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Abstract. As essential equipment in rotating machinery, the fault diagnosis technology of rolling 
bearings has achieved great success. However, it still suffers from limitations in terms of 
generalization and noise resistance performance when operating under complex conditions. To 
accurately identify the fault types of rolling bearings under different loads and nosy environments, 
a novel intelligent fault diagnosis method is proposed. Firstly, the utilization of dilated convolution 
expands the network's receptive field, thereby effectively enhancing the scope of fault extraction. 
Then, by incorporating the Efficient Channel Attention (ECA) in different convolutional layers, 
the extracted features are adaptively recognized, highlighting important representation 
information and improving fault diagnosis performance. Finally, the proposed network is utilized 
for rolling bearing fault diagnosis under diverse operating and noise conditions, and its efficacy is 
evaluated on various datasets. The experimental results demonstrate that the proposed method 
exhibits good generalization performance and strong robustness, compared with other methods.  
Keywords: rolling bearing, fault diagnosis, dilated convolution, ECA. 

1. Introduction 

Rolling bearings are widely applied in various modern mechanical equipment. However, under 
complex working conditions such as high speed, frequent load changes, rolling bearings are prone 
to occur aging and wear, which will lead to equipment damage, huge economic losses and even 
safety accidents. Therefore, to ensure normal and stable operation of mechanical equipment, fault 
diagnosis topic of rolling bearings has attracted more and more attention from engineers and 
experts [1, 2]. 

In recent years, two main methods for fault diagnosis have emerged: signal processing and 
intelligent diagnosis. The former includes technologies such as fast Fourier-transform (FFT) [3], 
empirical mode decomposition (EMD) [4], wavelet transform (WT) [5], variational mode 
decomposition (VMD) [6], and ensemble empirical pattern decomposition (EEMD) [7]. However, 
these methods are time-consuming and subjective due to the manual feature selection and limited 
professional knowledge of the experts. As a result, they may not provide satisfactory results under 
different working conditions. On the other hand, intelligent diagnosis technologies based on 
machine learning and deep learning have been widely used in various fields. In the field of fault 
diagnosis of rolling bearings, machine learning classification models such as artificial neural 
network (ANN) [8], support vector machine (SVM) [9], and principal component analysis (PCA) 
[10], have been successful in extracting correlation features from the original signal data to 
achieve an accurate diagnosis. Yan et al. [11] designed an improved SVM classification model to 
diagnose and classify rolling bearing faults by inputting information from different domains. 
Sharma et al. [12] proposed a bearing fault diagnosis method combining PCA and ANN. However, 
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these models may not learn complex nonlinear relations from complex bearing vibration data. This 
is where deep learning technology comes in. With its deep network structure and unique 
advantages in signal processing and feature extraction [13], deep learning has been successfully 
applied in many fields, including fault diagnosis. Deep autoencoder (DAE), deep belief network 
(DBN), recurrent neural network (RNN), long short-term memory network (LSTM), and 
convolutional neural networks (CNN) are commonly used deep learning methods for fault 
identification. For example, Wang et al. [14] used the DBN model to extract fault features of 
planetary gear from raw signals and then used classifiers to identify fault types. Shao et al. [15] 
proposed an intelligent bearing fault diagnosis method that integrates deep autoencoders to 
overcome the difficulty of identifying the severity and direction of faults. The model overcomes 
the limitations of individual deep-learning models and achieves good diagnostic results. Mansouri 
et al. [16] used an improved RNN network to achieve excellent robustness in the fault detection 
and diagnosis of wind energy conversion systems (WEC). Gao et al. [17] proposed a diagnostic 
model that combines multi-channel continuous wavelet transform (MCCWT) with LSTM, which 
performs well under strong noise conditions. Chen et al. [18] proposed an intelligent diagnosis 
model that combines multi-scale convolutional neural networks and LSTM to identify bearing 
faults with high classification accuracy. Eren et al. [19] designed a compact and adaptive one-
dimensional convolutional neural network to achieve real-time fault classification with an average 
accuracy of 93.2 % on the Case Western Reserve University dataset. 

In the above literature, compared with other methods, the model based on deep learning has 
achieved better results in bearing fault diagnosis. However, in actual industrial production, deep 
learning techniques based on data-driven dealing with the data in variable load environments are 
usually prone to overfitting problems due to inconsistent data distribution, which leads to poor 
fault diagnosis performance. Therefore, to improve diagnostic performance, it is necessary to 
design a suitable deep network ensemble. Hao et al. [20] provided a method that combines a one-
dimensional convolutional neural network and LSTM to achieve an effective diagnosis of bearings 
under variable operating conditions. Zhao et al. [21] proposed a normalized convolutional neural 
network with batch normalization and the exponential moving average technology, which had 
good stability for bearing fault diagnosis under different operating conditions. Zhang et al. [22] 
proposed a bearing fault diagnosis model applying a special training method that achieved an 
average accuracy of 95.5 % under different working loads. Peng et al. [23] designed a novel 
multibranch and multiscale convolutional neural network that can increase the depth of feature 
extraction and achieve good load domain adaptability on the bearing dataset. Jiao et al. [24] 
introduced an adversarial adaptation discriminator into the residual network, which was 
successfully applied to bearing fault detection. The above models have achieved fine results in 
multiple working conditions. 

Due to the large data characteristic differences and noise interference in numerous operation 
conditions, it is difficult to obtain satisfactory results for fault diagnosis of rolling bearings. As a 
result, in order to improve the diagnosis ability in various working conditions and under different 
noise environments, a rolling bearing fault diagnosis method based on dilated convolution and 
efficient channel attention (ECA) is proposed. The proposed method exploits residual connections 
to improve the feature discriminative performance of the network. In addition, structure-stacked 
dilated convolutions with optimal dilated rate are inserted in the residual connection, which not 
only expands the receptive field of the network but also overcomes the grid effect for rolling 
bearing fault diagnosis. Moreover, the ECA module is introduced into the diagnosis network, 
which makes the extracted high weights adaptively assigned to important features, thereby further 
improving the fault diagnostic performance. Ultimately, the proposed method was tested on two 
bearing fault datasets in cross-load domains and different noise conditions. The results 
demonstrate that compared with the other methods, the proposed method has prominent 
performance in terms of generalization and anti-noise. 

The rest of this paper is organized as follows. Section 2 introduces the theoretical fundamentals 
of dilated convolution, residual connection and the ECA module. Section 3 describes the proposed 
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method in detail. Section 4 provides different contrast methods. Section 5 discusses the 
experimental results. Section 6 summarizes the whole paper and presents future work. 

2. Background knowledge 

2.1. Dilated convolution 

Dilated convolution is first proposed to solve the problem of image resolution and information 
loss caused by down-sampling operations in image semantic segmentation tasks. Dilated 
convolution is a convolution method that can increase the receptive field of the original feature 
map, which can implement operations different from regular convolution. By setting different 
dilation rates, dilated convolution can ensure that the output feature size remains unchanged while 
more global feature information is extracted. The dilated convolution operation between the 
one-dimensional input and output can be expressed as follows: 

𝑦ሺ𝑛ሻ = ෍𝑥ሺ𝑛 + 𝑟 × 𝑖ሻௌ
௜ୀଵ ∗ 𝑘ሺ𝑖ሻ, (1)

where 𝑥(𝑛) is the one-dimension signal input; 𝑘(𝑖) represents convolution kernel; ∗ presents 
convolution operation; s is input feature length; and 𝑦(𝑛) is the one-dimensional output. Normal 
convolution is a special case of dilated convolution. When 𝑟 = 1, the convolution layer is a 
traditional convolution layer. When the dilation rate is larger, the network obtains a larger 
receptive field than ordinary convolution. The calculation formula of ordinary convolution and 
dilated convolution kernel can be defined as follows: 𝐾 = 𝑘 + (𝑘 − 1)(𝑟 − 1), (2)

where 𝑘 is the size of the normal convolution kernel; 𝑟 represents the dilation rate of the dilated 
convolution; 𝐾 represents the corresponding output under different dilation rates and convolution 
kernel sizes. For example, when the kernel size of the dilated convolution is 3 and the dilated rate 
is 2, it is equivalent to a normal convolution kernel size equal to 7. So it can effectively improve 
the feature extraction ability. However, due to multiple dilated convolution operations, there will 
be a lack of correlation between the associated information, and many features will not be fully 
extracted, resulting in the grid effect. Therefore, in this paper, in the stacking use of dilated 
convolutions, the dilation rates are set to 𝑟 = 1, 2, 3 for feature extraction. In this way, the grid 
effect can be avoided as much as possible, so as to deep features are effectively extracted and fault 
prediction and diagnosis are performed through classifiers in the fault diagnosis task. 

2.2. Residual connection 

Experiments in the literature show that adding too many network layers to the deep model not 
only does not improve its training accuracy, but also leads to model degradation [25, 26]. To 
address this challenge, He proposed a residual structure with identity mapping in 2016 [27], and 
its structure is shown in Fig. 1. It can be seen from that the residual structure includes two 
convolutional layers, two ReLU activation functions and an identity shortcut connection. 
Moreover, the input and output vectors of the residual block are 𝑥 and 𝑦, 𝑅 means the ReLU 
activation function. The output of the second convolutional layer can be expressed as  𝐹 = 𝑊ଶ𝑅(𝑊ଵ𝑥), where 𝑊ଵ and 𝑊ଶ represent the weights of the two convolutional layers. The 
output of the residual block can be calculated as follows: 𝑦 = 𝐻(𝑋) = 𝑅ሾ𝐹(𝑥, {𝑊௜}) + 𝑥ሿ, (3)
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where 𝐹(𝑥, {𝑊௜}) (bias omitted for simplicity) is the residual mapping function. In the residual 
structure, the weight trained by the upper experiment layer 𝑥 is directly passed to 𝐹(𝑥) rough the 
identity shortcut. when the network parameters are backpropagated, the use of the identity shortcut 
connection can effectively make the gradient flow to the upper layer close to 𝑥, which is beneficial 
to update the parameters of the network. Such a design can avoid increasing network errors, which 
will cause the network to fall into local optimum or fail to converge. 

 
Fig. 1. Residual structure with the identify shortcut 

2.3. ECA module 

Different activation maps recognize fault features in different degrees, so some features may 
not be related to fault information or even indicate false information [28]. Therefore, this paper 
introduces the ECA module into the network, which serves as an attention mechanism for weight 
emphasis in the channel dimension, focusing on learning fault-related features [29]. It can improve 
the efficiency of extracting advanced features, which is beneficial to improve the performance of 
network models for fault diagnosis. 

The basic structure of the ECA module is shown in Fig. 2. It can be seen that the focus feature 
is obtained by performing global average pooling (GAP) on each channel of the input feature map. 
Moreover, the convolution kernel size 𝑘 is adaptively obtained through Eq. (4), which generates 
the channel weights through the convolutional operation. Besides, the weight of each channel is 
calculated using the sigmoid nonlinear function. Finally, the weighted feature map is generated 
by multiplying the normalized weight and the original input feature map one by one. Eq. (4) is 
expressed as follows: 

𝑘 = 𝜃(𝐶) = ฬlogଶ 𝐶𝑟 + 𝑏𝑟ฬ௢ௗௗ, (4)

where |𝑡|௢ௗௗ represents the odd number closest to 𝑡. The parameters 𝑟 and 𝑏 are are usually set to 
2 and 1. The ECA module avoids the degradation of network performance caused by dimension 
reduction, and its limited parameters do not affect the computational complexity of the network. 

3. Proposed method 

3.1. Architecture of the network 

In the actual production environment, rolling bearings often work in conditions with multiple 
load domains and noise interferences. Therefore, generalization performance and anti-noise ability 
are also significant indicators to evaluate network performance. Based on this, this paper proposes 
a novel fault diagnosis method for rolling bearings that combines one-dimensional dilated 
convolution with an attention mechanism. The network architecture is shown in Fig. 3. The raw 
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signal collected from the vibration sensor is used as the network input. Next, the network structure 
mainly consists of one-dimensional convolution, dilated residual connection block, ECA module 
and global average pooling layer. 

 
Fig. 2. Diagram of the ECA module 

 
Fig. 3. Architecture of the proposed network 

First of all, the one-dimensional convolution layer can effectively extract and learn the original 
vibration information. Secondly, the dilated residual connection block can expand the receptive 
field of the network, thus improving the recognition accuracy of the network. Then, the ECA 
modules are embedded into the one-dimensional convolutional layer and the dilated residual 
connection block, which can adaptively calibrate important feature information and further 
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improve network performance. In addition, the full-connected layer takes up a large number of 
parameters model and easily leads to overfitting of the network, so we use global average pooling 
instead of the full-connected layer to solve these problems. Finally, the fault diagnosis result is 
output through the softmax classifier of the full-connected layer. 

3.2. Specific parameters of the network 

The detailed parameters of the proposed method are summarized in Table 1. To ensure that the 
original signal samples input of the network contains enough periodic information, the input signal 
sample length is set to 2048×1. The network framework is mainly composed of one-dimensional 
convolution, the ECA module, and dilated convolution residual connection block. Specifically, 
one-dimensional convolution contains four layers with kernel sizes 16×1, 9×1, 6×1 and 3×1. Also, 
its number of channels is 16, 32, 64 and 128, respectively. Different kernel sizes could enable the 
network to learn feature information of different lengths. At the same time, the gradual increase 
in the number of channels can solve the problem of too many network parameters. Inspired by 
[27], we adopt stridden convolutions instead of max-pooling to focus feature information and 
reduce feature dimension without information loss. Therefore, the strides of the four convolutional 
layers are set to 1, 1, 2 and 4, respectively. In terms of the dilated convolutional residual 
connection block, it consists of 3 layers of dilated convolutions with different dilation rates and 
an ECA module. Then, the kernel size of the dilated convolutional layer is set to 3×1, and the 
number of kernel channels is set to 32, 32 and 128, respectively. Based on the consistency of the 
input and output feature dimension of the residual connection, the dilated convolution stride is set 
to 1, and the padding is set to “SAME”. 

Table 1. Detailed parameters of the network 
No. Type Kernel Channel Stride Output 
0 Input – – – 2048×1 
1 Convolution layer 1 16×1 16 1 2048×16 
2 Convolution layer 2 9×1 32 2 1024×32 
3 ECA - – – 1024×32 
4 Convolution layer 3 6×1 64 2 512×64 
5 Convolution layer 4 3×1 128 4 128×128 
6 Dilated Convolution layer 1 3×1 32 1 128×64 
7 Dilated Convolution layer 2 3×1 32 1 128×64 
8 Dilated Convolution layer 3 3×1 128 1 128×128 
9 ECA – – – 128×128 

10 Global Average Pooling – – – 128 
11 Dense – – – 10 

The proposed method is coded in Keras using TensorFlow backend and Python 3.8. Besides, 
it runs on a PC with NVIDIA GeForce GTX 940MX 2GB GPU under the WIN10 operating 
system. During the experiment, we use categorical cross-entropy as a loss function to evaluate the 
difference between the currently trained probability distribution and the real distribution. In 
addition, the Adam optimizer is used to optimize the loss function in the network. The batch size 
is chosen as 32. The experiment was repeated 5 times, and then the average value is selected as 
the final experimental result. 

3.3. Contrast methods 

In order to verify the validity of the proposed method for rolling bearing fault diagnosis, the 
contrast study with MLP, LeNet-5 [30], Vgg11 [31], Resnet, WDCNN [32], and TICNN [22] is 
performed in different datasets. It is noted that LeNet-5, Resnet and Vgg11, well-known deep 
learning networks, use two-dimensional (2D) grayscale images as input, which are obtained by 
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matrix transformation from one-dimensional data. Furthermore, the other three methods directly 
take the original one-dimensional (1D) signals as inputs without any feature transformation. At 
present, there is no systematic approach to choose the most suitable hyper-parameters and 
structures of deep learning models [33]. Except the learning rate of MLP is 0.002, other models 
have been set to 0.001. In addition, the optimizer is set to Adam and the number of iterations is 
30. Through numerous attempts in this study, the structures of MLP, Vgg11 and Resnet are 
determined empirically. The definite parameters of each model are set as follows: 

MLP: the input of the model is the raw 1D vibration data. The model consists of three 
full-connected layers and one output layer. The number of neurons in the full-connected layer is 
200, 200 and 50, respectively. The dropout operation is added after the first two full-connected 
layers. 

LeNet-5: the model takes vibration data converted into 2D grayscale images as the input and 
contains two convolutional layers, two max-pooling layers and three full-connected layers. The 
first two convolutional layers contain 6 and 16 kernels respectively, and the size of the kernels is 
5×5. The size and stride of the max-pooling kernel are both set as 2×2. 

Vgg11: the model’s input is the 2D grayscale image consisting of 6 network blocks. The first 
5 network blocks consist of a convolutional layer with a kernel size of 3×3 and a stride of 3×3, 
and each network block is followed by a max-pooling layer with a stride of 2×2. The sixth network 
block consists of three full-connected layers, with neurons 256, 256, and 10. 

Resnet: the input is also the grayscale image converted from 1D data, consisting of one 
ordinary convolutional layer, three basic residual blocks, one global average pooling layer, and 
one full-connected layer. Batch normalization (BN) and max-pooling operation are respectively 
added after the convolutional layer. Furthermore, the number of channels in the three basic 
residual blocks is 64, 64 and 128, respectively among them, each basic residual block has two 
convolution layers with the same parameters, and the size of the convolution kernel is 3×3. 

WDCNN: the model consists of five convolutional layers, five max-pooling layers and two 
full-connected layers. The activation function ReLU and BN operation are sequentially added 
between each convolutional layer and the maximum pooling layer. The kernel of the five 
convolutional layers is 16, 32, 64, 64 and 64 in sequence. The first convolutional layer has a larger 
kernel size. Moreover, the kernel size and stride of other convolutional layers are both set as 3×1 
and 1×1. The kernel size and stride of all pooling operations are 2×1. The neural units in the two 
full-connected layers are 100 and 10. 

4. Experimental results and analysis 

4.1. Diagnosis results based on dataset A 

To verify the fault diagnostic performance of the proposed method, dataset A obtained from 
the Bearing Data Center at Case Western Reserve University (CWRU) [34] was used in this study. 
The test rig of CWRU shown in Fig. 4 included primarily a 2 horsepower (hp) electric motor, a 
torque transducer, a dynamometer and control electrics. The Bearing vibration data at drive end 
and fan end were collected by the accelerometers using the 12 kHz sampling frequency. We chose 
the data at drive end to build dataset A performing in our network, as shown in Table 2. It can be 
seen that there are 10 kinds of bearing fault types in total, including normal, ball fault (from 0.007 
to 0.021 inches), inner race fault (from 0.007 to 0.021 inches) and outer race fault (from 0.007 to 
0.021 inches). According to the distribution differences of fault information under different 
working conditions, the dataset A is segmented into four different load domains sub dataset in 
turn, namely 0 hp, 1 hp, 2 hp and 3 hp. Samples of each fault class obtained through a fixed-step 
moving window are divided into training samples and testing samples at a ratio of 9:1. 

To validate the generalization performance of the proposed method on different work 
conditions on Dataset A, Table 3 shows the prediction accuracy for bearing fault diagnosis under 
same loads testing, and Fig. 5 further compares the generalization ability of each method in the 
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cross-load domains. 

 
Fig. 4. The test rig of CWRU 

Table 2. Description of dataset A 

Fault condition Diameter (inch) Label Load (hp) 
0 hp 1 hp 2 hp 3 hp 

Ball 0.007 0 400 400 400 400 
Ball 0.014 1 400 400 400 400 
Ball 0.021 2 400 400 400 400 

Inner Race 0.007 3 400 400 400 400 
Inner Race 0.014 4 400 400 400 400 
Inner Race 0.021 5 400 400 400 400 
Outer Race 0.007 6 400 400 400 400 
Outer Race 0.014 7 400 400 400 400 
Outer Race 0.021 8 400 400 400 400 

Normal 0 9 400 400 400 400 

It is obvious from Table 3 that MLP performs poorly in learning fault characteristics, and the 
average accuracy is less than 93 %. In addition, the diagnosis accuracy of LeNet-5, Vgg11, and 
ResNet is 97.83 %, 92.51 % and 96.92 %, respectively. WDCNN shows higher accuracy than 
them. Our method has higher accuracy than WDCNN without attention mechanism. The accuracy 
of this method reaches 99.68 %, and the accuracy of WDCNN is 99.19 %. From the comparison 
results, the proposed method can effectively distinguish different fault types and fault severities 
under the same working conditions. 

Table 3. Diagnosis accuracy of different models under four loads 
Methods 0 hp 1 hp 2 hp 3 hp Average 

MLP 86.98 90.93 94.79 95.43 92.01 
LeNet-5 98.82 95.66 98.38 98.44 97.83 
Vgg11 88.77 92.7 92 96.57 92.51 
ResNet 96.3 96.65 96.65 98.06 96.92 

WDCNN 99.43 97.56 99.93 99.83 99.19 
Our method 99.89 99.63 99.88 99.3 99.68 

Rotating equipment inevitably operates under frequent load changes, so it is necessary to verify 
the stability of the proposed model under different Cross-load domains. Cross-load domains 
experiments are often used to evaluate the generalization ability of the model. The cross-load 
domains experiment means that one load domain data set is selected as the training set of the 
network model, and the others are used as testing data for classification prediction. For example, 
in this experiment, 1-2 hp and 1-3 hp represent that the network is trained at 1 hp, and 2 hp and 
3 hp data are used for testing, respectively. The numerical results are presented in Fig. 5. It is 
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obvious that the average diagnostic accuracy of our proposed method under cross-load domain 
conditions reaches 97.69 %, which is 53.31 %, 16.94 %, 10.44 %, 10.56 %, and 9.49 % higher 
than other comparative models, respectively. For cross-load domains experiments, the greater the 
degree of load variation, the higher the requirements for the generalization ability of the model. 
Taking 1-3 hp and 3-1 hp as examples, as a simple neural network, MLP based on machine 
learning is unable to perceive multiple range temporal feature representations and accurately 
predict fault characteristics, resulting in significantly lower diagnostic performance than other 
methods, with a diagnostic accuracy of only 47.85 % and 40.71 %. 

 
Fig. 5. Diagnosis accuracy of the cross-load domains 

In addition, the higher diagnostic accuracy of LeNet-5, ResNet, and Vgg11 based on deep 
learning are 84.5 %, 86.9 %, and 81.78 %. This is because they use 2D data as the input, which 
will lead to the loss of the time domain characteristics of the original signal to a certain extent. 
Furthermore, the diagnostic accuracy of WDCNN in 1-3 hp and 3-1 hp group experiments only 
attains 81.78 % and 78.95 %, respectively, which are lower than Vgg11. The reason for such a 
result may be that WDCNN has too few layers so the advanced features contained in the signal 
cannot be fully extracted, resulting in a lower accuracy than Vgg11 with a higher network layer. 
The discriminant accuracy of our method in the case of 1-3 hp and 3-1 hp is higher than 97.94 % 
and 96.1 %, the highest is 97.94 %. This is because the range of features extracted by this method 
becomes wider due to adding the dilated convolutions. In addition, on account of the ECA module 
added, the extracted global knowledge is further distributed according to the weight, highlighting 
important features. Although the characteristics of training and test data are quite different in 
cross-load domains, this method can still effectively identify faults, showing its excellent 
generalization capacity. 

To prove the excellent robustness of the proposed method, Gaussian white noise is added to 
the original dataset A to obtain composite data with different SNRs, thereby simulating various 
noisy environments. The diagnostic results are shown in Table 4 and Fig. 6. It is evident that our 
method compared to the others has a fine denoising capability in several noise environments, and 
the average diagnostic accuracy reaches 97.22 %. Furthermore, the identification accuracy of the 
MLP is the lowest among all models, only 77.54 %. This is because the features extracted by the 
MLP are short of the corresponding correlation, which affects the diagnostic performance. When 
the SNR of other methods is greater than 4 dB, the diagnostic accuracy exceeds 93 %, and the 
accuracy of the proposed method reaches the highest, which is 98.45 %. Although the diagnostic 
accuracy of the other methods also decreased rapidly while the SNR diminishes, the classification 
result of this network can still be more than 92.85 %. This is due to adding the dilated convolution 
in this model, which makes the features with noise deeply extracted, and the introduction of the 
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attention mechanism makes it more sensitive to salient information. The diagnostic accuracy of 
WDCNN is 92.76 % only lower than this method. This is due to the large convolution kernel size 
of the first layer of the network, which has a certain filtering of noise information. Overall, the 
proposed method is more robust than the others for rolling bearing fault diagnosis. 

 
Fig. 6. Accuracy of different methods on dataset A 

Table 4. Anti-noise performance of different methods on dataset A 

Methods SNR (dB) 
–4 –2 0 2 4 6 8 10 Average 

MLP 52.55 66.55 73.3 78.5 84.65 87.5 87.2 90.1 77.54 
LeNet-5 79.45 85.9 90.3 92.25 95.75 94.65 95.5 95.75 91.19 
Vgg11 79.79 78.62 83.83 88.43 93 91.83 94.97 94.66 88.14 
ResNet 73.1 81.95 85.45 88.9 93 94.25 94.15 95.5 88.29 

WDCNN 82.4 85.9 91.15 95.8 94.8 96.35 97.9 97.8 92.76 
Our method 92.85 95.15 98.65 97.55 98.45 97.8 98.7 98.6 97.22 

 

 
a) Using –4 dB dataset 

 
b) Using 2 dB dataset 

 
c) Using 8 dB dataset  

Fig. 7. Confusion matrix of the proposed method under different SNRs on dataset A 

To further evaluate the accuracy of the proposed model for bearing fault diagnosis, the 
classification results of four loads with different SNRs are summarized in the confusion matrix as 
shown in Fig. 7. The horizontal axis represents the number of predicted fault categories, and the 
vertical axis represents the number of true fault categories. The “B”, “IR”, “OR”, and “No” 
represents the fault types of ball fault, inner race fault, outer race fault and normal condition, 
respectively. The numbers following the abbreviation for failure types represent different fault 
diameters. For example, “B7” represents a ball fault with 0.007 inches. In the confusion matrix, it 
can be obviously seen that other faults compared to ball faults can be well distinguished when 
SNR is –4 dB. Specifically, the “B14” and “B12” types of faults are misjudged as other types of 
ball faults, and the numbers are 39 and 32, respectively. This may be due to the fact that different 
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degrees of ball faults have similar characteristics in vibration sequences and vibration information 
is masked by strong noise, making it cannot effectively distinguish specific ball faults. When SNR 
increase from 2 dB to 8 dB, the number of misclassified ball faults decreases from 47 to 7, which 
means that the classification of ball faults is significantly improved due to the in-creased SNR. 

4.2. Diagnosis results based on dataset B 

Dataset B was collected by the bearing fault experiment platform of Qiqihar University as 
shown in Fig. 8. It can be seen that the acceleration information is obtained through an acceleration 
sensor located above the special electric motor, and then the acceleration information was 
converted from the acquired analog signal to a digital signal in the microcontroller using an 
analog-to-digital converter. Furthermore, the sensor in two couplings was used to detect the motor 
rotation speed. The sampling frequency was set to 10 kHz, and each sequence of data lasted 
10 seconds. In this experiment, the bearing fault data is only obtained under 2000 rpm. The dataset 
B considers three bearing health types, including normal, slight unbalanced fault and severe 
unbalanced fault. Each health type contains 1350 training samples, 150 validation samples and 
150 testing samples. 

 
Fig. 8. Bearing experiment platform 

To verify the diagnostic accuracy and anti-noise performance of the proposed method on 
dataset B, Fig. 9 shows the prediction accuracy of different methods, and Fig. 10 and Table 5 
compare the anti-noise performance of different methods with SNR of –4 dB to 10 dB. 

Table 5. Anti-noise performance of different methods on dataset B 

Methods SNR (dB) 
–4 –2 0 2 4 6 8 10 Average 

MLP 65.91 71.96 74.45 82.8 85.38 87.69 93.47 94.05 81.96 
LeNet-5 68.06 69.6 72.61 62.46 84.89 91.59 91.7 95.2 79.51 
Vgg11 58.04 62.93 68.93 70.76 80.89 86.4 89.91 92.44 76.29 
ResNet 52.49 65.07 76.98 73.91 63.24 89.51 90.62 95.33 75.89 

WDCNN 68.76 77.87 76.58 86.53 87.64 88.31 95.96 96.78 84.8 
Our method 77.91 86 90.8 91.87 94.84 96.71 99.24 99.6 92.12 

It can be seen from Fig. 9 that the classification accuracy of the proposed method is higher 
compared with other methods. Table 5 and Fig. 10 reveal that the method has high anti-noise 
performance under different noise environments. As can be seen from Table 5, the adversarial 
noise capability of our method is significantly higher than the other methods in all SNR scenarios. 
Specifically, when the SNR is –4 dB, only the diagnostic accuracy of the proposed method is more 
than 70 %, which is 77.91 %. Although the classification performance of all methods improves 
significantly when the SNR is increased. Overall, the fault diagnosis performance of the proposed 
method is still better than other methods in different noise environments. The higher average 
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diagnostic accuracy also demonstrates the noiseless advantage of the proposed method. It is worth 
noting that not every method improves the classification results while increasing the SNR. For 
example, when the SNR of the WDCNN is 2 dB and 4 dB, the diagnostic accuracy decreases. This 
may be due to the interference of the added signal on the original signal, which ultimately affects 
the network classification results. 

 
Fig. 9. Diagnosis results of different methods on dataset B 

 
Fig. 10. Accuracy of different methods on dataset B 

 
a) Using –4 dB dataset 

 
b) Using 2 dB dataset 

 
c) Using 8 dB dataset  

Fig. 11. Confusion matrix of the proposed method under different SNRs on dataset B 

To better evaluate the diagnostic accuracy of the proposed method for different fault types on 
dataset B, the confusion matrix is calculated for 𝑆𝑁𝑅 = –4, 2, and 8, as shown in Fig. 11. In 
Fig. 11, “U1” and “U2” represent slight and severe unbalanced faults, respectively, and “No” 
indicates normal, as in Fig. 7. The results shown in Fig. 11(a) indicate that only the mild 
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unbalanced fault type was not well classified, with 144 samples misclassified as the severe 
unbalanced fault type. In Fig. 11(b, c), it should be noted that the number of misclassifications for 
slightly unbalanced fault types decreased from 106 to 0, indicating that all faults can be accurately 
distinguished while noise interference decreases. 

5. Conclusions 

The paper proposes a novel intelligent fault diagnosis method for rolling bearing that uses 
dilated convolution and attention mechanisms. The method incorporates residual connections and 
stacked dilated convolutions to improve the network’s feature extraction range and learning 
ability. An ECA module is embedded to focus on important features and promote the ability to 
extract fault information. The proposed method outperforms other methods in fault diagnosis 
performance under cross-load domains and diverse noise environments. The proposed method’s 
effectiveness is verified using two bearing fault datasets, showing good generalization 
performance and anti-noise ability. Currently, the work in this paper is only tested with a sufficient 
amount of data and has not been experimentally studied in real-time performance. In future 
research, we will further explore the fault diagnosis effect in the case of small samples, as well as 
real-time performance. 
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