants of magnesium 
Symbol Value Unit Symbol Value unit 𝜆 3.17× 10  Nm–2 𝜇 1.639×1010 Nm–2 𝜌 1740 Kgm–3 𝐶  2361 JKg–1deg–1 𝜅 49.2 Wm–1deg–1 ℎ 0.85 Kgsm–3 𝛼  0.005 deg–1 𝛼  0.005 m3Kg–1 𝑎 0.005 m–2s–2deg–1 𝐵 0.005 m5kg–1s–2 𝜏  0.005 s 𝜏  0.005 s 𝜈  0.002 Kgm–1s–2 𝜈  0.002 Kgm–1s–2 

 
Fig. 2. The wave speeds and attenuation coefficients of the 𝑃 , 𝑃 , 𝑃  and 𝑃  waves against frequency 𝜔, 

when measure constant of diffusive effect 𝑏 = 0.005 (solid line),  𝑏 = 0.05 (dotted line) and 𝑏 = 0.5 (dashed line) 
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The wave speeds and attenuation coefficients of four coupled longitudinal waves (𝑃 , 𝑃 , 𝑃  
and 𝑃 ) are plotted in Fig. 2 against the circular frequency 𝜔 for three different values of measure 
constant of diffusive effect 𝑏. The effect of measure constant of diffusion 𝑏 is observed on 𝑃 ,𝑃  
and 𝑃  waves as these waves become faster as value of 𝑏 is increased at a given frequency 𝜔. The 
diffusion effect on 𝑃 , 𝑃  and 𝑃  waves becomes more considerable as the frequency 𝜔 increases. 
For the selected range of frequency, the speed 𝑃  wave is not influenced considerably by changing 
the values of constant 𝑏. The attenuation coefficients of the coupled longitudinal waves except 𝑃  
and 𝑃  waves are also affected due to change in diffusion constant 𝑎 at a given frequency. 

 
Fig. 3. The wave speeds and attenuation coefficients of the 𝑃 , 𝑃 , 𝑃  and 𝑃  waves against frequency 𝜔, 

when thermal relaxation time 𝜏  = 0.005 (solid line), 𝜏  = 0.05 (dotted line) and 𝜏  = 0.5 (dashed line) 
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The wave speeds and attenuation coefficients of four coupled longitudinal waves (𝑃 , 𝑃 , 𝑃  
and 𝑃 ) are plotted in Fig. 3 against the circular frequency 𝜔 for three different values of thermal 
relaxation time 𝜏 . The effect of thermal relaxation is observed on the speed and attenuation 
coefficient of 𝑃  wave only. The speed of 𝑃  wave becomes slow as the value of 𝜏  increases at a 
given frequency. The effect of thermal relaxation time on speed and attenuation of 𝑃  wave 
becomes more considerable as the frequency increases. 

 
Fig. 4. The wave speeds and attenuation coefficients of the 𝑃 , 𝑃 , 𝑃  and 𝑃  waves against frequency 𝜔, 
when diffusion relaxation time 𝜏  = 0.005 (solid line), 𝜏  = 0.05 (dotted line) and 𝜏  = 0.5 (dashed line) 

The wave speeds and attenuation coefficients of four coupled longitudinal waves (𝑃 , 𝑃 , 𝑃  
and 𝑃 ) are plotted in Fig. 4 against the circular frequency 𝜔 for three different values of diffusion 
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relaxation time 𝜏 . The effect of diffusion relaxation time is observed on the speeds of 𝑃  and 𝑃  
waves and on attenuation coefficient of 𝑃  and 𝑃  waves. For a given frequency, the speed of 𝑃  
becomes faster as the value of 𝜏  increases, whereas the speed of 𝑃  waves becomes slower. This 
effect of diffusion relaxation time on these coupled waves becomes more considerable as the value 
of circular frequency increases. 

 
Fig. 5. The wave speeds and attenuation coefficients of the 𝑃 , 𝑃 , 𝑃  and 𝑃  waves against frequency 𝜔, 

when the coefficient of hyperstress tensor 𝜈 = 0.005 (solid line),  𝜈 = 0.05 (dotted line) and 𝜈 = 0.5 (dashed line) 

The wave speeds and attenuation coefficients of four coupled longitudinal waves (𝑃 , 𝑃 , 𝑃  
and 𝑃 ) are plotted in Fig. 5 against the circular frequency 𝜔 for three different values of 
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hyperstress coefficient 𝜈. The effect of hyperstress is observed on the speeds and attenuations of 𝑃  and 𝑃  waves. For a given frequency, the speeds of 𝑃  and 𝑃  becomes faster as the value of 𝜈 
increases. This effect of hyperstress on these coupled waves becomes more considerable as the 
value of circular frequency increases. 

The wave speeds and attenuation coefficients of coupled longitudinal waves are also plotted 
in Fig. 6 (in absence of hyperstress) where 𝑃  wave will not propagate in absence of hyperstress. 
The wave speeds and attenuation coefficients of coupled longitudinal waves are plotted in Fig. 7 
(in absence of diffusion) where 𝑃  wave will not propagate in absence of diffusion. In Fig. 8, the 
wave speeds and attenuation coefficients of coupled longitudinal waves are shown graphically in 
absence of both diffusion and hyperstress, where the 𝑃  and 𝑃  waves will propagate. 

 
Fig. 6. The wave speeds and attenuation coefficients of the 𝑃 , 𝑃  and 𝑃  waves  

against frequency 𝜔 (in absence of hyperstress) 

The wave speed of 𝑆𝑉 wave is plotted in Fig. 9 against the circular frequency 𝜔 for three 
different values of hyperstress coefficient 𝜈. In presence of hyperstress, the speed of 𝑆𝑉 wave 
increases nonlinearly as the frequency increases. For a given frequency, the speed of 𝑆𝑉 becomes 
faster as the value of 𝜈 increases. This effect of hyperstress on the 𝑆𝑉 wave is observed more 
considerable as the value of circular frequency increases. 
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Fig. 7. The wave speeds and attenuation coefficients of the 𝑃 , 𝑃  and 𝑃  waves  

against frequency 𝜔 (in absence of diffusion) 

 
Fig. 8. The wave speeds and attenuation coefficients of the 𝑃  and 𝑃  waves  

against frequency 𝜔 (in absence of hyperstress and diffusion) 
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Fig. 9. The wave speed of the 𝑆𝑉 wave against frequency 𝜔, when coefficient of hyperstress tensor  𝜈  = 0(solid line), 𝜈 = 0.005 (dotted line) and 𝜈 = 0.05 (dashed line) 

6. Conclusions 

A problem on propagation of plane waves is considered in an isotropic, linear and 
homogeneous strain-gradient thermoelastic diffusive medium. The governing equations are 
formulated in context of Aoudai et al. [30] and Lord and Shulman [2] theories and are specialized 
in two-dimension. Two velocity equations for plane waves are derived, which suggest the 
propagation of four coupled longitudinal waves and a shear vertical wave. The numerical 
computations in MATLAB for a specific material (Magnesium) ensure the existence of these 
waves. The graphical illustrations show that the wave speeds and attenuation coefficients of these 
waves are affected by the circular frequency, measure constants of diffusion and thermo-diffusion, 
thermal and diffusion relaxation times and the coefficient of hyperstress tensor. Following some 
important observations are made from the present numerical results:  

1) The speeds and attenuation coefficients of coupled longitudinal waves increase nonlinearly 
as the frequency increases. 

2) For a given value of frequency, the 𝑃  and 𝑃  waves travel faster as the measure constant 𝑎 
increases and the 𝑃 , 𝑃  and 𝑃  waves travel faster as the measure constant 𝑏 increases.  

3) The effect of thermal relaxation is observed on the speed and attenuation coefficient of 𝑃  
wave only. The speed of 𝑃  wave becomes slow as the value of 𝜏  increases at a given frequency. 
The effect of diffusion relaxation time is observed on the speeds of 𝑃  and 𝑃  waves and on 
attenuation coefficient of 𝑃  and 𝑃  waves. For a given frequency, the speed of 𝑃  becomes faster 
as the value of 𝜏  increases, whereas the speed of 𝑃  waves becomes slower. 

4) The effect of hyperstress is observed on the speeds and attenuations of 𝑃  and 𝑃  waves. 
For a given frequency, the speeds of 𝑃  and 𝑃  becomes faster as the value of 𝜈 increases.  

5) The effects of measure constants of diffusion and thermo-diffusion, thermal and diffusion 
relaxation times and the coefficients of hyperstress tensor becomes more considerable as the 
frequency increases. 

6) In absence of hyperstress or diffusion parameters, the number of coupled longitudinal waves 
will reduce to three. In absence of hyperstress coefficients, the 𝑃  wave will not propagate and the 𝑃  wave will not propagate in the absence of diffusion. 

7) In presence of hyperstress, the speed of 𝑆𝑉 wave increases nonlinearly against the 
frequency. For a given frequency, the the 𝑆𝑉 wave travels faster as the value of 𝜈 increases. This 
effect of hyperstress on the 𝑆𝑉 wave is observed more considerable as the frequency increases. 
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