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Abstract. Two three-dimensional systems are considered, which have solutions with irregular 
behavior, tending to attractors. The comparison and comparative analysis are made 
Keywords: attractor, nullclines, three-dimensional system. 

1. Introduction 

We study systems of ordinary differential equations, arising in applications. The following 
system: 

⎩⎪⎨
⎪⎧ 𝑥ᇱଵ ൌ 11 ൅ 𝑒ିఓభሺ௪భభ௫భା௪భమ௫మା⋯ା௪భ೙௫೙ିఏభሻ − 𝑣ଵ𝑥ଵ,…𝑥ᇱ௡ ൌ 11 ൅ 𝑒ିఓ೙ሺ௪೙భ௫భା௪೙మ௫మା⋯ା௪೙೙௫೙ିఏ೙ሻ. − 𝑣௡𝑥௡, (1)

first appeared in the study of neuronal networks [1]. It was applied later by several authors to treat 
genetic regulatory networks [2], [3] and telecommunication networks [4]. In this note, we focus 
on genetic networks. System Eq. (1) models the evolution of a genetic regulatory network (GRN). 
The interrelation between elements of a network is described by the regulatory matrix 𝑊 ൌ ൫𝑤௜௝൯. 
A variable 𝑥௜ሺ𝑡ሻ stands for the expression of protein by an 𝑖-th gene. The main question is the 
future state of a network. The current state is described by the vector 𝑋ሺ𝑡ሻ ൌ ൫𝑥ଵሺ𝑡ሻ, … , 𝑥௡ሺ𝑡ሻ൯. 
Future states are represented by trajectories 𝑋ሺ𝑡ሻ. The system has attracting sets in a phase space, 
which heavily influence the behavior of trajectories and other important properties of a network. 
The system Eq. (1) has at least one critical point (equilibrium) since nullclines intersect in the 
invariant parallelepiped 𝑄௡ ൌ ሼ0 ൏ 𝑥௜ ൏ 1 𝑣௜⁄ , 𝑖 ൌ 1, … ,𝑛ሽ. The vector field, defined by system 
Eq. (1), is directed inward on the border of 𝑄௡. Therefore, an attractor for trajectories of the system 
Eq. (1) must exist. Stable equilibria can appear in the system Eq. (1), but their number is finite. 
Stable equilibria are simple attractors. There are systems with a critical point, which is not 
attractive [5]. A stable periodic solution appears instead. Limit cycles can emerge from stable 
focuses as a result of Andronov – Hopf bifurcation. Attractors were constructed in systems with 
dimensions higher than three [6], [7]. These attractors are not solutions themselves, but they attract 
periodic solutions of a system. System (1) can exhibit chaotic behavior, which is not easy to detect. 
We would like to recall the example, which was obtained first in [8], then modified and analyzed 
in [9], [10]. In what follows, we recall this example and consider another one. Both examples are 
to be compared and supplied with related images. 

2. Three-dimensional systems. First example 

Consider system Eq. (1) for 𝑛 ൌ 3 (three-dimensional system), 𝑥ଵሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ, 𝑥ଶሺ𝑡ሻ ൌ 𝑦ሺ𝑡ሻ, 
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𝑥ଷሺ𝑡ሻ = 𝑧ሺ𝑡ሻ. We use the simplified notation ሺ𝑥,𝑦, 𝑧ሻ now, to avoid indices: 

⎩⎪⎨
⎪⎧𝑥ᇱ = 11 + 𝑒ିఓభሺ௪భభ௫ା௪భమ௬ା௪భయ௭ିఏభሻ − 𝑣ଵ𝑥,𝑦ᇱ = 11 + 𝑒ିఓమሺ௪మభ௫ା௪మమ௬ା௪మయ௭ିఏమሻ − 𝑣ଶ𝑦𝑧ᇱ = 11 + 𝑒ିఓయሺ௪యభ௫ା௪యమ௬ା௪యయ௭ିఏయሻ − 𝑣ଷ𝑧., (2)

Recall the modification [9] of the example, first obtained in [8]. Let the parameters be:  𝑣ଵ = 0.65, 𝑣ଶ = 0.42, 𝑣ଷ = 0.1; 𝜇ଵ = 7, 𝜇ଶ = 7, 𝜇ଷ = 13; 𝜃ଵ = 0.5, 𝜃ଶ =0.3, 𝜃ଷ =0.7. The 
coefficients 𝑤௜௝ are elements of the regulatory matrix: 

𝑊 = ൭0 1 −5.641 0 0.11 0.02 0 ൱. (3)

The nullclines of a system Eq. (2) are depicted in Fig. 1 together with some trajectories, tending 
to an attractor. The mutual disposition of nullclines and an attractor can be checked visually. The 
irregular behavior of solutions is shown in Fig. 2. 

 
Fig. 1. The nullclines of the system Eq. (2). 
The trajectory tending to an attractor (blue) 

 
Fig. 2. Solutions of system Eq. (2), with the initial 
conditions 𝑥ሺ1ሻ = 0.9; 𝑦ሺ1ሻ = 0.7; 𝑧ሺ1ሻ = 0.11 

 
Fig. 3. LE1 = 0.011; LE2 = –0.008; LE3 = –1.173 

There is one critical points: (0.3768; 1.5870; 0.2212). Linearization around this point yields 
the characteristic numbers 𝜆: 𝜆ଵ = −1.2709; 𝜆ଶ,ଷ = 0.0504 ± 0.7378𝑖. 
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Lyapunov exponents of the system Eq. (2) (calculations made by the program lce.m by 
M. Sandri [11]). 

The sum of two first Lyapunov numbers is positive. This is the evidence of chaotic behavior 
of solutions. 

3. Three-dimensional systems. Second example 

Consider system Eq. (1) for 𝑛 = 3 (three-dimensional system), 𝑥ଵሺ𝑡ሻ = 𝑥ሺ𝑡ሻ, 𝑥ଶሺ𝑡ሻ = 𝑦ሺ𝑡ሻ, 𝑥ଷሺ𝑡ሻ = 𝑧ሺ𝑡ሻ: 

⎩⎪⎨
⎪⎧𝑥ᇱ = 11 + 𝑒ିఓభሺ௪భభ௫ା௪భమ௬ା௪భయ௭ିఏభሻ − 𝑣ଵ𝑥,𝑦ᇱ = 11 + 𝑒ିఓమሺ௪మభ௫ା௪మమ௬ା௪మయ௭ିఏమሻ − 𝑣ଶ𝑦𝑧ᇱ = 11 + 𝑒ିఓయሺ௪యభ௫ା௪యమ௬ା௪యయ௭ିఏయሻ − 𝑣ଷ𝑧,, (4)

with the following parameters: 𝑣ଵ = 1, 𝑣ଶ = 1, 𝑣ଷ = 0.32; 𝜇ଵ = 2.38, 𝜇ଶ = 5.095, 𝜇ଷ = 1.66; 𝜃ଵ = 1.574, 𝜃ଶ = 0.5362, 𝜃ଷ = 1.5255. The coefficients 𝑤௜௝ are elements of the regulatory 
matrix: 

𝑊 = ൭ 2 1.48 0.372−0.852 2 00.0305 0 1.1 ൱. (5)

The nullclines of the system Eq. (4) are depicted in Fig. 4 together with a trajectory. There are 
three critical points at (0.1126; 0.1260; 0.7926); (0.9709; 0.0010; 2.9674); (0.1862; 0.2274; 
0.6596). Linearization around these points provides us with the characteristic numbers 𝜆. 

Table 1. Characteristic numbers 
Critical point 𝜆ଵ 𝜆ଶ 𝜆ଷ 

(0.1126; 0.1260; 0.7926) 0.0249594 –0.20054+0.25042i –0.20054-0.25042i 
(0.9709; 0.0010; 2.9674) –0.986657 –0.868851 –0.23245 
(0.1862; 0.2274; 0.6596) –0.020568 0.25795+0.348554i 0.25795-0.348554i 

 

 
Fig. 4. The nullclines of the system Eq. (4). The 
trajectory of system Eq. (4) forming the attractor. 

 
Fig. 5. Solutions of system Eq. (4), with the initial 

conditions 𝑥ሺ0ሻ = 0.1; 𝑦ሺ0ሻ = 0.7; 𝑧ሺ0ሻ = 0 

The first and the third points possess characteristics of opposite nature. Both are saddle-focus 
points, the first point having stable focus, while repelling in the third dimension. The third point 
has unstable focus, but it is attractive in the remaining dimension. The second point is relatively 
far away of these two ones. 
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Three components of a solution with the initial conditions 𝑥ሺ0ሻ = 0.1; 𝑦ሺ0ሻ = 0.7; 𝑧ሺ0ሻ = 0 
are depicted in Fig. 5. 

The dynamics of Lyapunov exponents is shown in Fig. 6. 
The sum of the two first Lyapunov numbers is positive, and this is an indication of the chaotic 

behavior of solutions. 

 
Fig. 6. LE1 = 0.014; LE2 = –0.004; LE3 = –0.197 

4. Conclusions 

In addition to the previously known attractor in a system of the form Eq. (2), another example 
of an attractor with chaotic behavior of solutions is obtained. The mechanisms of the appearance 
of the attractor in both examples are different. In the first example, the attractor exists in a vicinity 
of a single critical point, with an unstable two-dimensional manifold and a stable one-dimensional 
one.  

The motion of trajectories in the second example: a trajectory enters the area of the equilibrium 
point ((0.1126; 0.1260; 0.7926), unstable in a one-dimensional manifold and stable in a 
two-dimensional manifold), trajectories leave this point and approach the critical point 
((0.1862; 0.2274; 0.6596) stable in a one-dimensional manifold, unstable in a two-dimensional 
manifold). The movement of trajectories continues around the same point  
(0.1862; 0.2274; 0.6596). 

To the best of the author’s knowledge, these are the only three-dimensional examples of 
chaotic behavior of solutions in systems of the form Eq. (1). 
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