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Abstract. This article proposes a novel lightweight attention spatiotemporal joint distribution 
adaptation network fault diagnosis model to address the key challenges of domain transfer and 
high model complexity in traditional methods. The novelty lies in 1. Using model compression 
techniques to reduce the complexity of the network model and improve its computational 
efficiency; 2. Introducing new domain adaptation and adversarial methods to solve the domain 
transfer problem. The effectiveness of the proposed model is verified through a transfer 
experiment of planetary gearbox vibration data. The experimental results show that the proposed 
model reduces the parameters and computational complexity to 18 % and 15 % of the original 
model, respectively, and has a diagnostic accuracy of over 98 % in cross-condition transfer tasks, 
and still maintains an accuracy of over 88 % even under high noise levels. This indicates that the 
proposed model is an efficient and accurate fault diagnosis model.  
Keywords: transfer learning, fault diagnosis, attention mechanism, model compression 
technology. 

1. Introduction 

Bearing, gear and other rotating mechanical parts are the parts with the highest failure rate in 
mechanical equipment. Timely fault diagnosis of rotating mechanical parts can ensure the safe 
and stable operation of mechanical equipment and avoid economic losses caused by failures. 

The traditional mechanical fault diagnosis method mainly consists of two steps: artificial 
feature extraction and artificial pattern recognition. That is, first, manually extract the feature map 
that is easier to distinguish the fault type from the acoustic, optical, vibration acceleration, 
temperature and other signals, and then directly judge the fault type through the feature map. 
However, the method relying on artificial feature extraction is only applicable to situations where 
the complexity of the mechanical system dynamics model is low. In the case of high complexity, 
the features that can significantly represent the health state of the machine cannot be obtained, so 
it is not conducive to pattern recognition. In addition, in the case of high system complexity, the 
results of pattern recognition are easy to be affected by the subjective cognitive bias of experts, 
resulting in reduced accuracy of pattern recognition. The emergence of the machine learning (ML) 
method solves the problem of relying on artificial pattern recognition. After establishing the 
discrimination model, this method trains the parameters of the model through a large number of 
labeled data, so that the model can output the fault discrimination results, thus avoiding the risk 
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of accuracy decline caused by subjective judgment. Fault diagnosis models based on traditional 
ML include support vector machine, decision tree, K nearest neighbor algorithm, etc. Li et al. [1] 
used a multi-core support vector machine to diagnose the fault of a gas turbine and verified the 
performance of the model through comparative experiments. For the structure of the model itself 
and the problem of computational efficiency, some scholars solve it by simplifying the model 
parameters and improving the algorithm for optimizing the model. For example, Vong et al. [2] 
extract features through wavelet packet transform. With the extracted features, the engine faults 
are then classified by a multi-class least squares support vector machine. Li et al. [3] used particle 
swarm optimization to improve the training process of SVM. 

With the development of ML technology in recent years, intelligent fault diagnosis has also 
come into being. Among them, intelligent fault diagnosis based on deep learning (DL) solves the 
problem that the feature extraction of traditional machine fault diagnosis depends on the prior 
knowledge of experts. The DL model can automatically extract more complete fault features for 
classification. To lower the model's complexity, many scholars first use traditional feature 
transformation to extract shallow features from the original data, and then use DL technology to 
extract deep-level features and conduct pattern recognition [4]. Fault diagnosis methods based on 
DL often use convolutional neural networks [5] (CNN), recurrent neural networks [6] (RNN), 
generative adversarial networks [7] (GAN), deep belief networks [8] (DBN), stacked autoencoders 
[9] (SAE) and other models. Islam et al. [4] collected the signal of the bearing through the acoustic 
transmitter, converted the information into wavelet spectrum by wavelet packet transform, then 
selected the band signal with significant characteristics through the defect rate index, and finally 
input the band signal into the adaptive CNN to diagnose the fault. Demetgul et al. [10] used 
Diffusion Maps, Local Linear Embedding, and AutoEncoders for feature extraction, and used 
Gustafson-Kessel and k-medoids algorithms to classify encoded signals, achieving good 
diagnostic accuracy in fault diagnosis of material handling systems. Zhang et al. [11] 
supplement-ed the original data set through Gan to make the sample categories balanced, and then 
used CNN model for feature extraction and pattern recognition. Through comparative 
experiments, it was proved that the fault diagnosis effect of this approach is better than that of the 
approach without data expansion. Zhao et al. [12] proposed a deep branch attention network, 
which can flexibly integrate vibration and velocity information to obtain higher diagnostic 
accuracy. 

The premise of the application of the above fault diagnosis method is that the training samples 
and the test samples are independent and identically distributed in the probability distribution. 
However, in the actual situation, the probability distribution of the machine state data is often 
different due to different working conditions. The distribution difference between training data 
and test data will cause a domain confrontation phenomenon [13], which will greatly reduce the 
model diagnosis accuracy. Therefore, it is necessary to introduce domain adaptation into fault 
diagnosis methods to solve the problem of domain offset. In many industrial contexts, it is 
challenging to collect labeled data for practical applications, while it is simpler to collect non-
labeled data. Based on this, this paper will realize the mapping of the original data to the machine 
health state under variable conditions through unsupervised deep domain adaptive transfer 
learning (TL) method, that is, build an end-to-end model, and train the model through labeled 
source domain data and unlabeled target domain data. TL-based intelligent fault methods have 
received a lot of attention recently. Te et al. [14] used convolutional neural networks as feature 
extractors and classifiers, and added domain classifiers to the model. Through confrontation 
training, the feature extractors can extract common features of the two domains, and finally 
conduct fault diagnosis through the classifier. Xu et al. [15] obtained the simulation fault data of 
the workshop through the data twin technology, and then realized the fault diagnosis of the actual 
workshop through the simulation fault data and the improved sparse stacking automatic encoder. 

The general approximation theorem points out that a multilayer feedforward network 
containing enough hidden layer neurons can approximate any continuous function with any 
accuracy. However, the development direction of DL model is always towards the trend of more 
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layers and larger width scales. Due to the limitation of hardware on computing power, the number 
of hidden layer neurons and network layers will be limited, while simply increasing the network 
depth of the model will increase the risk of gradient cliff or gradient explosion. At the same time, 
the computational efficiency of the huge model is low, which is not conducive to real-time fault 
diagnosis. In order to enhance the capability of feature extraction and pattern discrimination under 
limited model parameters, it is necessary to optimize the model parameters and computational 
complexity. The technology of model compression and accelerated depth neural network has been 
continuously developed in recent years, and is widely used to reduce the parameter amount and 
calculation amount of the model. This technology can be divided into parameter pruning and 
quantization, low-rank decomposition, transfer/compact convolution filter and knowledge 
distillation [16]. For the traditional DL-based fault diagnosis technology, there are problems of 
accuracy drop caused by domain offset and redundancy of model parameters and computation.  

This paper aims at the problem of domain confrontation and the redundancy of model 
parameters and computation in the DL fault diagnosis method. This paper proposes a 
spatio-temporal neural network (STN) based on convolutional neural network (CNN) and long 
short memory network (LSTM). On the basis of STN, attention mechanism (AM) is introduced to 
enhance the significance of extracted features. Then domain adaptation and domain confrontation 
mechanism are introduced to strengthen the robustness of fault diagnosis under different working 
conditions. Finally, a lightweight attention spatio-temporal network fusion joint distribution 
domain adaptation (AST-JDAN) fault diagnosis model is obtained through model compression 
technology. 

2. Theoretical background 

2.1. Soft attention mechanism 

The purpose of AM is to enable each feature vector to obtain the similarity between features, 
so that similar features can obtain more significant feature interaction, and finally enable the model 
to extract more significant fault features to promote fault diagnosis. 

 
Fig. 1. Wayne diagram of AM classification [17] 

The AM can be broken down into channel attention, space attention, time attention, space-time 
attention, space channel attention, and branch attention, as shown in Fig. 1. This paper mainly 
deals with spatial AM. Spatial AM is divided into soft AM and hard AM according to the weight 
of selected fault eigenvalue. The soft AM takes each feature into account, and the weight of each 
feature is between 0 and 1, while the hard AM only selects the features that have a large 
relationship. The weight of the features that have a large relationship is 1, and the weight of the 
features that have a small relationship is 0. Because the hard AM excludes the features of small 
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relationship, it may lead to information omission and affect the fault diagnosis accuracy of the 
model, so this paper selects the soft AM. 

As shown in Fig. 2, the hard AM is like an addressing process, which finds the value stored in 
the address space through a fixed address, while the soft AM is similar to the soft addressing 
process. The difference from the hard AM is that each time the query vector matches a key value 
pair, 𝑣 will be output, and the proportion of the output depends on the degree of correlation 
between the query vector and the key vector. In the hard AM, it is believed that each time the key 
value pair is matched, it is either 100 % related or irrelevant. 

The output features through the soft AM are mainly divided into the following steps: 
(1) Prepare the query vector 𝑞, the key vector 𝑘, and the value vector 𝑣. In this fault diagnosis 
model, 𝑞 is the feature of the last time step of LSTM layer output in STN, 𝑘 and 𝑣 are the output 
of each time step of LSTM and the output of each channel of convolution layer. (2) Calculate the 
score 𝑠 (also called attention distribution) of each characteristic 𝑣, and weight 𝑣 output. The 
calculation formula of 𝑠 is shown in Eq. (1): 𝑠௜ = 𝑝ሺ𝑧 = 𝑖|𝐾, 𝑞ሻ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥൫𝑠𝑐𝑜𝑟𝑒ሺ𝑘௜ ,𝑞ሻ൯,       𝑖 = 1,2, . . . ,𝑁. (1)

Among them, 𝑠𝑐𝑜𝑟𝑒 is a 𝑠𝑐𝑜𝑟𝑒 function to calculate the degree of correlation between the key 
vector and the query vector. The score function usually uses the dot product model, as shown in 
Eq. (2), that is, the dot product between vectors is calculated to represent the correlation between 
vectors. Obviously, when two vectors are orthogonal (independent), the scoring value is 0. The 
scaling point product model is shown in Eq. (3), which reduces 𝑑ଵ ଶ⁄  based on the point product 
model, where 𝑑 is the dimension of input 𝑘௜. Eq. (4) is a bilinear model, which introduces a 
trainable weight matrix 𝑊 on the basis of the point product model. The author Kim [18], who 
proposed the model, believes that the conventional point product model establishes a separate 
attention distribution for each category, ignoring the correlation between multiple categories of 
inputs. By introducing 𝑊, the knowledge of attention distribution established by each category 
will be learned by 𝑊, making contributions to the establishment of attention distribution of the 
next category. Wu [19] proposed an additive model, as shown in Eq. (5). Compared with the 
bilinear model, it increases the attention value 𝑈௤ of A global context awareness and is activated 
through the tanℎ function. Where, 𝑊 and 𝑈 are trainable weight matrices: 𝑠𝑐𝑜𝑟𝑒ሺ𝑥௜ , 𝑞ሻ = 𝑥௜் 𝑞, (2)𝑠𝑐𝑜𝑟𝑒ሺ𝑥௜ , 𝑞ሻ = 𝑥௜் 𝑞√𝑑 , (3)𝑠𝑐𝑜𝑟𝑒ሺ𝑥௜ , 𝑞ሻ = 𝑥௜் 𝑊𝑞, (4)𝑠𝑐𝑜𝑟𝑒ሺ𝑥௜ , 𝑞ሻ = 𝑣்tanhሺ𝑊𝑥௜ + 𝑈𝑞ሻ. (5)

After obtaining the attention distribution 𝑠, let 𝑘 = 𝑣, and obtain the output value of the AM 
lay er through weighted summation, as shown in Eq. (6): 

𝑎𝑡𝑡ሺ𝑋, 𝑞ሻ = ෍𝑠௜𝑣௜ே
௜ୀଵ = ෍𝑠௜𝑘௜ே

௜ୀଵ . (6)

2.2. Domain countermeasure mechanism 

Ganin et al. [20] introduced the domain confrontation learning mechanism in the deep neural 
network in 2016, and proposed the domain adversarial neural network (DANN). DANN consists 
of three networks, including feature extractor (𝐺௙), classifier (𝐺௬) and domain discriminator (𝐺ௗ). 
The function of feature extractor is to extract the features of source domain and target domain; 
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The function of the classifier is to classify features; The function of the domain discriminator is 
to distinguish whether the features produced by the feature extractor come from source domain 
data or target domain data as much as possible. 

 
Fig. 2. Comparison of addressing process and soft AM process 

The training goal of DANN is to enable the classifier to accurately classify the source domain 
features and make the domain discriminator unable to distinguish whether the features produced 
by the feature extractor come from the source domain data or the target domain data. In this way, 
the source domain and target domain can be mapped to the same feature space, the distribution 
between the two domains can be aligned, and then the target domain data can be classified through 
a classifier. The objective function expression of confrontation training is shown in Eq. (7): 

min௬ maxௗ 𝐿ሺ𝑦,𝑑ሻ = ෍𝐿௬ே
௜ୀଵ ൫𝐺௬൫𝐺௙൫𝑥௜;𝜃௙൯;𝜃௬൯,𝑦௜൯ + ෍𝐿ௗே

௜ୀଵ ቀ𝐺ௗ ቀ𝑅ఒ ቀ𝐺௙൫𝑥௜;𝜃௙൯ቁ ;𝜃ௗቁ ,𝑑௜ቁ , (7)

where, 𝑁 is the number of samples, 𝑥௜ is the input sample, 𝑦௜ is the sample label, 𝑑௜ is the domain 
label, 𝜃௙, 𝜃௬ and 𝜃ௗ is the weight matrix of 𝐺௙, 𝐺௬ and 𝐺ௗ respectively, 𝐿௬ is the cross entropy 
loss function of class discrimination, 𝐿ௗ is the cross entropy loss function of domain 
discrimination, 𝑅ఒ is a gradient inversion layer function, which keeps the independent variable 
output during feedforward propagation unchanged, while the gradient of the independent variable 
during backpropagation becomes the original -𝜆 times. 

2.3. Model compression technology 

The enormous model's poor computational efficiency makes it difficult to diagnose faults in 
real time, necessitating the optimization of model parameters and computing. The DL model 
compression theory has been developed recently. 

MobileNet [21] proposed by Google is an efficient model compression algorithm. Its core 
innovation is to replace the original convolution layer with depth separable convolution, which 
can achieve the same pattern recognition effect as the original model while reducing the number 
of model parameters and calculations. Depth separable convolution decomposes ordinary 
convolution operations into channel by channel convolution (DW) and point by point convolution 
(PW) [22]. The calculation process of ordinary convolution and depth separable convolution is 
shown in Fig. 3. 

The upper part of Fig. 3 is a general convolution process. Each filter consists of several 
convolution cores. The quantity of channels in the output feature is the same as the quantity of 
filters. The parameter quantities (params) and calculation quantities (FLOPs) of the general 
convolution are shown in Eq. (8) and Eq. (9): 
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𝑝𝑎𝑟𝑎𝑚𝑠 = 𝐶௜ ⋅ 𝑘௪ ⋅ 𝑘௛ ⋅ 𝐶௢, (8)𝐹𝐿𝑂𝑃𝑠 = 𝐶௢ ⋅ 𝑓௪ ⋅ 𝑓௛ ⋅ 𝐶௜ ⋅ 𝑘௪ ⋅ 𝑘௛, (9)

where 𝐶௢ is the number of filters, 𝐶௜ is the number of convolution kernels for each filter, 𝑘௪ is the 
width of the convolution kernel, 𝑘௛ is the height of the convolution kernel, 𝑓௪ is the width of the 
output feature map, and 𝑓௛ is the height of the output feature map. 

 
Fig. 3. Comparison between ordinary convolution and deep separable convolution 

The depth separable convolution integrates the ordinary convolution into two stages, first 
channel by channel convolution (DW), and then point by point convolution (PW). In DW, 𝐶௜ = 1, 𝑘௪ = 1, 𝑘௛ = 1, and other parameters of ordinary convolution are the same. Combining Eq. (8), 
Eq. (9) and adding the parameter quantities and calculation quantities of DW and PW respectively, 
we can get the parameter quantities and calculation quantity formulas of depth separable 
convolution: 𝑝𝑎𝑟𝑎𝑚𝑠 = 𝐶௜ ⋅ 𝑘௪ ⋅ 𝑘௛ ⋅ 1 + 𝐶௜ ⋅ 1 ⋅ 1 ⋅ 𝐶୭ = 𝐶௜ ⋅ ሺ𝑘௪ ⋅ 𝑘௛ + 𝐶୭ሻ, (10)𝐹𝐿𝑂𝑃𝑠 = 1 ⋅ 𝑓௪ ⋅ 𝑓௛ ⋅ 𝐶௜ ⋅ 𝑘௪ ⋅ 𝑘௛ + 𝐶୭ ⋅ 𝑓  ௪ ⋅ 𝑓௛ ⋅ 𝐶௜ ⋅ 1 ⋅ 1 = 𝑓௪ ⋅ 𝑓௛ ⋅ 𝐶௜ ⋅ ሺ𝑘௪ ⋅ 𝑘௛ + 𝐶୭ሻ. (11)

GhostNet [23] proposed by Huawei Noah Lab is also one of the efficient compression model 
algorithms. It replaces the feature map generated by the original part of the convolution through 
an operation that saves the number of parameters and computation, thereby saving hardware 
resources. The feature map is called the ghost feature map. The process of generating the phantom 
feature map is shown in Fig. 4. 

If the number of channels generated by the low-cost operation is 𝐶௣, the phantom feature map 
matrix generated by each channel can be represented by Eq. (12): (𝑓௢௣)௝ = 𝜑௝(𝑓௜),        𝑖 = 1,2, . . . ,𝐶௣,      𝑗 = 1,2,3, . . . ,𝐶௢ − 𝐶௣ ,  (12)
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where, 𝑓௜ is the feature map generated by ordinary convolution of the 𝑖th sheet. If ordinary 
convolution is used to generate the feature map of 𝐶௣ sheet, 𝑗 low-cost operations are performed 𝜑௝ Generate 𝐶௢-𝐶௣ phantom feature map 𝑓௢௣. In order to save computing resources, it is required 
that 𝐶௢ − 𝐶௣ ≥ 𝐶௣. 

In this paper, packet convolution is selected as a low-cost operation, and the schematic diagram 
of packet convolution is shown in Fig. 5. Grouped convolution divides the channels of the input 
feature into g groups, and the number of convolution cores of the filter is the same as the number 
of channels of the input feature 𝐶௜. Therefore, each filter should also divide the convolution cores 
into 𝑔 groups, and each group should perform convolution operations separately. Finally, all the 
feature maps output by the filter are spliced according to the channel dimensions. The formula for 
the number of parameters and calculation amount is shown in Eq. (13) and Eq. (14): 

𝑝𝑎𝑟𝑎𝑚𝑠 = ൬𝐶௜𝑔 ⋅ 𝑘௪ ⋅ 𝑘௛൰ ⋅ 𝐶௢𝑔 ⋅ 𝑔 = 𝐶௜ ⋅ 𝑘௪ ⋅ 𝑘௛ ⋅ 𝐶௢𝑔 , (13)𝐹𝐿𝑂𝑃𝑠 = ൬𝐶௢𝑔 ⋅ 𝑓௪ ⋅ 𝑓௛൰ ⋅ ൬𝐶௜𝑔 ⋅ 𝑘௪ ⋅ 𝑘௛൰ ⋅ 𝑔 = 𝐶௢ ⋅ 𝑓௪ ⋅ 𝑓௛ ⋅ 𝐶௜ ⋅ 𝑘௪ ⋅ 𝑘௛𝑔 . (14)

It can be seen from Eq. (13) and Eq. (14) that the parameter amount and calculation amount of 
the packet convolution are 1/𝑔 of the ordinary convolution. It can be seen that the packet 
convolution is a cheaper operation than the ordinary convolution. 

 
Fig. 4. Convolution diagram of GhostNet 

 
Fig. 5. Schematic diagram of grouping convolution 
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2.4. Fusion domain adaptive fault diagnosis model based on lightweight spatio-temporal 
attention network 

First, the soft AM is introduced into the end of the feature generator of the spatio-temporal 
neural network based on feature transfer learning (ST-JAN) [24], so that the network model can 
extract more significant fault features. Secondly, the domain confrontation mechanism is 
introduced to further migrate, so that the diagnosis model has better cross domain fault diagnosis 
capability. Finally, the model compression technology in MobileNet and GhostNet is introduced 
to reduce the parameter amount and calculation amount of the convolution layer in the diagnostic 
model and improve the calculation efficiency. Fig. 6 shows the architecture of AST-JDAN. The 
parameter settings of AST-JDAN are shown in Table 1. 

 
Fig. 6. Fusion domain adaptive fault diagnosis model based on spatio-temporal attention network 

Table 1. Model parameters of ASTN-JDAN. 

Network layer type Kernel 
size 

Number of 
hidden units 

Step 
size 

Output tensor 
shape 

ASTN feature 
generator 

Input * * * (N,1,1024) 
Conv1d(1) 64 * 1 (N,16,963) 

BatchNorm1d(1) * * * (N,16,963) 
MaxPool1d(1) 3 * 2 (N,16,482) 

LSTM(1) 64 482 * (N,16,482) 
Conv1d(2) 3 * 1 (N,32,482) 

BatchNorm1d (2) * * * (N,32,482) 
AdaptiveMaxPool1d * * * (N,32,30) 

LSTM(2) 15 30 * (N,32,30) 
Attention mechanism 

layer * 256 * (N,256) 

Fault category 
discriminator 

Linear(1) * 256 * (N,256) 
Linear(2) * 128 * (N,256) 

Fault classifier * 10 * (N,10) 

Domain 
discriminator 

Gradient reversal layer * * * (N,256) 
Linear(3) * 256 * (N,256) 
Linear(4) * 256 * (N,128) 
Linear(5) * 2 * (N,2) 
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According to the relevant formula in Section 2.3, the parameter quantity and calculation 
quantity of the original convolution layer, as well as the parameter quantity and calculation 
quantity of the convolution layer after model compression can be calculated. Table 2 presents the 
outcomes. It can be seen from Table 2 that the parameters of the improved convolution layer are 
compressed from the original 2560 to 464, about 18 % of the original, while the calculated FLOPs 
are compressed from the original 1726464 to 262128, about 15 % of the original. 

Table 2. Comparison of parameters of convolutional layers after model compression 

Convolutional layer Ordinary 
convolution 1 

Ordinary 
convolution 2 

Depthwise separable 
convolution 1 

Grouped 
convolution 2 

Number of input 
channels 𝐶௜ 1 16 1 16 

Convolution kernel 
size 𝑘௪ ∗ 𝑘௛ 1*64 3 1*64 3 

Number of output 
channels Co 16 32 16 32 

Output feature 
Size 𝑓௪ ∗ 𝑓௛ 1*963 1*482 1*963 1*482 

Parameter quantity 
params 1024 1536 80 384 

Amount of 
computation FLOPs 986112 740352 77040 185088 

Total amount of 
parameters 2560 464 

Total calculation 
amount 1726464 262128 

3. Fault diagnosis test of secondary planetary gearbox 

3.1. Introduction to DDS experimental platform 

The experimental data comes from the vibration signals of the secondary planetary gearbox 
collected on the Drivetrain Diagnostics Simulator (DDS) test bench, as shown in Fig. 7. The 
test-bed can simulate the wear, crack, broken tooth and missing tooth faults of straight and helical 
gears, as well as the faults of inner ring, outer ring and rolling element of rolling bearings. 
Different working conditions can be simulated by setting different speeds and loading different 
torsional loads. DDS test bench is mainly composed of power module, spindle module and brake. 
In the power module, the variable speed drive motor provides power. The speed control panel 
controls the motor speed. The torque sensor and encoder are used to collect the torque and detect 
the pulse signal generated by the speed. The real-time display displays the actual speed. Because 
of the slip and other factors in gear transmission, the set speed is often slightly lower than the 
actual speed. The main shaft module mainly includes the main shaft, parallel gearbox and 
secondary planetary gearbox. In addition, an acceleration sensor is installed on the gearbox to 
collect fault vibration signals. The programmable magnetic powder brake at the end of the test 
bench is used to control the load of the spindle and simulate the rotation under different loads. 

In this experiment, the fault gear of the secondary planetary gearbox is set on the sun gear, and 
there are four fault types in total, namely, missing tooth, broken tooth, surface wear and tooth root 
crack, as shown in Fig. 8. In addition, the gear is normal, and there are five health conditions for 
the gear. 

3.2. Test data collection 

The sampling frequency set in the experiment is 12.8 kHz. The motor has two rotation 
frequencies of 20 Hz and 30 Hz, and the load current size is 0.4 A and 0.8 A. Therefore, the 
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experiment has four working conditions: 20 Hz 0.4 A, 20 Hz 0.8 A, 30 Hz 0.4 A and 30 Hz 0.8 A. 
The four working conditions are named as A, B, C and D. Each working condition has five health 
conditions of gears: normal, missing, broken, surface wear and tooth root crack. Through the 
statistics of each original data file, it can be found that the number of samples of each type under 
each working condition is consistent, and the data volume is sufficient, reaching 1048548 data 
points, without data imbalance. Therefore, sufficient samples can be directly collected by 
non-overlapping sampling, that is, the sampling step is equal to the sample length 𝑛 = 1024. The 
expression of the total sample size 𝑀 is shown in Eq. (15), where the constant 5 represents the 
data of five machine health states, and 𝑙 = 1048548 is the length of each type of data. The total 
sample size under each working condition is obtained by Eq. (15), as shown in Table 3: 

𝑀 = 5 × ඌ 𝑙𝑛ඐ. (15)

Table 3. Data length and sampling quantity of DDS test bench planetary gearbox  
under each working condition 

No. Working condition Health condition Data size Sample size Total sample size 

A 20 Hz 0.4 A 

Normal 1048548 1023 

5115 
Missing teeth 1048548 1023 
Broken teeth 1048548 1023 
Surface wear 1048548 1023 
Root crack 1048548 1023 

B 20 Hz 0.8 A 

Normal 1048548 1023 

5115 
Missing teeth 1048548 1023 
Broken teeth 1048548 1023 
Surface wear 1048548 1023 
Root crack 1048548 1023 

C 30 Hz 0.4 A 

Normal 1048548 1023 

5115 
Missing teeth 1048548 1023 
Broken teeth 1048548 1023 
Surface wear 1048548 1023 
Root crack 1048548 1023 

D 30 Hz 0.8 A 

Normal 1048548 1023 

5115 
Missing teeth 1048548 1023 
Broken teeth 1048548 1023 
Surface wear 1048548 1023 
Root crack 1048548 1023 

 
Fig. 7. Drivetrain diagnostics simulator test bench 
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Fig. 9 shows two samples of CWRU fault bearing data set and DDS planetary gearbox data 
set. The blue part of Fig. 9(a) and Fig. 9(b) is the original vibration signal, and the red part is the 
envelope of the original vibration signal. Then, the envelope spectrum of the signal is obtained 
through the envelope line of fast Fourier transform, as shown in Fig. 9(c) and Fig. 9(d). It is not 
difficult to find that the sideband spectrum of the planetary gearbox is more complex from the 
spectrum diagram, which indicates that the fault diagnosis of the planetary gearbox signal of the 
DDS test bench is more difficult. This is a greater challenge for the transfer task of the model. 

 
Fig. 8. Machining simulation of four kinds of gear faults 

 
a) Original vibration signal of rolling bearing 

 
b) Original vibration signal of planetary gearbox 

 
c) Rolling bearing envelope spectrum 

 
d) Planetary gearbox envelope spectrum 

Fig. 9. Comparison of envelope spectra of bearing data and planetary gearbox data 

3.3. The influence of attention mechanism 

The AM introduced earlier can adaptively screen out the favorable features for machine fault 
diagnosis tasks. Therefore, in the soft AM, each part can be given different weights as the 
realization form of soft screening. The model used in this section is AST-JDAN fault diagnosis 
model. The working condition of source domain data is 20 Hz 0.4 A, and that of target domain 
data is 20 Hz 0.8 A. The AST-JDAN model is trained with source domain data, and then the 
attention weight distribution of different health state data is extracted from it, as shown in Fig. 10. 
The distribution of attention weight can reflect the degree of attention paid to different time steps. 
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It can be seen from Fig. 10 that data in different health states have significantly different attention 
distribution rules. For tooth breakage fault, the attention distribution is mainly concentrated on the 
later time step, and slightly concentrated in the middle, which is similar to the attention distribution 
of surface wear fault, but the latter distribution is more concentrated on the later time step, and the 
weight value in the middle is smaller. The attention distribution of missing teeth fault and gear 
normal is close to the forward time step, but the attention distribution of gear normal is more 
concentrated on the left side, and the weight value in the middle is smaller; The attention of the 
crack fault is concentrated in the middle of the time step, and gradually decreases at both ends. 

 
a) Broken teeth 

 
b) Surface wear 

 
c) Missing teeth 

 
d) Normal 

 
e) Root crack 

Fig. 10. Attention distribution diagram of different sun wheel health states 

In order to reveal the influence of attention distribution in the transfer process, the source 
domain and target domain are input into the trained AST-JDAN model, and the extracted attention 
distribution is shown in Fig. 11. The yellow line represents the attention weight distribution 
diagram of the source domain data, and the blue line represents the attention weight distribution 
diagram of the target domain data. It can be seen from Fig. 11 that data with the same health status 
in different domains have generally similar attention weight distribution, which enables the AM 
in the target domain to enhance the features conducive to pattern recognition. 

In order to explore the influence of AM layer on pattern recognition, the target field tooth 
break fault data and crack fault data are input to the trained AST-JDAN, and their output features 
are spliced and visualized through channels. The results are shown in Fig. 12. It can be seen from 
Fig. 12 that the output characteristics of two different fault category data before the AM layer are 
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similar, showing similar periodic pulses. Through careful observation, it can be seen that the 
activation value of the feature output of the broken tooth fault shows a trend of gradually 
decreasing on both sides of the middle high, similar to a spindle. However, the crack fault shows 
a tendency for the two sides of the middle concave bulge first and then decrease. This small 
difference is difficult for the classifier to classify. After the AM layer, the characteristics of the 
middle part of the tooth fracture data are enhanced, while the characteristics of the two sides are 
relatively weakened, making the overall shape of the features more easily distinguishable. At the 
same time, the characteristics of the two peaks of the crack fault are also more significantly 
changed, which verifies the ability of the AM to enhance the data characteristics. 

 
a) Broken teeth 

 
b) Surface wear 

 
c) Missing teeth 

 
d) Normal 

 
e) Root crack 

Fig. 11. Attention distribution of different sun wheel health states in source domain and target domain 

3.4. Model diagnosis results and analysis 

The influence of AM is verified by comparing transfer fault diagnosis experiments between 
different loads. The radar chart shown in Fig. 13 is a comparison of the transfer accuracy of 
AST-JDAN and ST-JAN under different working conditions. It can be seen from the Fig. 13 that 
under the transfer tasks of B-A, A-B and B-D, ST-JAN and AST-JDAN have achieved high fault 
diagnosis accuracy, higher than 94 %. However, the fault diagnosis accuracy of ST-JAN in the 
transfer tasks of A-C, A-D, B-C, C-A, C-B, C-D is significantly lower than that of AST-JDAN. 
The reason is that the AM can enable the model to enhance the significance of the features that 
are beneficial to the transfer task, making it easier for the classifier to diagnose faults. Secondly, 
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AST-JDAN integrates domain countermeasure method in ST-JAN domain adaptation method, 
which enables feature generator to better extract domain invariant features. 

 
a) Fault characteristics of broken teeth 

 

 
b) Fault characteristics of broken teeth  

passing through the attention layer 

 
c) Fault characteristics of crack 

 

 
d) Fault characteristics of crack passing  

 through the attention layer 
Fig. 12. Change diagram of fault characteristics of broken teeth and cracks in the target domain 

 
Fig. 13. Transfer diagnosis accuracy of ST-JAN and AST-JDAN under different loads 

Fig. 14 shows the comparison of fault diagnosis accuracy between ST-JDAN without AM and 
AST-JDAN with AM under different noise intensities in transfer tasks A-B. It can be seen from 
the experimental data that the average fault diagnosis accuracy of AST-JDAN is about 3 %-4 % 
higher than that of ST-JDAN in the case of high noise intensity, but the average fault diagnosis 
accuracy of AST-JDAN is not significantly improved in the case of low noise intensity. The 
experimental results show that the AM can enable the model to extract more significant fault 
features, and improve the problem that features are not obvious due to the submergence of features 
under strong noise. 
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Fig. 14. Precision comparison between ST-JAN and AST-JDAN under different signal-to-noise ratios 

4. Conclusions 

In this paper, AST-JDAN is established. This model solves the problem of domain offset 
through fusion domain adaptation and domain confrontation methods. Model compression 
technology reduces the complexity of the model and improves the computational efficiency. The 
validity of the proposed model is verified by the vibration signal data set of the planetary gearbox. 
The results suggest that the model can obtain higher fault diagnosis accuracy in cross domain fault 
diagnosis, and the model has higher diagnosis accuracy than other models under strong noise 
interference. 

This article is dedicated to the fault diagnosis of rotating machinery using deep transfer 
learning under variable operating conditions, but its diagnostic effectiveness depends on a large 
amount of annotated fault data. If fault data is scarce, the diagnostic accuracy will be greatly 
affected. In recent years, digital twin technology has developed rapidly. Through digital twin 
technology, fault data of mechanical equipment to be diagnosed can be obtained, providing a 
solution to the problem of scarce fault data. In the future, we will further research fault diagnosis 
methods that combine digital twin technology with transfer learning. 
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