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Abstract. This study develops an empirical model to predict the airflow resistivity of thin and 
low-density sound-absorbing materials. Airflow resistivity is a key input parameter for Finite 
Element Method (FEM) simulations of sound pressure levels (SPLs) in vehicle cabins. However, 
existing models for determining the airflow resistivity of thin and low-density fibrous materials 
are inaccurate. Therefore, this study proposes a simple and reliable model based on multiple linear 
regression analysis of polypropylene fibrous nonwoven samples. The samples were tested using 
equipment designed according to ISO standards 9053-1. The model selection was performed using 
stepwise techniques to identify the most relevant predictors. The final model, along with its 
coefficients and goodness of fit statistics, is presented and discussed. The results of this study offer 
a practical tool for design engineers to estimate the airflow resistivity of thin and low-density 
materials, which can improve the accuracy of FEM simulations of SPLs in vehicle cabins.  
Keywords: airflow resistivity, empirical model, fibrous materials, sound pressure levels. 

1. Introduction 

The Finite Element Method (FEM) allows designers to model a product in a virtual 
environment, eliminating the need for physical prototypes early in the design phase. When 
developing and testing a new vehicle prototype, noise, and vibration engineers use FEM models 
to determine the effect sound-damping material have on internal noise levels. Therefore, accurate 
sound absorption models are important for predicting sound pressure levels (SPLs) in the vehicle 
cabin. FEA software packages such as COMSOL Multiphysics, ANSYS Acoustics, and Actran 
require airflow resistivity as an input parameter for predicting sound propagation and absorption 
in porous materials. These software packages enable modelling of sound waves interacting with 
porous materials, and the airflow resistivity is a key material property that affects the sound 
absorption behaviour of these materials. 

The development of numerous empirical models for predicting airflow resistivity of fibrous 
materials has been seen in recent years, with a focus on naturally occurring materials. Research 
published by Dunne et al. [1], discussed the available models and their working range in great 
detail, covering a broad range of bulk densities and fibre diameters. The models are reported to be 
valid over the bulk density range of 12-132 kg/m3 and fibre diameter range of 11-75 μm. The 
accuracy of the models were benchmarked against real-world data, showing that the Modified 
Ballagh model performed well on synthetic fibres but poorly on natural fibres, while the Bies 
model performed best on natural fibres. It was found that the models are not very flexible and are 
limited to a specific range, with poor predictions for thin low-density fibrous sound absorbing 
materials. This presents a challenge for design engineers who use predictive models to determine 
the airflow resistivity of thin, low-density materials. 

Thus, this research develops a novel airflow resistivity model that can accurately predict the 
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airflow resistivity of thin (𝑡 < 20 mm), low-density (𝜌 < 50 kg/m3) materials. 

2. Material development 

The research used equipment designed according to ISO standards 9053-1, with the 
experimental equipment manufactured to high-quality specifications. The airflow resistivity tube 
was used to test the airflow resistance of different polypropylene fibres of varying diameters that 
were manufactured into nonwovens, illustrated in Fig. 1. A total of 203 samples were used, with 
180 used for model development and 23 for model validation. The thickness, bulk density, and 
airflow resistivity of each sample were measured using calibrated equipment. The experimental 
setup for the airflow resistivity testing involved preparing the laboratory environment, 
randomizing the order of testing, and using calibrated equipment, including a testo 512 pressure 
meter (0- 200 Pa), with a resolution of 0.1 Pa, KOFLOC flow meter model RK120X series capable 
of measuring flows as low as 5 ml/min, and a MaxiMet (GMX501) Compact Weather Station. 
Note, due to the large amount of data captured for this study only summarised tables are given as 
seen in Table 1 and 2. 

 
Fig. 1. Airflow resistivity experimental setup taken in September 2022  

by RK Dunne in the sound and vibration lab at TUT 

Table 1. Model development dataset 
Sample No. Thickness (mm) Bulk density (kg/m3) Airflow resistivity (Pa.s/m2) Fibre diameter (μm) 

Average 10.61 35.62 6936.49 35.20 
Minimum 7.0 20.32 1023.34 19.40 
Maximum 15.20 50.76 23843.63 49.50 

Table 2. Model validation dataset 
Sample No. Thickness (mm) Bulk density (kg/m3) Airflow resistivity (Pa.s/m2) Fibre diameter (μm) 

Average 10.80 39.51 6412.99 35.20 
Minimum 6.90 21.89 2871.38 19.40 
Maximum 17.0 53.39 11865.01 49.50 

3. Parameter analysis and selection 

Regression models show the mathematical relationship between a predictor variable and a 
response variable. When no theoretical knowledge of the relationship is available, the choice of 
the model is based on an inspection of scatter plots. In this study the method of least-squares is 
used to develop the empirical airflow resistivity model. Furthermore, multiple linear regression is 
used since the model contains more than one independent variable.  

Linear models assume the mean of 𝑦 is linearly related to 𝑥, the error terms are normally 
distributed with a mean of zero and equal variances, and the error terms are independent at each 
value of the predictor variable. Model development involves an iterative process of selecting 
regressor variables and identifying the best equation to fit the data. ANOVA, R-squared, and 
information criteria were used to aid in evaluating the quality of the relationship between the 
response and predictor variables.  
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3.1. Collinearity check 

Collinearity can cause instability in a model and must be checked for and removed. The airflow 
resistivity data were analyzed using SAS software and the Variance Inflation Factor (VIF) was 
calculated, with a cutoff value set at 10. Mass, thickness, bulk density, and porosity had VIF values 
greater than 10, indicating collinearity. After removing mass and porosity, the VIF dropped to 
acceptable levels, indicating significant collinearity between these predictors and the others. The 
redundancy of these predictors will be further illustrated in subsequent sections. 

3.2. Model selection 

The process of selecting candidate models involves evaluating and selecting models based on 
various criteria. These criteria include significance levels (𝑝-values), information criteria (such as 
AIC, AICC, BIC, and SBC), and adjusted R-squared values. 

To illustrate the process of selecting candidate models, the example of selecting the best 
predictor variables for airflow resistivity is used. With five possible predictors, there are 32 
possible models, so it is necessary to eliminate the least significant predictors. This can be done 
using stepwise model selection techniques such as forward selection, backward selection, and 
stepwise selection. 

The SAS software is used to perform the model selection process. The STEPWISE model 
selection technique is implemented to select the most appropriate subset of models. The process 
starts with all the variables in the dataset and eliminates the least significant variables based on a 
significance level of 𝑝 > 0.05. 

The SAS output displays tables and graphs that provide information about the model selection 
process at each step. The Coefficient Progression for Airflow Resistivity shows how the 
standardized coefficients and the criterion were used to choose the final model. The set of fit 
criteria, AIC, SBC, AICC, and adjusted R-squared values for each step are plotted and compared 
side-by-side as seen in Fig. 2. 

 
Fig. 2. Selection fit criteria for airflow resistivity model 

The stepwise process based on significance level chose the model at Step 2, which includes 
both fibre diameter and bulk density. This model produced the lowest Average Squared Error 
(ASE) value, indicating less unexplained variation in the Airflow Resistivity model. As can be 
seen, the mass and porosity parameters were illuminated thus confirming the collinearity analysis. 

Beyond significance levels, information criteria can also be used to evaluate and select models. 
Each criterion searches for a model that minimizes unexplained variability using as few effects as 
possible. These criteria are helpful in directing the selection process within the SAS software 
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procedure. 
In summary, selecting candidate models involves evaluating and selecting models based on 

various criteria such as significance levels, information criteria, and adjusted R-squared values. 
The SAS software is a useful tool for performing the model selection process and provides tables 
and graphs to help interpret the results. 

4. Regression model development 

Upon analysis of the airflow resistivity data scatter plots, a non-linear relationship with the 
fibre diameter was found, so a transformation was applied to the data to enable linear regression 
analysis. However, the choice of model for the transformed data is not straightforward. Different 
models, such as logarithmic, exponential, power, or polynomial models of varying orders, could 
all potentially fit the data well. Therefore, a model selection process is necessary to determine the 
best model for the available data. 

4.1. Model comparison  

The model selection process requires applying the data to each model and analysing which 
model gives the highest adjusted R-squared value. During this process, numerous possible 
combinations of the variables were checked to see which combination would give the highest 
adjusted R-squared value for the dataset, the data analysis tool in Microsoft Excel was utilized to 
perform this. The result of this process is expressed in Table 3. 

It is evident from Table 3 that the Log-Log model gave the highest adjusted R-squared value. 
At this point in the research, it is still too early to select the best model since other factors must be 
brought into the selection process. The additional factors, the selection of the best model and its 
mathematical derivation will be discussed in the coming sections. 

Table 3. Airflow resistivity model R-squared comparison  

Combinations Fibre diameter/bulk 
density (𝑅 ) 

Fibre diameter 
(𝑅 ) 

Bulk density 
(𝑅 ) 

Model type    
Log-Log 0.966 0.744 0.202 

Exponential 0.949 0.735 0.199 
First-order polynomial with one-interactions 0.867 – – 

Second-order polynomial with one-interactions 0.952 – – 

5. Final model selection and validation 

In order to select the most accurate model for future predictions, it is necessary to test the 
models on a validation dataset. Then, the performance of the models must be compared to 
determine which one performs the best. Additionally, the selected model must be checked to 
ensure that it meets the assumptions required by linear regression, such as a linear relationship 
between the predictor and response variables, normally distributed error terms with a mean of 
zero, equal variances, and independent error terms at each value of the predictor variable.  

5.1. Airflow resistivity model selection 

The validation dataset was used to assess the developed airflow resistivity models, and it was 
found that the 1st order polynomial model had the lowest average percentage difference between 
the measured value and the predicted value. The models were also evaluated against an external 
dataset, and a selection metric was developed to objectively select the best model. The Exponential 
model outperformed all competing models on the external datasets and had the highest average 
selection metric score and thus was chosen as the best model. Figs. 3 and 4, show the percentage 
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difference between the actual and predicted airflow resistivity values predicted by each model. It 
should be noted that the external dataset was made up of both synthetic fibres and natural fibres. 

 
Fig. 3. Airflow resistivity model comparison using validation dataset 

 
Fig. 4. Airflow resistivity model comparison using external dataset 

5.2. Validating model assumptions 

The assumptions of the model, including linearity, independence, normality, and homogeneity 
of variances, were validated before using the model for future predictions. The influential 
observations were also tested using the software NumXL [2], and no adjustments were necessary. 
Model linearity was validated using scatter plots, while normality assumptions were validated 
using a histogram plot of the residuals. The independence and equal variance assumptions were 
validated using a residual plot of the errors. 

5.3. Model derivation 

Linear regression analysis was used to develop the airflow resistivity model, which was 
benchmarked against existing models to evaluate its performance. The non-linear behavior 
observed in the airflow resistivity data required data transformation for linear regression. The 
regression analysis showed that only fibre diameter and bulk density are significant predictors of 
airflow resistivity. The adjusted coefficient of determination value obtained for the Exponential 
model was 0.949, indicating that 94.9 % of the variability in the data is explained by the model. 
The resulting equation is expressed in non-linear form in Equation 1, with airflow resistivity as a 
function of fibre diameter and bulk density: 𝜎 = 𝑒 . . . , (1)

where 𝜎 is the airflow resistivity in Pa.s/m2, 𝑑  is the fibre diameter in μm, and 𝜌  is the bulk 
density in kg/m3. 
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5.4. Airflow resistivity model comparison 

The developed airflow resistivity model was compared against twenty-five existing models. 
Table 4, shows the data for the best performing modes. The average, minimum and maximum 
percentage difference between the actual and predicted airflow resistivity of these models is 
compared with the developed Exponential model in Table 4. 

The external data used to produce Table 4, was obtained from the following references; [7], Li 
et al. [8], and Yang et al. [9]. As it can be seen from Table 4, the current models lack prediction 
consistency with high variation between the predicted minimum and maximum percentage 
differences. 

Table 4. Performance of current airflow resistivity models 
Model performance  %Diff 𝑃  external data %Diff 𝑃  internal data Ref 

Kozeny-Carman 
Avg: 57.33 
Min: 10.92 

Max: 142.07 

Avg: 16.04 
Min: 0.24 

Max: 38.34 
[3] 

Ballagh 
Avg: 42.36 
Min: 0.62 

Max: 59.53 

Avg: 24.16 
Min: 1.70 

Max: 65.72 
[4] 

Sullivan 
Avg: 37.16 
Min: 5.01 

Max: 109.04 

Avg: 13.11 
Min: 2.85 

Max: 31.21 
[5] 

Yilmaz 
Avg: 47.84 
Min: 0.36 

Max: 139.69 

Avg: 59.46 
Min: 0.24 

Max: 181.99 
[6] 

Developed exponential model 
Avg: 12.10 
Min: 3.55 

Max: 27.05 

Avg: 11.35 
Min: 0.061 
Max: 25.66 

 

6. Conclusions 

This study aimed to address inaccurate predictions of sound pressure levels within vehicle 
cabins when using FEA software. The current FEA software utilizes empirical models that are not 
developed for thin, low-density materials. By testing multiple models, it was found that the 
Exponential model accurately predicted airflow resistivity, demonstrating flexibility and accurate 
predictions of both synthetic and natural fibres of different bulk densities and thicknesses. 
Although the developed model performs well caution should be exercised when applying this 
model to data outside of its developed range since empirical models are only accurate within a 
specified range they were developed for. 
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