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Abstract. In this work, a novel mathematical model of thermoelastic, homogenous, isotropic, and 
infinite medium with a spherical cavity has been constructed. Under the hyperbolic 
two-temperature Green-Naghdi theory of thermoelasticity type-I and type-III with fractional-order 
strain, the governing equations have been established. The bounding surface of the cavity has been 
thermally loaded by a ramp-type heat and is connected to a rigid foundation which prevents 
volumetric strain. Different values of the fractional-order and two-temperature parameters have 
shown numerical results for the dynamical and conductive temperature increment, strain, 
displacement, and average of principal stresses, which are graphically applicable to all the 
functions studied. The fractional-order parameter has significant effects on stress and strain 
distributions, while it has a limited effect on the dynamical and conductive temperatures 
increment. The hyperbolic two-temperature parameter has significant effects on all studied 
functions based on Green-Naghdi models of type-1 and type-II. Moreover, the ramp-time heat 
parameter has a significant impact on all the studied functions under all the studied models of 
thermoelasticity. 
Keywords: hyperbolic two-temperature, Green-Naghdi, spherical cavity, fractional-order strain, 
ramp-type heat. 

Nomenclature 𝐶௩ Specific heat at constant strain 𝑐௢  ൌ ඨ𝜆 ൅ 2 𝜇𝜌   Longitudinal wave speed 

𝑐̃ ൌ 𝑐𝑐௢ The dimensionless of the two-temperature parameter 𝑒௜௝ The strain components 𝐾 Thermal conductivity 𝐾෩ ൌ 𝐾∗𝐾   𝑇஽,𝑇஼    Dynamical and conductive temperature, respectively 𝑇௢ Reference temperature 𝑡 Time 𝑢௜௝ The displacement components 𝛼் Coefficient of linear thermal expansion 𝛽ଶ ൌ 2𝜇𝜆 ൅ 2𝜇  
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𝛾 = ሺ3𝜆 + 2𝜇ሻ𝛼்  𝜀 = 𝛾𝑇଴ሺ𝜆 + 2𝜇ሻ The thermoelastic coupling constant (dimensionless) 

𝜀ଵ = 𝛾𝜌 𝐶௩ The mechanical coupling constant (dimensionless) 

𝜂 = 𝜌 𝐶௩𝐾  The thermal viscosity 𝜆, 𝜇 Lamé’s constants 𝜌 Density 𝜎௜௝ The stress tensor of components 𝜏଴ Thermal relaxation time 

1. Introduction 

How to find a precise model that accurately represents the behaviour of thermoelastic materials 
is the main issue of the topic. Researchers and writers have created several models that depict how 
waves are transferred through solids and thermoelastic materials. However, not all of these models 
are successful because one of the criteria for a good model is to reproduce experimental findings 
with waves of mechanical and thermal propagation moving at a finite speed. No one field of study 
can be used to discuss thermomechanical transition models that apply to elastic materials [1]. 

Based on the idea of fractional calculus, some fresh thermoelastic models were presented. The 
first model describing the behaviour of the material was created by Magin and Royston using the 
fractional deformation derivative [2]. The derivative's zero order is a Hookean solid, while it's one 
order is a Newtonian fluid. The split order of thermoviscoelastic materials and the intermediate 
heat exchange spectrum [2].  

Youssef introduced a different new theory of global thermoelasticity based on the fractional-
order strain. It is believed that the connection between stress and strain is a novel and distinctive 
contribution to Duhamel-Neumann's theory [3]. Youssef has solved the type-II problems of Biot, 
Lord-Shulman, Green-Lindsay, and thermoelasticity in one dimension with fractional sequence 
strain [3]. 

Based on two distinct conductive and dynamic temperatures, Chen and Gurtin created the 
thermoelasticity model. The relationship between the temperature difference and the heat source 
[4]. Warren and Chen looked at the propagation of waves in the two-temperature thermoelastic 
theory [5]. However, there won't be any research on that theory before Youssef updates it and 
develops a two-temperature generalized thermostat model [6]. Youssef and many other authors 
applied this concept in several applications and enquiries [7-13]. Youssef and El-Bary validated 
the two-temperature generalized thermoelasticity model, although it does not give a fixed speed 
for thermal wave propagation [14]. To replace this model, Youssef and El-Bary created the 
hyperbolic two-temperature generalized thermoelasticity model, which is based on new thermal 
conductivity principles [14]. Youssef proposed that the difference between conductive 
temperature and dynamic temperature acceleration in that model be proportional to the heat 
supply. In this model, the rate of thermal wave propagation is constrained. Youssef found solutions 
to several uses of the infinite thermoelastic spherical media [15-18]. In the limitless media, 
Mukhopadhyay and Kumar investigated the universal thermoelastic interactions with the cavity 
[19]. Many authors used spherical cavities to solve problems involving thermoelastic mediums 
[20-29]. 

In the current work, with a spherical cavity, a novel mathematical model of a thermoelastic, 
homogenous, isotropic, and infinite medium will be developed. The governing equations will be 
constructed for the hyperbolic two-temperature Green-Naghdi theory of thermoelasticity type-1 
and type-III based on fractional-order strain consideration. A ramp-type heat will thermally load 
the cavity's boundary, and it is attached to a rigid foundation to avoid volumetric strain. Different 
fractional-order and two-temperature parameter values will be produced numerical findings for 
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the strain, displacement, average principle stresses, and dynamical and conductive temperature 
increment, which are visually relevant to all the functions under study. 

2. The problem formulation 

Consider a perfect, thermoelastic, conducting, and isotropic body with a spherical cavity that 
occupies the region 𝜉 = ሼሺ𝑟,𝜓,𝜙ሻ:   𝑎 ≤ 𝑟 ൏ ∞,   0 ≤ 𝜓 ≤ 2𝜋,    0 ≤ 𝜙 ൏ 2𝜋ሽ. We use a 
spherical coordinative system ሺ𝑟,𝜓,𝜙ሻ that displays the radial coordinate, co-latitude, and 
longitude of a spherical system, without any forces on the body and initially calming where r is 
the sphere radius, as in Fig. 1. When there are no latitude and longitudinal variance is the symmetry 
condition fulfilled. Both state functions depend on the distance and time of the radius. 

 
Fig. 1. The isotropic homogeneous thermoelastic solid sphere with a spherical cavity 

We note that due to spherical symmetry, the displacement components have the form: ൫𝑢௥ ,𝑢ట,𝑢థ൯ = ሺ𝑢ሺ𝑟, 𝑡ሻ, 0,0 ሻ. (1)

The equations of motion [3, 13]: 

𝜌𝑢ሷ = ሺ𝜆 + 2𝜇ሻሺ1 + 𝜏ఈ𝐷௧ఈሻ 𝜕𝑒𝜕𝑟 − 𝛾 𝜕𝑇஽𝜕𝑟 . (2)

The constitutive equations with damage mechanics variable [3, 13]: 𝜎௥௥ = ሺ1 + 𝜏ఈ𝐷௧ఈሻሺ2𝜇𝑒௥௥ + 𝜆𝑒ሻ − 𝛾ሺ𝑇஽ − 𝑇଴ሻ, (3)𝜎టట = ሺ1 + 𝜏ఈ𝐷௧ఈሻ൫2𝜇𝑒టట + 𝜆𝑒൯ − 𝛾ሺ𝑇஽ − 𝑇଴ሻ, (4)𝜎థథ = ሺ1 + 𝜏ఈ𝐷௧ఈሻ൫2𝜇𝑒థథ + 𝜆𝑒൯ − 𝛾ሺ𝑇஽ − 𝑇଴ሻ, (5)𝜎௥థ =   𝜎థట = 𝜎௥ట = 0. (6)

The strain components are: 

𝑒௥௥ = 𝜕𝑢𝜕𝑟 ,    𝑒టట = 𝑒థథ = 𝑢𝑟 , (7)

and 𝑒௥థ = 𝑒థట = 𝑒௥ట = 0, (8)

where 𝑒 is the cubical dilatation and is given by: 



INFLUENCE OF THE FRACTIONAL-ORDER STRAIN ON AN INFINITE MATERIAL WITH A SPHERICAL CAVITY UNDER GREEN-NAGHDI HYPERBOLIC 
TWO-TEMPERATURE THERMOELASTICITY THEORY. HAMDY M. YOUSSEF, ABDULRAHMAN A. ALGHAMDI 

14 JOURNAL OF ENGINEERING AND THERMAL SCIENCES. JUNE 2023, VOLUME 3, ISSUE 1  

𝑒 = 𝑒௥௥ + 2𝑒థథ = 𝜕𝑢𝜕𝑟 + 2𝑢𝑟 = 1𝑟ଶ 𝜕ሺ𝑟ଶ𝑢ሻ𝜕𝑟 . (9)

The hyperbolic two-temperature heat conduction equations take the forms [3, 13, 14]. 
The heat conduction equations which have been proposed by Green-Naghdi take the following 

form [29]: 

൬ 𝜕𝜕𝑡 + 𝐾෩൰∇ଶ𝑇஼ = 𝜕ଶ𝜕𝑡ଶ ൬𝜌𝐶௩𝐾 𝑇஽ + 𝛾𝑇଴𝐾 ሺ1 + 𝜏ఈ𝐷௧ఈሻ𝑒൰. (10)

The unified Eq. (6) could be used for the two types of Green-Naghdi theories as follows: 
The setting 𝐾෩ = 0 represents the Green-Naghdi type-I model. 
The setting 𝐾෩ = 𝐾∗ 𝐾⁄  represents the Green-Naghdi type-III model, where  𝐾∗ = ሺ𝜆 + 2𝜇ሻ𝐶௩ 4⁄  is the characteristic of Green-Naghdi theory, 𝐾 is the usual thermal 

conductivity, and the unit of the quantity ൫𝐾෩൯ is sିଵ and: 𝑇ሷ஼ − 𝑇ሷ஽ = 𝑐ଶ∇ଶ𝑇஼ , (11)

where 𝑐 (m/s) is the hyperbolic two-temperature parameter [14], and ∇ଶ= ଵ௥మ డడ௥ ቀ𝑟ଶ డడ௥ቁ. 
The Riemann – Liouville fractional integral 𝐼ఈ𝑓ሺ𝑡ሻ description is used in the above equations 

written in a convolution-type form [3, 30]: 

𝐼ఈ𝑓ሺ𝑡ሻ = 1Γሺ𝛼ሻන ሺ𝑡 − 𝜐ሻఈିଵ௧
଴ 𝑓ሺ𝜐ሻ𝑑𝜐,     𝑡 > 0,    𝛼 > 0, (12)

that provides Caputo with the form of fractional derivatives: 

𝐷௧ఈ𝑓ሺ𝑡ሻ = 𝐼ିఈ𝑓ሺ𝑡ሻ = ⎩⎪⎨
⎪⎧ 1Γሺ1 − 𝛼ሻන 𝑓ሺ𝜉ሻሺ𝑡 − 𝜉ሻఈ  ௧

଴ 𝑑𝜉, 0 < 𝛼 < 1,𝑓ሺ𝑡ሻ, 𝛼 = 0,𝑓ᇱሺ௧ሻ, 𝛼 = 1.  (13)

We consider that 𝜑 = ሺ𝑇஼ − 𝑇଴ሻ and 𝜃 = ሺ𝑇஽ − 𝑇଴ሻare the conductive and dynamical 
temperature increments, respectively. Then the Eqs. (2)-(5), (10) and (11) take the forms: 

𝜌𝑢ሷ = ሺ𝜆 + 2𝜇ሻሺ1 + 𝜏ఈ𝐷௧ఈሻ 𝜕𝑒𝜕𝑟 − 𝛾 𝜕𝜃𝜕𝑟 , (14)൬ 𝜕𝜕𝑡 + 𝐾෩൰∇ଶ𝜑 = 𝜕ଶ𝜕𝑡ଶ ൬𝜌𝐶௩𝐾 𝜃 + 𝛾𝑇଴𝐾 ሺ1 + 𝜏ఈ𝐷௧ఈሻ𝑒൰, (15)𝜑ሷ − 𝜃ሷ = 𝑐ଶ∇ଶ𝜑, (16)𝜎௥௥ = ሺ1 + 𝜏ఈ𝐷௧ఈሻሺ2𝜇𝑒௥௥ + 𝜆𝑒ሻ − 𝛾𝜃, (17)𝜎టట = ሺ1 + 𝜏ఈ𝐷௧ఈሻ൫2𝜇𝑒టట + 𝜆𝑒൯ − 𝛾𝜃, (18)𝜎థథ = ሺ1 + 𝜏ఈ𝐷௧ఈሻ൫2𝜇𝑒థథ + 𝜆𝑒൯ − 𝛾𝜃, (19)

The Eq. (14) can be re-written to be in the form: 𝜌ሺ𝜆 + 2𝜇ሻ 𝑒ሷ = ሺ1 + 𝜏ఈ𝐷௧ఈሻ∇ଶ𝑒 − 𝛾ሺ𝜆 + 2𝜇ሻ  ∇ଶ𝜃. (20)

The following non-dimensional variables are used for convenience [8, 12, 13]: 
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ሼ𝑟′,𝑢′,𝑎′ሽ = 𝑐௢𝜂 ሼ𝑟,𝑢,𝑎ሽ,      ሼ𝑡′, 𝜏′ሽ = 𝑐௢ଶ𝜂 ሼ𝑡, 𝜏ሽ, 𝐾′෪ = 𝐾෩𝑐௢ଶ𝜂,   ሼ𝜃′,𝜑′ሽ = 1𝑇଴ ሼ𝜃,𝜑ሽ, 𝜎ᇱ = 𝜎𝜆 + 2𝜇. (21)

Then, we obtain: 𝑒ሷ = ሺ1 + 𝜏ఈ𝐷௧ఈሻ∇ଶ𝑒 − 𝜀 ∇ଶ𝜃, (22)൬ 𝜕𝜕𝑡 + 𝐾෩൰∇ଶ𝜑 = 𝜕ଶ𝜕𝑡ଶ ሺ𝜃 + 𝜀ଵሺ1 + 𝜏ఈ𝐷௧ఈሻ𝑒ሻ, (23)𝜃ሷ = 𝜑ሷ − 𝑐̃ଶ∇ଶ𝜑, (24)𝜎௥௥ = ሺ1 + 𝜏ఈ𝐷௧ఈሻሺ𝛽ଶ𝑒௥௥ + ሺ1 − 𝛽ଶሻ𝑒ሻ − 𝜀𝜃, (25)𝜎టట = ሺ1 + 𝜏ఈ𝐷௧ఈሻ൫𝛽ଶ𝑒టట + ሺ1 − 𝛽ଶሻ𝑒൯ − 𝜀𝜃, (26)𝜎థథ = ሺ1 + 𝜏ఈ𝐷௧ఈሻ൫𝛽ଶ𝑒థథ + ሺ1 − 𝛽ଶሻ𝑒൯ − 𝜀𝜃. (27)

The prims have been deleted for simplicity. 

3. Problem formulation in the Laplace transform domain 

The Laplace transform will be applied which is defined as follows: 

ℎത ሺ𝑟; 𝑠ሻ  =  න 𝑒ି௦ ௧ℎത ሺ𝑟; 𝑡ሻ𝑑𝑡ஶ
଴ , (28)

where the inversion of the Laplace transform may be calculated numerically by the following 
iteration: 

ℎሺ𝑟; 𝑡ሻ = 𝐿ିଵൣℎതሺ𝑟; 𝑠ሻ൧ ≈ 𝑒఑௧2𝑡 ℎതሺ𝑟; 𝜅ሻ + 𝑒఑௧𝑡 Re෍ ሺ−1ሻ௡ℎത ൬𝑟; 𝜅𝑡 + 𝑖 𝑛𝜋𝑡 ൰ே௡ୀଵ , (29)

where 𝑅𝑒 denotes the real part, while 𝑖 defines the unit imaginary number. Numerous numerical 
tests have been conducted to determine if the value of 𝜅 may meet the relation 𝜅𝑡 ≈ 4.7 [31, 32]. 

The Laplace transform of the fractional derivative is defined as [30]: 𝐿ሼ𝐷௧ఈ𝑓ሺ𝑡ሻሽ = 𝑠ఈ𝑓̅ሺ𝑠ሻ − 𝐷௧ఈ𝐼ଵିఈ𝑓ሺ0ାሻ,       0 < 𝛼 < 1. (30)

We assume the following initial conditions: 𝐷௧ఈ𝐼ଵିఈሼ𝑒ሺ𝑟, 0ାሻ,𝜑ሺ𝑟, 0ାሻ,𝜃ሺ𝑟, 0ାሻ ሽ = 0,       0 < 𝛼 < 1, (31)𝑒ሺ𝑟, 𝑡ሻ|௧ୀ଴ = 𝜃ሺ𝑟, 𝑡ሻ௧ୀ଴ = 𝜑ሺ𝑟, 𝑡ሻ௧ୀ଴ = 𝜕𝑒ሺ𝑟, 𝑡ሻ𝜕𝑡 ቤ௧ୀ଴ = 𝜕𝜃ሺ𝑟, 𝑡ሻ𝜕𝑡 ቤ௧ୀ଴ = 𝜕𝜑ሺ𝑟, 𝑡ሻ𝜕𝑡 ቤ௧ୀ଴ = 0. (32)

Then, we obtain: 𝑠ଶ𝑒̅ = ሺ1 + 𝜏ఈ𝑠ఈሻ∇ଶ𝑒̅ − 𝜀 ∇ଶ𝜃̅, (33)൫𝑠 + 𝐾෩൯∇ଶ𝜑ത = 𝑠ଶ𝜃̅ + 𝜀ଵ𝑠ଶሺ1 + 𝜏ఈ𝑠ఈሻ𝑒̅, (34)𝑠ଶ𝜃̅ = 𝑠ଶ𝜑ത − 𝑐̃ଶ∇ଶ𝜑ത , (35)𝜎ത௥௥ = ሺ1 + 𝜏ఈ𝑠ఈሻሺ𝛽ଶ𝑒̅௥௥ + ሺ1 − 𝛽ଶሻ𝑒̅ሻ − 𝜀𝜃̅, (36)𝜎തటట = ሺ1 + 𝜏ఈ𝑠ఈሻ൫𝛽ଶ𝑒̅టట + ሺ1 − 𝛽ଶሻ𝑒̅൯ − 𝜀𝜃̅, (37)𝜎തథథ = ሺ1 + 𝜏ఈ𝑠ఈሻ൫𝛽ଶ𝑒̅థథ + ሺ1 − 𝛽ଶሻ𝑒̅൯ − 𝜀𝜃̅. (38)
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Eliminating 𝜃̅ from the Eqs. (33)-(35), we obtain: ∇ଶ𝑒̅ − 𝛼ଵ𝑒̅ = 𝛼ଶ∇ଶ𝜑ത − 𝛼ଷ∇ସ𝜑ത , (39)∇ଶ𝜑ത = 𝛼ସ𝜑ത + 𝛼ହ𝑒̅, (40)

where: 

𝛼ଵ = 𝑠ଶሺ1 + 𝜏ఈ𝑠ఈሻ ,     𝛼ଶ = 𝜀 ሺ1 + 𝜏ఈ𝑠ఈሻ ,     𝛼ଷ = 𝑐̃ଶ𝜀 𝑠ଶሺ1 + 𝜏ఈ𝑠ఈሻ, 𝛼ସ = 𝑠ଶ൫𝑠 + 𝐾෩ + 𝑐̃ଶ൯ ,     𝛼ହ = 𝜀ଵ𝑠ଶሺ1 + 𝜏ఈ𝑠ఈሻ൫𝑠 + 𝐾෩ + 𝑐̃ଶ൯ . 
Eliminating 𝑒̅ from the Eqs. (38) and (39), we get: ሾ∇ସ − 𝐿 ∇ଶ + 𝑀ሿ𝜑ത = ሺ∇ଶ − 𝑘ଵଶሻሺ∇ଶ − 𝑘ଶଶሻ𝜑ത = 0. (41)

Eliminating 𝜑ത from the Eqs. (39) and (40), we obtain: ሾ∇ସ − 𝐿 ∇ଶ + 𝑀ሿ𝑒̅ = ሺ∇ଶ − 𝑘ଵଶሻሺ∇ଶ − 𝑘ଶଶሻ𝑒̅ = 0, (42)

where 𝐿 = ሺఈభାఈరାఈమఈఱሻሺଵାఈయఈఱሻ , 𝑀 = ఈభఈరሺଵାఈయఈఱሻ, and ±𝑘ଵ, ±𝑘ଶ are the roots of the following characteristic 
equation: 𝑘ସ − 𝐿 𝑘ଶ + 𝑀 = 0. (43)

The general solutions of the Eqs. (41) and (42) must be bounded at infinity, thus, they take the 
following forms: 

𝜑തሺ𝑟, 𝑠ሻ = 𝐴ଵ 𝑒ି௞భ ௥𝑟 + 𝐴ଶ 𝑒ି௞మ ௥𝑟 ,      𝑎 ≤ 𝑟 < ∞, (44)𝑒̅ሺ𝑟, 𝑠ሻ = 𝐵ଵ 𝑒ି௞భ ௥𝑟 + 𝐵ଶ 𝑒ି௞మ ௥𝑟 ,      𝑎 ≤ 𝑟 < ∞. (45)

From the Eq. (39), we obtain: ሺ𝑘௜ଶ − 𝛼ସሻ𝐴௜ = 𝛼ହ𝐵௜,     𝑖 = 1,2. (46)

Thus, we have: 

𝑒̅ሺ𝑟, 𝑠ሻ = ሺ𝑘ଵଶ − 𝛼ସሻ𝐴ଵ 𝑒ି௞భ ௥𝛼ହ 𝑟 + ሺ𝑘ଶଶ − 𝛼ସሻ𝐴ଶ 𝑒ି௞మ ௥𝛼ହ 𝑟 ,      𝑎 ≤ 𝑟 < ∞. (47)

To get the parameters 𝐴ଵ and 𝐴ଶ, we must apply the boundary conditions, so we will consider 
that the surface of the cavity is subjected to a thermal loading with a function of time only as 
follows: 𝜑ሺ𝑎, 𝑡ሻ = 𝜑଴𝑓ሺ𝑡ሻ. (48)

Moreover, we will consider that the surface of the cavity is connected to a rigid foundation 
which can stop any cubical deformation, i.e., we have: 𝑒ሺ𝑎, 𝑡ሻ = 0. (49)
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After applying Laplace transform, we obtain: 𝜑തሺ𝑎, 𝑠ሻ = 𝜑଴𝑓̅ሺ𝑠ሻ, (50)𝑒̅ሺ𝑎, 𝑠ሻ = 0. (51)

By using the conditions Eqs. (50) and (51) into the Eqs. (44) and (47), we obtain the following 
system of linear equations: 𝐴ଵ𝑒ି௞భ ௔ + 𝐴ଶ𝑒ି௞మ ௔ = 𝑎𝜑଴𝑓ሺ̅𝑠ሻ, (52)ሺ𝑘ଵଶ − 𝛼ସሻ𝐴ଵ𝑒ି௞భ ௔ + ሺ𝑘ଶଶ − 𝛼ସሻ𝐴ଵ𝑒ି௞మ ௔ = 0. (53)

By solving the above system, we get: 

𝐴ଵ = ሺ𝑘ଶଶ − 𝛼ସሻ𝑎𝜑଴𝑓̅ሺ𝑠ሻ𝑘ଶଶ − 𝑘ଵଶ 𝑒௞భ௔,     𝐴ଶ = −ሺ𝑘ଵଶ − 𝛼ସሻ𝑎𝜑଴𝑓̅ሺ𝑠ሻ𝑘ଶଶ − 𝑘ଵଶ 𝑒௞మ௔. (54)

Hence, we have the solutions in the Laplace transform domain as follows: 

𝜑തሺ𝑟, 𝑠ሻ = 𝑎 𝜑଴𝑓̅ሺ𝑠ሻ𝑘ଶଶ − 𝑘ଵଶ ቈሺ𝑘ଶଶ − 𝛼ସሻ   𝑒ି௞భ ሺ௥ି௔ሻ𝑟 − ሺ𝑘ଵଶ − 𝛼ସሻ 𝑒ି௞మ ሺ௥ି௔ሻ𝑟 ቉ ,      𝑎 ≤ 𝑟 < ∞, (55)

𝑒̅ሺ𝑟, 𝑠ሻ = ሺ𝑘ଵଶ − 𝛼ସሻሺ𝑘ଶଶ − 𝛼ସሻ𝑎 𝜑଴𝑓ሺ̅𝑠ሻ𝛼ହሺ𝑘ଶଶ − 𝑘ଵଶሻ ቆ𝑒ି௞భሺ௥ି௔ሻ 𝑟 − 𝑒ି௞మ ሺ௥ି௔ሻ 𝑟 ቇ ,      𝑎 ≤ 𝑟 < ∞. (56)

Now, we must determine the thermal loading function 𝑓ሺ𝑡ሻ, so we will consider that the 
thermal loading function is a ramp-type heating which takes the form [7, 33, 34]: 

𝑓ሺ𝑡ሻ = ቐ 𝑡𝑡଴ , 0 < 𝑡 < 𝑡଴,1, 𝑡 ≥ 𝑡଴,  (57)

where 𝑡଴ is called the ramp-time heat parameter. 
After applying the Laplace transform to the above equation, we obtain: 

𝑓̅ሺ𝑠ሻ = 1 − 𝑒ି௧బ௦𝑡଴𝑠ଶ . (58)

That completes the solutions in the Laplace transform domain. 
To obtain the stress distribution, we can sum the Eq. (35)-(37), then we obtain the average 

value of the principal stresses components as follows: 𝜎௔௩௚ = 𝜎ത௥௥ + 𝜎തటట + 𝜎തథథ3 = ሺ1 + 𝜏ఈ𝑠ఈሻ ൬1 − 23𝛽ଶ൰ 𝑒̅ − 𝜀𝜃̅. (59)

4. Numerical results  

For the numerical results, silicon (Si) has been taken as the thermoelastic semiconducting 
material, for which we take the following values of the different physical constants [7, 33-35]: 𝜇 = 5.46×1010 kg m-1 s-2, 𝜆 =3.64×1010 kg m-1 s-2, 𝜌 = 2330 kg m-3, 𝐶௩ = 695 m2 K-1 s-2,  𝛼் = 3.0×10-6 K-1, 𝐾 = 150 kg m k-1 s-3, 𝜑଴ = 1.0. 

The numerical results of the dynamic temperature increment, conductive temperature 
increment, volumetric deformation, displacement, average stress, and stress-strain energy 
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distributions have been figured with a wide range of the dimensionless radial distance 𝑟 ሺ1 ≤ 𝑟 ≤ 4ሻ and at the instant value of dimensionless time 𝑡 = 1.0. 

5. Discussions 

Figs. 2 and 3 show the studied function distributions of Green-Naghdi type-I and type-III, 
respectively, with various values of the fractional-order parameter 𝛼 =(0.0, 0.4, 0.6, 0,9) at a time 𝑡 = 2.0 and 𝑡଴ = 2.0 to sand on the effect of the fractional-order parameter. 

 
a) The conductive temperature increment 

 
b) The dynamic temperature increment 

 
c) The volumetric strain  

 
d) The average of principal stresses 

Fig. 2. The studied function distributions of Green-Naghdi type-I  
with various values of the fractional-order parameter 

Fig. 2(a), 3(a), 2(b), and 3(b) represent the conductive and dynamical temperature increments, 
respectively. It is noted that the value of the fractional-order strain parameter has a very limited 
effect on the thermal wave.  

Figs. 2(c) and 3(c) represent the volumetric strain, and it is noted that the fractional-order of 
strain parameter has a significant effect where the absolute value of the peak point of the 
volumetric strain increases when the value of the fractional-order strain parameter increases. 
Moreover, the maximum absolute value of the volumetric strain occurs when the consideration of 
the fractional-order strain does not exist.  

Figs. 2(d) and 3(d) represent the average value of the principal stresses, and it is noted that the 
fractional-order of strain parameter has a small effect. 

Also, we can see that the value of the dynamical temperature increment based on type-I is 
smaller than its value based on type-III. While the absolute value of the principal stresses based 
on type-I is greater than its value based on type-III. 

Figs. 4 and 5 show the studied functions distributions of Green-Naghdi type-I and type-II, 
respectively, based on one-temperature and hyperbolic two-temperature models (𝑐 = 0.0 and  𝑐 ≠ 0.0) and various values of the fractional-order parameter 𝛼 = (0.0, 0.5) at a time 𝑡 = 2.0 and 𝑡଴ = 2.0 to sand on the effect of the fractional-order parameter on the two studied models. 

Figs 4(a), 4(b), 5(a), and 5(d) show that the hyperbolic two-temperature parameter has 
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significant effects on the conductive and dynamical temperature increment or the thermal wave in 
general for the two studied types I and III. 

 
a) The conductive temperature increment 

 
b) The dynamic temperature increment. 

 
c) The volumetric strain  

 
d) The average of principal stresses 

Fig. 3. The studied function distributions of Green-Naghdi type-III  
with various values of the fractional-order parameter 

 
a) The conductive temperature increment 

 
b) The dynamic temperature increment. 

 
c) The volumetric strain  

 
d) The average of principal stresses 

Fig. 4. The studied functions distributions of Green-Naghdi type-I based on one-temperature and 
hyperbolic two-temperature and various values of the fractional-order parameter 
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Figs. 4(c) and 5(c) represent the volumetric strain distributions, and it is noted that the 
hyperbolic two-temperature parameter has a significant effect beside the fractional-order strain 
parameter where the absolute value of the peak point of the volumetric strain for the two studied 
types take the following order: 𝑒ெ௔௫ሺ𝜏 = 0.0, One − Temp. ሻ > 𝑒ெ௔௫ሺ𝜏 ≠ 0, One − Temp. ሻ> 𝑒ெ௔௫ሺ𝜏 = 0.0, Two − Temp. ሻ > 𝑒ெ௔௫ሺ𝜏 ≠ 0, Two − Temp. ሻ (60)

The above equation indicates that considering strain with fractional-order and hyperbolic 
two-temperature heat model leads to a decrease in the profile of the mechanical wave propagation. 

Figs. 4(d) and 5(d) represent the average of principal stresses distributions, and it is noted that 
the two-temperature parameter has a significant effect besides the fractional-order strain 
parameter. 

 
a) The conductive temperature increment 

 
b) The dynamic temperature increment 

 
c) The volumetric strain  

 
d) The average of principal stresses 

Fig. 5. The studied functions distributions of Green-Naghdi type-III based on one-temperature and 
hyperbolic two-temperature and various values of the fractional-order parameter 

Figs. 6 and 7 show the studied functions distributions of Green-Naghdi type-I and type-II, 
respectively, based on one-temperature and hyperbolic two-temperature models (𝑐 = 0.0 and  𝑐 ≠ 0.0) and the fractional-order parameter 𝛼 = 0.5 when 𝑡 < 𝑡଴ and 𝑡 > 𝑡଴, respectively to stand 
on the effect of the ramp-time heat parameter on all the studied functions. 

Figs. 6(a), 6(b), 7(a), and 7(b) show that the ramp-time heat parameter has significant effects 
on the conductive and dynamical temperature increments. Based on the case 𝑡 < 𝑡଴, the profile of 
the thermal wave’s propagation is smaller than its propagation based on the case 𝑡 > 𝑡଴ in the 
context of one-temperature and hyperbolic two-temperature models of Green-Naghdi type-I and 
type-III. 

Figs. 6(c), 6(d), 7(c), and 7(d) show that the ramp-time heat parameter has significant effects 
on the volumetric strain and average of principal stresses. Based on the case 𝑡 < 𝑡଴, the absolute 
value of the volumetric strain and average of principal stresses (the profile of the mechanical 
wave’s propagation) are smaller based on the case 𝑡 > 𝑡଴ in the context of one-temperature and 
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hyperbolic two-temperature models of Green-Naghdi type-I and type-III. 

 
a) The conductive temperature increment 

 
b) The dynamic temperature increment. 

 
c) The volumetric strain  

 
d) The average of principal stresses 

Fig. 6. The studied functions distributions of Green-Naghdi Type-I and type-III  
based on one-/two-temperature when 𝛼 = 0.5 and 𝑡 < 𝑡଴ 

 
a) The conductive temperature increment 

 
b) The dynamic temperature increment. 

 
c) The volumetric strain  

 
d) The average of principal stresses 

Fig. 7. The studied functions distributions of Green-Naghdi Type-I and type-III  
based on one-/two-temperature when 𝛼 = 0.5 and 𝑡 > 𝑡଴ 

6. Conclusions 

1) The value of the fractional-order strain parameter has limited effects on the conductive and 
dynamical temperature increments. 

2) The value of the fractional-order strain parameter has significant effects on strain and stress. 
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3) The hyperbolic two-temperature parameter has significant effects on the conductive and 
dynamical temperature increments, strain, and stress. 

4) The ramp-time heat parameter has significant effects on the conductive and dynamical 
temperature increments, strain, and stress. 

5) The profile of the thermal wave’s propagation based on Green-Naghdi type-I is smaller 
based on Green-Naghdi type-III. 

6) The profile of the mechanical wave’s propagation based on Green-Naghdi type-I is greater 
based on Green-Naghdi type-III. 

7) Considering strain with a fractional-order and hyperbolic two-temperature heat conduction 
model causes the profile of mechanical wave propagation to be reduced. 

8) Green-Naghdi type-I and type-II based on hyperbolic two-temperature heat conduction 
models offer propagation of thermal and mechanical waves with finite speeds. 
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