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Abstract. In order to improve the recognition precision and accuracy of tool wear monitoring, an 
unsupervised deep neural network (DNN) based on stack denoising autoencoder (SDA) is 
proposed. After feature extraction and selection, the stack denoising automatic coding network 
reduces the dimensionality of the feature vector. On this basis, principal component analysis 
(PCA) and T-distributed random neighbor embedding (t-SNE) are used to reduce the 
dimensionality of the features twice, and finally a simple two-dimensional feature matrix is 
obtained. Finally, the deep neural network model of SDA is established by adding SoftMax 
regression layer, and the tool wear monitoring results are taken as new labeled data, and the deep 
neural network parameters are fine-tuned by secondary backpropagation. The experimental results 
show that the proposed method can learn adaptively and obtain effective feature expression, and 
the tool wear state recognition results are highly accurate. The proposed method can effectively 
identify the tool wear state.  
Keywords: TCM, automatic feature extraction, unsupervised learning, DNN, SDA, fine-tune. 

1. Introduction 

The material removal is realized under the interaction between the tool and the workpiece, and 
TCM is crucial to the machining process of the part. Therefore, it is necessary to identify and 
monitor the status of the tool, so as to make a reasonable tool change and ensure the processing 
quality and efficiency. Therefore, TCM is an important aspect of tool wear research. 

The methods of TCM can be divided into direct monitoring and indirect monitoring. Direct 
monitoring is to use optical technology or machine vision technology to directly observe the TCM. 
The direct monitoring method usually uses the image analysis method to monitor the tool 
conditions.[1] The direct monitoring method does not affect the milling process and has higher 
recognition accuracy. However, when the monitoring process is affected by other factors, such as 
chips or cutting fluid sometimes remaining on the observed surface, it is difficult to ensure that 
the cutting wear state can be completely observed [2]. Therefore, this paper uses the indirect 
monitoring method to study the TCM. The indirect monitoring method is based on the measured 
signals in machining, then uses signal processing method and pattern recognition method to 
identify tool wear indirectly. The commonly used signal processing methods include time domain 
method, frequency domain method and time-frequency method. Common pattern recognition 
models include artificial neural network (ANN), hidden Markov model (HMM), support vector 
machine (SVM) and so on. 

The choice of sensor directly determines the accuracy of signal and the reliability of 
recognition. Vibration sensor is extremely important and in the core position of the sensor [3, 4]. 
Commonly used vibration sensor types are displacement sensor, acceleration sensor, speed sensor, 
laser Doppler sensor and so on. Additionally, many scholars use cutting force signal to do TCM 
[5-7]. With the wear of the tool, the fillet radius of the cutting edge of the tool will continue to 
increase, resulting in the change of the cutting force. Therefore, cutting force is not only sensitive 
to tool wear status, but also can accurately reflect tool wear status with cutting. Cutting force can 
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be reflected by spindle power or bending moment, so they can also be used to identify the degree 
of tool wear. As shown in Figure 1, bending moment is adopted to detect tool wear. However, 
force sensors are usually large and expensive, and their installation range is often limited [8].  

Acoustic emission (AE) can also be used in TCM due to that it can realize their functions by 
detecting stress waves generated by local defects in materials [9, 10]. However, when the stress 
wave is transmitted between the media, its attenuation is relatively serious. Hence, the coupling 
agent is usually applied between the object to be measured and the sensor. AE will also be affected 
by multiple factors such as installation location, working mode and environmental noise [11].  

TCM based on the machine tool built-in sensors such as current sensing overcomes the above 
limitations and is conducive to the promotion in industry. However, Luo Ming et al. [12] pointed 
out that the worn tool can be detected according to the relationship between the spindle power and 
the cutting force, but the specific blade cannot be identified. 

It has been shown that if only one sensor is used, all the characteristics of tool wear status 
cannot be obtained, because each signal has different sensitivity to tool status changes [13]. 
Therefore, researchers usually collect signals from multiple sensors to detect tool wear, and have 
achieved significant results [14, 15]. However, in any of the above ways, the sensor needs to be 
reinstalled, and sometimes even the machine tool needs to be modified. 

The data sets constructed from the collected signals are sometimes unbalanced. Data 
imbalance usually refers to differences in the amount of data in each category. There are many 
ways to solve the imbalance problem, such as getting more data, changing another judgment 
method, reorganizing the data, and so on. The over- sampling method is one of the methods of 
reorganizing data. The adaptive synthetic sampling method (ADASYN) is a simple and effective 
oversampling method [16]. 

When effective signals are obtained, a series of operations such as feature extraction, feature 
selection and feature dimension reduction are generally carried out by signal processing methods, 
Different signals and features have different sensitivity to tool wear. Therefore, it is sometimes 
necessary to adopt sensitivity analysis and determining the index of feature selection. After the 
feature is determined, a classifier model should be established to recognize tool wear. AI Azmi 
[7] found that the characteristic components associated with tool wear were mainly concentrated 
in the sixth-, seventh- and eighth-order components of LPCC. Karandikar et al. [17] described a 
naive Bayes classifier method for TCM. Liu et al. [18] verified that mechanistic cutting force 
model had the potential for monitoring micro-milling tool wear. A TCM system established by 
Seemuang et al. [19] can increase the competitiveness of a machining process by increasing the 
utilized tool life and decreasing instances of part damage from excessive tool wear or tool 
breakage. Tool wear and breakage is one of the biggest obstacles for developing the unattended 
CNC machining [20]. Scholars sometimes use multiple classifiers to identify tool wear. The final 
decision was made by fusion at the classifier level, and the tool wear identification was realized 
in Ref. [21]. 

With the development of data processing technology, information technology, sensing 
technology and so on, tool wear status and evaluation methods are constantly developing. In this 
paper, a TCM model based on the built- in sensors of machine tools is proposed. Since the data 
are derived from the built-in current sensors of machine tools, and no other sensors are needed, 
this model can be widely used in industrial CNC machine tools. Additionally, it can be seen that 
most literature focuses on manual feature extraction, and researchers pay little attention to the 
automatic feature extraction. Few scholars adopt an unsupervised learning methods to monitor the 
tool wear. 

To solve above problems, a novel unsupervised DNN based on SDA is proposed in this paper. 
and classification of tool wear conditions. The rest of paper is organized as follows: in the first 
section, in order to find features that can characterize tool wear, systematic processing methods 
are conducted, including data preprocessing, feature extraction, feature selection, feature 
dimension reduction. Among them, time domain features, frequency domain features, time-
frequency features are viewed as the original features. The selection of tool wear feature is based 
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on the fact that the feature needs to have some correlation and monotonicity with tool wear. PCA 
and t-SNE are together adopted to reduce the feature dimension. The second part mainly introduce 
the classification of tool wear state. In order to complement the automatic identification, a DNN 
model based on SDA is proposed to realize the classification. 

2. Data processing to acquire suitable features  

2.1. Data acquisition 

The experiment adopts MC-510V machining center to carry out multi-condition tool wear 
experiment. The experimental platform is shown in Fig. 1. In the end, 16 experiments were carried 
out under 8 working conditions, as shown in Table 1. We collect spindle motor current signal 
(AC), spindle motor current signal (DC), and the flank wear (VB). 

 
Fig. 1. Setup of the experimental platform 

In the signal acquisition stage, according to the analysis of each sensor, the built-in sensor of 
the machine tool is suitable for normal production environment, overcoming the above limitations, 
and the current sensor is one of the common sensors. Therefore, this paper studies the monitoring 
and evaluation model of tool wear condition based on the built-in current sensor of machine tool. 
The current sensor is set on the test bench, and the collected signal is amplified and filtered, and 
collected to the terminal processor of the computer through two signal acquisition cards. The 
current signal of the spindle motor is directly connected to the computer terminal processor 
without any pre-processing steps. The current converter model is Omron K3TBA1015, which is 
used to change the AC current flow of the spindle into DC current and collect DC current. It is 
represented by “DC signal”. The model of the AC current sensor is CTA 213, and the collected 
signal is represented by “AC signal”. 

The experiment used 3 factor 2 level full factor experiment. The cutting depth is 1.50 mm and 
0.75 mm, the feed speed is 0.5 mm/r and 0.25 mm/r, and the workpiece material is cast iron and 
steel. The cutting speed is maintained at 200 m/min, and the corresponding spindle speed is 
826 r/min. The length, width and height of the milling workpiece are 483 mm, 178 mm and 51 mm 
respectively. The cutter has a diameter of 70 mm and is embedded with 6 KC710 blades. The 
blade adopts TiC/TICN/TiN coating, which not only retains the toughness of tungsten carbide, but 
also improves the shrinkage resistance and reduces the grinding. 

In this experiment, the sampling frequency is set to 250 Hz, that is, the sampling period is 
0.8 ms. For each tool walking process, the signal acquisition time is 36 s, that is, the data sample 
length is 9000. Two repeated experiments were carried out for each operating parameter. In the 
end, 16 experiments were carried out under 8 working conditions, as shown in Table 1. In each 
group of experiments, a new tool was used to carry out repeated cutting experiments under the set 
operating conditions, and the VB value of the back tool face wear was measured at the end of each 
tool. When the VB value exceeds the threshold, the experiment ends and the next set of cutting 
parameters is tested. According to the literature method, all working conditions were grouped into 
six groups, as shown in Table 3. 
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Table 1. Experimental parameters setup 
Working condition  Cutting depth (mm) Feed rate f (mm/min)  Workpiece material  

1  1.5  0.5  Cast iron  
2  0.75  0.5  Cast iron  
3  0.75  0.25  Cast iron  
4  1.5  0.25  Cast iron  
5  1.5  0.5  Steel  
6  1.5  0.25  Steel  
7  0.75  0.25  Steel  
8  0.75  0.5  Steel  
9  1.5  0.5  Cast iron  
10  1.5  0.25  Cast iron  
11  0.75  0.25  Cast iron  
12  0.75  0.5  Cast iron  
13  0.75  0.25  Steel  
14  0.75  0.5  Steel  
15  1.5  0.25  Steel  
16 1.5 0.5 Steel 

2.2. Data preprocessing 

A total of 167 samples was collected in the form of a structured array of MATLAB files, in 
which the first 7 columns of the structured array are the experimental serial number of processing, 
the number of cutting times under each experimental serial number, and the measured tool flank 
wear after cutting (not measured after each cutting), cutting times (retimed for new working 
conditions), cutting depth, feed rate, workpiece material, and the last two columns are the DC and 
AC current signals measured from the built-in sensor of the spindle motor. The data obtained in 
the experiment is not intact, and there are some abnormal situations, resulting in data damage or 
loss. Before data analysis, the data needs to be preprocessed. The specific process is as follows: 

(1) Delete abnormal sensor data. In the 18th run, the current signal was abnormal, and its data 
was far beyond the measurement range of the sensor. At the 95th run, the current signal is almost 
zero. These two records were outliers, they were removed before analysis, and then the rest of the 
samples were rearranged from 1 to 165 in order of experiment. 

(2) Handle missing data. There are several samples whose VB values were missing, such as 
the 2nd and 3rd cutting experiments. Set the VB value of the tool's first cutting in each working 
condition to 0 and use spline interpolation to calculate the unknown VB value. 

2.3. Construction of tool wear status indicator 

The real-time data obtained from the built-in current sensor of the machine tool contains 
information related to the wear state of the tool at each instant. In order to monitor the wear state 
of the tool, the original data needs to be further processed to find the characteristic matrix 
representing the wear state of the tool. To this end, it is necessary to start from three aspects as 
shown in Fig. 2: feature extraction, feature selection and dimensionality reduction, and 
construction of tool wear status indicators. 

 
Fig. 2. Construction flow of tool wear indicators 
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2.4. Feature extraction and selection 

Feature extraction plays an important role in machine learning and data analysis. It can help 
us work with high-dimensional data, improve model performance, provide data visualization and 
understanding, and achieve goals such as interpretability and feature engineering. By selecting 
appropriate feature extraction methods and strategies, we can extract the most valuable and 
meaningful features from the original data, providing a better foundation for subsequent analysis 
and modeling. 

For better feature extraction and selection, the DC and AC signals of the working condition 
group are compared with the VB value, and the working condition of group C is selected. 

There is a great correlation between DC signal and AC signal and VB value of tool wear. Due 
to the equivalence effect (effective value) between AC signal and DC signal, and from the above 
figure, the correlation between DC signal and VB value is stronger, which is more consistent with 
the monotonic feature of the feature. Therefore, DC current signal is selected for feature 
extraction. However, the rising and falling stages are unstable stages, hence the stable stage is 
used as the original signal in feature extraction and selection. 

2.5. Feature selection and dimension reduction 

2.5.1. Feature selection 

Feature selection can reduce the number of features, reduce dimension, make the model more 
generalization ability, reduce overfitting, and enhance the understanding between features and 
feature values. 

The selection of tool wear features is based on the fact that the features must have some 
correlation with the tool wear and have monotonicity. The feature mainly includes three aspects: 
time domain feature, frequency domain feature and time frequency feature. In the time domain 
features, statistical features whose variation trend is the same as that of tool wear amount are 
selected, as shown in Fig. 3. It is verified that the mean value, median value and root mean square 
of 𝑥௦ in the stable stage of DC signal are selected as the time-domain characteristics of tool wear. 

The same rule is used to select the frequency domain features. After tool wear, the energy 
consumption will increase. The frequency band energy represents the amount of energy, which is 
calculated using the following equation: 

𝐸 = ෍ 𝑝(𝑓)ଶ௙మ
௙ୀ௙భ , (1)

where, 𝑝(𝑓) is the spectrum amplitude of DC signal, 𝑓ଵ and 𝑓ଶ represents the value range of 
spectrum. 

The median frequency can reflect the position change of the main frequency. When the tool 
wear increases, the median frequency will inevitably change along with it. The median frequency 
can be calculated using the following equation: 

𝐹௖ = ቎෍𝑓𝑝(𝑓)ே ଶ⁄
௙ୀଵ ቏ ቎෍𝑝(𝑓)ே ଶ⁄

௙ୀଵ ቏൙ , (2)

where, 𝑓 is the frequency of the spectrum, and 𝑁 is the sampling frequency. 
With the increase of tool wear, the average energy of the signal increases, hence the mean 

square frequency can also reflect the change of tool wear. The mean square frequency can be 
calculated by the following equation: 
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𝑀௦௙ = ቎෍𝑓ଶ𝑝(𝑓)ே ଶ⁄
௙ୀଵ ቏ ቎෍𝑝(𝑓)ே ଶ⁄

௙ୀଵ ቏൙ . (3)

Peak frequency represents the operating current frequency of the motor, and has a great 
correlation with tool wear, which can be calculated by the following equation: 𝑝൫𝑀௙൯ = 𝑚𝑎 𝑥൫𝑝(𝑓)൯. (4)

 
Fig. 3. Change of three-time domain features with the experiments 

In time-frequency feature extraction, the signal is decomposed into different frequency bands 
by EMD, and then the Hilbert spectrum of each frequency band is obtained by Hilbert Huang 
Transform (HHT), as shown in Fig. 4 and Fig. 5. Figures shows the EMD decomposition of DC 
signal EMD decomposition. Then, the statistical features of the Hilbert spectrum are extracted, 
including the mean value, root mean square, kurtosis factor, skewness and other features. The 
calculation process of HHT is divided into two steps: first, the signal is decomposed by EMD; 
Then, in order to obtain the instantaneous frequency and amplitude of the original signal, HHT is 
performed on the IMF obtained by EMD. Let the analytical expression of IMF be 𝑐௜஺(𝑡), 𝑐௜஺(𝑡), 
which is defined by the following equation: 𝑐௜஺(𝑡) = 𝑐௜(𝑡) + 𝑗𝑐௜ு(𝑡) = 𝑎௜(𝑡)𝑒௝ఏ೔(௧). (5)

Among them 𝑐௜ு(𝑡) is the IMF 𝑐௜(𝑡) HHT, which is to say: 

𝑐௜ு(𝑡) = 1𝜋 𝑃න 𝑐௜(𝑠)𝑡 − 𝑠 𝑑𝑠, (6)

where, 𝑃 is Cauchy principal value. Using the extreme coordinates of the analytical expression of 
IMF, the instantaneous amplitude and phase can be calculated as follows: 

⎩⎪⎨
⎪⎧𝑎௜(𝑡) = ට𝑐௜ଶ + 𝑐௜ுଶ,     𝜃௜(𝑡) = tan(ିଵ) ቆ𝑐௜ு𝑐௜ ቇ . (7)

Next, the instantaneous frequency 𝜃௜(𝑡) can be derived from the instanta neous phase 𝑓௜(𝑡), 
which is expressed in the following equation: 

Number of experiments Number of experiments Number of experiments

Number 3 

Number 11 Number 11 Number 11 

Number 3 Number 3 
Mean value Median value Root mean square
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𝑓௜(𝑡) = 12𝜋 𝑑𝜃௜(𝑡)𝑑𝑡 . (8)

Finally, the original signal 𝑥(𝑡) can be expressed as follows: 

𝑥(𝑡) = 𝑅𝑒෍𝑎௜(𝑡)exp ቈ𝑗2𝜋න 𝑓௜(𝑡)𝑑𝑡்
଴ ቉௡

௜ୀଵ , (9)

where, Re is the real part of the signal and 𝑇 is the length of the signal. The HHT of signal 𝑥(𝑡) 
is: 

𝐻(𝑓, 𝑡) = ෍𝐻௜(𝑓, 𝑡) = ෍𝑎௜ଶ(𝑓௜, 𝑡)௡
௜ୀଵ

௡
௜ୀଵ , (10)

where, 𝐻௜(𝑓, 𝑡) is the time-frequency distribution of the ith IMF of signal 𝑥(𝑡), and 𝑎௜(𝑓௜ , 𝑡)) 
represents the function of the IMF amplitude 𝑎௜(𝑡) and instantaneous frequency 𝑓௜(𝑡). 

 
Fig. 4. EMD decomposition of DC signal when 𝑎𝑟 = 0.75 mm, 𝑓 = 0.25 mm/r, 𝑉𝐵 = 0.40 mm 

 
Fig. 5. HHT spectrum of IMFs after EMD when 𝑎𝑟 = 0.75 mm, 𝑓 = 0.25 mm/r, 𝑉𝐵 = 0.40 mm 

The selection rules of time domain and frequency domain features are adopted: the features 
with the same variation trend as tool wear are selected. By comparison, only the mean of the 
Hilbert spectrum of IMF1 is selected in the time-frequency features. The comparison between the 
variation trend and tool wear is shown in Fig. 4.  

In summary, the total features of each signal in group c are composed of time domain 
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(3 features), frequency domain (4 features), and time-frequency domain (1 feature), as shown in 
Table 2. 

 
Fig. 6. Comparison between HHT spectrum and tool wear of IMF1 

Table 2. Total features of signal 
Features in the domain Characteristics of the 

The time domain 
Original signal mean 

Median value of original signal 
Root mean square of original signal 

Frequency domain 

The frequency domain energy 
The median frequency 

The mean square frequency 
Peak frequency 

Time and frequency domain Mean of the Hilbert spectrum of IMF1 

2.5.2. Feature dimension reduction 

Feature dimensionality reduction transforms high-dimensional data into low-dimensional data 
by removing redundant and irrelevant features, which is a beneficial data preprocessing step that 
can improve computational efficiency, eliminate redundant information, prevent overfitting, and 
help improve model interpretability and generalization ability. 

In order to find a simple, automatic and intelligent feature extraction method, this paper adopts 
the unsupervised feature learning method under the framework of deep learning to carry out the 
preliminary dimensionality reduction operation. DNN often has many layers, and each layer is 
composed of many nodes with nonlinear transformation on the input data. The unsupervised 
autocuing learning method can extract representational features from the original data without 
labels. Unsupervised learning is an effective method for intelligent not fault diagnosis because it 
does not need to use labeled sensing data. SDA is an improved algorithm of self-coding learning.  

Self-coding learning uses qualitative mapping 𝑓ఏ to map the input vector 𝑥 ∈ 𝑅ௗ to the hidden 
layer 𝑦 ∈ 𝑅ௗᇲ, and its expression is: 𝑦 = 𝑓𝜃(𝑥) = 𝑠(𝑊𝑥 + 𝑏), (11)

where 𝜃 = ሼ𝑊, 𝑏ሽ is the excitation function, 𝑊 is the weight matrix of 𝑑ᇱ × 𝑑, and b is the 
deviation vector. Then, the compressed y is mapped back to the reconstructed vector 𝑧 ∈ 𝑅ௗ, 
whose expression is: 𝑧 = 𝑔𝜃𝐹(𝑦) = 𝑠(𝑊ᇱ𝑦 + 𝑏ᇱ), (12)

where 𝜃ᇱ = ሼWᇱ,𝑏ᇱሽ. When 𝑊ᇱ = 𝑊், 𝑊 and 𝑊ᇱ are called relational weights. The weighted 
model is realized by reducing the average reconstruction error, which can be expressed as follows: 
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𝜃∗,𝜃ᇱ∗ = arg minఏ,ఏᇲ 1𝑛෍(𝑥(௜), 𝑧(௜))௡
௜ୀଵ = arg minఏ,ఏᇲ 1𝑛෍𝐿(𝑥(௜),𝑔ఏᇲ(𝑓ఏ(𝑥(௜)))௡

௜ୀଵ ), (13)

where 𝐿 is a squared error loss function, 𝐿(𝑥, 𝑧) = ‖𝑥 − 𝑧‖ଶ. 
Self-coding learning initializes a DNN network by adopting the features of the second layer as 

the input of the second layer (𝑘 + 1). Each layer is initialized and then stacked into a DNN. The 
parameters can be adjusted by supervised training. Compared with random initialization, 
hierarchical initialization can get better local minima. However, the features learned by autocuing 
are sometimes just a simple copy of the input data or only a limited representation of the input 
information, which cannot guarantee the effectiveness of feature extraction. 

On the basis of autocuing learning, in order to extract more useful and robust features to 
initialize the DNN, researchers proposed a denoising autocuing technique. Each noise reduction 
encoder is trained by randomly erasing part of the input data (that is, the value of these data is 
zero) to make the extracted features robust. Firstly, the value of some randomly selected input 
data is set to zero, and the original data is changed from 𝑥 to 𝑥෤. Then, self-coding learning is used 
to map the erased data to the hidden layer, and the expression is as follows: 𝑦 = 𝑓𝜃(𝑥෤) = 𝑠(𝑊𝑥෤ + 𝑏). (14)

The signal is reconstructed by reflecting 𝑧 = 𝑔ఏᇲ(𝑦). The square error loss function 𝐿ு(𝑥, 𝑧) 
is reduced by constantly updating the weight parameter.  

Like the autoencoder learning algorithm, SDA algorithm continuously updates the parameters 𝜃 and 𝜃ᇱ by reducing the square error loss function between 𝑥 and 𝑧. Unlike the encoding learning 
algorithm, the noise reduction since encoding learning algorithm of 𝑧 is part by erasing data after 𝑥෤ mapping. SDA also use hierarchical initialization to extract useful representations. After 
learning the mapping equation 𝑓ఏ, we can usually use Gaussian white noise, SP noise (Salt and 
Pepper) and mask noise technology to erase the original data. In this paper, mask noise technology 
is adopted, that is, random elements of the original data are set to zero. 

In the feature dimension reduction process, a deep neural network with 4-layer structure was 
first established. As shown in the figure, SDA is used in each layer to learn the characteristics of 
the input data. Among them, the first SDA is trained by reducing the error between the 
reconstructed signal and the input signal. The parameter 𝜃ଵ of the first denoising autoencoder 
obtained from training is used as the initial parameter of the second hidden layer. The unerased 
data is trained using the learned encoding equation. In order to obtain the encoding equation of 
the second layer of denoising autoencoder, the output result after training is used as the input of 
the second denoising autoencoder. The parameters of each denoising encoder 𝑓ఏ(ଵ) are used as the 
initial parameters of the next hidden layer.  

Compared with the training results of the original data x, the weight noise of the erased data 𝑥෤ 
trained is relatively small. And erasing data 𝑥෤ alleviates the generation gap between training data 
and test data to a certain extent. This is because part of the original data has been erased, so 𝑥෤ is 
closer to the test data to a certain extent. SDA is equivalent to creating a hidden layer, which is 
usually added at the beginning of DNN as the primary filter of the original signal and has the effect 
of feature dimensionality reduction. 

In order to further achieve feature dimension reduction, PCA method is firstly used to reduce 
the dimension of the feature after SDA, and then the data dimension reduction and visualization 
method (t-SNE) is introduced to reduce the feature dimension to 2. The whole feature 
dimensionality reduction process is shown in Fig. 7. 

In most cases, the construction of state indications requires several processes, such as data 
fusion, data filtering, and residual extraction, in order to obtain enough information to characterize 
the state of a component or system. Researchers generally focus on one of the steps, such as feature 
extraction, feature selection, feature dimension reduction, and state indication construction, but 
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few of them fully monitor and predict tool wear state in accordance with all the steps. The figure 
shows the original current data and the indication of tool wear state after feature extraction, feature 
selection, and feature dimension reduction. According to the above methods of feature extraction, 
feature selection and feature dimension reduction, the two-dimensional feature matrix is obtained, 
and its comparison with the tool wear quantity is shown in Fig. 8. 

 
Fig. 7. Flow of feature dimension reduction 

 
Fig. 8. Comparison between two features and tool wear 

It can be seen from the figure that the feature proposed in this paper can well characterize the 
change of tool wear, which lays a good foundation for the classification of tool wear states in the 
future. These indications of tool wear can form new labeled data, as shown in Fig. 8, which 
provides a good database for further fine-tuning DNN parameters through back propagation.  

3. Classification model of tool wear state using SDA 

The tool wear state classification model can establish the mapping relationship between the 
feature matrix obtained from the original signal and the tool wear state. In this paper, a DNN 
network composed of 4 Sdas is used as the classification model of tool wear state. On this basis, 
Softmax layer is added to the output end of DNN to classify the tool wear state. The labeled data 
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of the original data is fine-tuned into DNN parameters through backpropagation, and the new 
labeled data composed of primary reduction and secondary dimensionality reduction features is 
fine-tuned into DNN network parameters through backpropagation, as shown in Fig. 9. 

In the figure, Softmax regression layer is a general logistic regression layer used to predict 
multi-objective classification problems. Suppose that the training data samples {𝐱(௜)}௜ୀଵ௡  and 
labels {𝑡(௜)}௜ୀଵ௡  with 𝐾 categories are known, where 𝐱(௜) ∈ ℝ௠, 𝑡(௜) ∈ {1,2, … , 𝑘}, Softmax 
regression layer can be used to predict the probability that each input sample belongs to each 
category: 

𝑃൫𝑡(௜) = 𝑗ห𝐱(௜);𝜃൯ = 1∑ 𝑒ఏ೗೅𝐱(೔)௞௟ୀଵ ⎣⎢⎢⎢
⎡𝑒ఏభ೅𝐱(೔)𝑒ఏమ೅𝐱(೔)𝑀𝑒ఏೖ೅𝐱(೔)⎦⎥⎥⎥

⎤, (15)

where 𝑗 = 1,2..., 𝑘, parameters of Softmax regression layer 𝜃 = [𝜃ଵ,𝜃ଶ, … ,𝜃௞]. The Softmax 
regression layer normalizes the probability distribution by ensuring that the ଵ∑ ௘ഇ೗೅𝐱(೔)ೖ೗సభ  sum of all 

probabilities equals one.  

 
Fig. 9. Tool wear condition classification model 

The loss function of SoftMax regression layer is defined as follows: 

𝐽(𝜃) = − 1𝑛 ቎෍෍1൛𝑡(௜) = 𝑗ൟ log 𝑒ఏೕ೅𝐱(೔)∑ 𝑒ఏ೗೅𝐱(೔)௞௟ୀଵ
௞
௝ୀଵ

௡
௜ୀଵ ቏, (16)

where 1{·} denotes the indicator function, which is 1 when the condition is true and 0 otherwise. 
The parameters of the Softmax regression layer are constantly updated by decreasing the loss 
value. 

After adding a Softmax regression layer to the output of the DNN, a small amount of labeled 
data reversely regulates the parameters of the DNN by reducing the error between the predicted 
and true values. Stochastic gradient descent based on backpropagation algorithm is used to 
continuously update the parameters of all hidden layers. The weights and biases are updated by 
the following equation: 

𝑊௟ = 𝑊௟ − 𝜂 𝜕𝜕𝑊௟ 𝐽(𝑊, 𝑏;𝑋, 𝑡), (17)
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𝐵௟ = 𝐵௟ − 𝜂 𝜕𝜕𝑊𝐵௟ 𝐽(𝑊,𝐵;𝑋, 𝑡), (18)

where 𝑊௟ and 𝐵௟ are the weight and deviation matrix of the hidden layer, 𝜂 is the learning rate of 
the hidden layer, 𝑡 is the training data put in each time, 𝑋 is the containing sample point. DNN has 
the ability to classify tool wear state after two backpropagation fine-tuning.  

4. Classification evaluation results and analysis of tool wear 

Using the classification method of literature, the tool wear state is divided into four categories, 
as shown in Table 3. Where Ⅰ corresponds to the initial wear of the tool, Ⅱ and Ⅲ correspond to 
the normal wear of the tool, and Ⅳ corresponds to the sharp wear stage of the tool. In experimental 
data, the early wear and tear of the sample is more, the rapid wear of samples is less, to reduce the 
influence caused by the uneven sample, random forest classifier was used to solve this problem. 

Table 3. Tool wear condition classification 
Tool wear condition classification VB / mm 

Ⅰ 0 ≤ VB < 0.2 
Ⅱ 0.2 ≤ VB < 0.4 
Ⅲ 0.4 ≤ VB < 0.6 
Ⅳ VB > 0.6 

The ratio of training set and test set was set to 70 % and 30 %, and 10 experiments were 
performed on the model. After two fine-tuning of DNN parameters, the accuracy of its training 
set and test set is shown in Fig. 10. 

 
Fig. 10. Accuracy of tool wear condition classification of training data and data after two fine- tune 

As can be seen from the figure, the accuracy of the training set is basically higher than 93 %, 
and the accuracy of the initial fine-tuning of DNN parameters is above 91 %. However, the 
accuracy of the new label data is improved, which indicates that the new label data, namely, the 
feature data after dimensionality reduction of features for many times, is more representative of 
the features of the original data. The same method is used to classify the tool wear state in other 
working conditions, and the accuracy is shown in Table 4. 

From the experimental results in Table 4, we can see that both our proposed SDA method and 
random forest method perform well in identifying the tool wear state. This is because when the 
tool is seriously worn, the current signal of the spindle motor changes obviously, which can be 
shown by manually extracting signal features. Therefore, the recognition accuracy can reach 
98.367 % by using SDA. However, when the wear difference is not large, such as working 
conditions A, D and E, the current signal of the spindle motor only changes weakly. Meanwhile, 
due to the change of processing parameters and the presence of noise signals, such weak changes 
cannot be distinguished by traditional feature extraction methods, so the recognition effect of 
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random forest is poor. The recognition accuracy of using random forest is better than that of SDA 
when the amount of data is less, because random forest equalizes the data set. However, in the 
case of multiple data amounts, the wear state recognition accuracy of the method proposed in this 
paper is still 98.367 %, indicating that the method can adapt to the change of processing 
parameters and fully extract the characteristic information of signal characteristics. 

Table 4. Accuracy of tool wear condition in different cutting conditions 
Working condition The serial number Random forest (literature) SDA (method of this paper) 

A 1, 9 86.154 83.612 
B 2, 12, 4, 10 97.273 98.367 
C 3, 11 93.333 94.245 
D 5, 16 85.833 83.215 
E 6, 8, 14, 15 86.667 90.487 
F 7, 13 88.571 84.560 

The accuracy obtained by the SDA method is the accuracy after two fine-tuning of DNN 
parameters. It can be seen that the classification accuracy of the tool wear state of the SDA 
proposed in this paper is improved under working conditions B, C and E, while the tool wear 
accuracy is reduced under working conditions A, D and F. Through analysis, the reasons for the 
lower classification accuracy of tool wear state by the proposed method are as follows: 
(1) Although the feature matrix formed after feature extraction, feature selection and feature 
dimensionality reduction proposed in this paper can well represent the features of the original data, 
the DNN network has certain requirements on the amount of data, and the feature matrix 
undoubtedly reduces the amount of data, resulting in a poor performance of the advantages of 
DNN. (2) The data obtained from the experiment contains unbalanced samples of each tool wear 
state. In order to reduce the impact of uneven samples, this paper deleted some data containing a 
large number of samples, which also reduced the amount of data required by DNN. (3) The 
parameters of DNN network (such as the number of layers, the number of neurons in each layer, 
the learning rate, etc.) have an important impact on the prediction results, and the setting of these 
parameters is usually based on experience or a large number of experiments. Due to the limitations 
of experimental conditions, the optimal parameters of DNN network cannot be obtained. 

To sum up, the recognition accuracy and accuracy of SDA have achieved good results under 
most working conditions, which fully embodies the advantages of the method proposed in this 
paper. 

5. Conclusions 

This paper presents an unsupervised deep neural network (DNN) tool condition monitoring 
based on stack denoising autoencoder (SDA), aiming at on-line monitoring and evaluation of tool 
wear in automatic machining. The signal collected by the current sensor is processed by the 
methods of feature extraction, feature selection and feature dimension reduction, and then the state 
recognition of the tool is realized by an unsupervised deep neural network (DNN) of stacked 
denoising autoencoder (SDA). The application effect of the model in monitoring tool wear 
condition was analyzed experimentally. The effectiveness and feasibility of the model in 
monitoring tool wear condition were verified through experiments, and the main conclusions were 
obtained as follows: 

(1) The proposed idea of using the current sensor in the machine tool to obtain data overcomes 
the shortcomings of installing vibration sensors, acoustic emission sensors, force sensors and other 
sensors at present, and extends the adaptability of the method proposed in this paper. On the basis 
of the preliminary analysis of the data, the data of DC signal stabilization stage is used as the 
original data. 

(2) Due to data loss and damage, data needs to be preprocessed. In the process of finding the 
indicator of tool wear state, the methods of feature extraction, feature selection and feature 
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dimensionality reduction are integrated to ensure that the final feature matrix can fully represent 
the original data. Especially in the selection of feature dimension reduction method, the SDA 
method is introduced into the monitoring of tool wear state. The feature matrix after feature 
extraction and selection is preliminarily dimensionally reduced. On this basis, PCA and t-SNE are 
used to reduce the dimensionality of the features twice, and finally a simple two-dimensional 
feature matrix is obtained. The results show that the two characteristic matrices obtained are in 
good agreement with the change of tool wear. 

(3) In the tool wear state evaluation, the deep neural network model of SDA was established 
by adding Softmax regression layer, the tool wear monitoring results were taken as the new labeled 
data, and the deep neural network parameters were fine adjusted by secondary backpropagation. 
The results show that compared with other studies, the evaluation accuracy of some results is 
improved. However, some results are not accurate. The reasons are analyzed and summarized to 
provide ideas for follow-up research. 
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