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Abstract. Cracks and other damages generated during the service of bridges can reduce the load 
bearing capacity and threaten operational safety.Finite Element Model Updating (FEMU), as one 
of the important means of structural health diagnosis, identifies structural damage through changes 
in model parameters. The three key factors of FEMU are updating variables, objective functions, 
and optimization algorithms. The poor selection of the above three factors in existing research 
leads to high calculation errors in model updating, and inevitably lead to the inability of the finite 
element model to carry out structural health monitoring, affecting the normal operation of the 
structure. In order to solve the above problems, this paper combines previous research and 
establishes a model updating algorithm based on the combination of eigenvector difference 
approach and particle swarm optimization (ED-PSO). The validity and accuracy of this method 
are verified by finite element analysis of a simply supported beam. Compared with the existing 
model updating algorithms based on the combination of static and dynamic methods and particle 
swarm optimization (CSD-PSO), the results show that the proposed ED-PSO model updating 
algorithm has higher accuracy and is expected to be better applied to bridge finite element model 
updating research.  
Keywords: simply supported beam, finite element model updating, eigenvector difference 
approach, ED-PSO model updating algorithm, CSD-PSO model updating algorithm. 

1. Introduction 

As an important component of transportation infrastructure, bridges are the key to the normal 
operation of the transportation system [1]. Once a bridge structure is damaged, there will be 
structural damage, collapse, and other phenomena, seriously endangering the safety of society and 
people's lives and property. There are various reasons for bridge accidents, among which 
inadequate structural health monitoring of bridge structures is the main reason [2]. Damage 
identification is one of the main challenges in bridge health monitoring. It can help assess the 
safety status of bridges, prevent catastrophic collapse, and provide relevant maintenance 
information [3]. Accurate finite element models are essential for accurate structural damage 
detection. However, there is uncertainty in the structural model and measurement response of 
actual structures, and the model parameters are random, so this randomness leads to uncertainty 
in the analysis results. For bridge structures, during operation, factors such as performance 
degradation of components and section failure may deviate from design parameters (such as 
section size, density, modulus of elasticity, etc.). This leads to a deviation from the actual structure 
when establishing a finite element model [4]-[5]. Therefore, in order to obtain an accurate finite 
element model, it is necessary to update the relevant parameters of the finite element model. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jme.2023.23417&domain=pdf&date_stamp=2023-06-29
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The essence of finite element model updating is an optimization problem. The process of 
constructing a corresponding objective function with relevant parameters that minimize system 
response, minimizing the value of the objective function through optimization processing, and 
updating the initial finite element model of the dynamic system to minimize the difference 
between it and actual model predictions [6]. Thereby gradually bringing the response of the finite 
element model closer to the real structure for structural health detection [7]. Currently, there has 
been a lot of research on finite element model updating. Carvalho [8] et al. have successfully 
applied the optimal matrix method model updating technology to model updating of incomplete 
measured modal data. Wang [9] et al. obtained good updating results by updating the model of a 
bridge and using the elastic modulus of concrete and steel bars of the bridge as updating 
parameters.Guvenc Canbaloglu [10] et al. completed model updating of nonlinear structures by 
testing the frequency response function of nonlinear structures, and achieved good results. Paya 
Zaforteza [11] et al. used simulated annealing algorithms to update the model of a reinforced 
concrete frame. Banan M. R. and Hjelmstad K. D. [12] estimated the element stiffness through 
testing to static displacement, and proposed a model updating method with relatively few 
parameters. Collins [13] et al. successfully updated various physical parameters of the finite 
element model by using the residual between the measured modal response values of the structure 
and the modal response values calculated by the finite element model as the objective function. 
Brownjohn [14] et al. used finite element model updating based on parametric methods to identify 
structural dynamic characteristics and evaluate structures of highway bridges. Cao [15] et al. 
proposed a time domain response model updating method based on dynamic sensitivity. Using a 
cantilever beam numerical model, it was verified that this method has good noise resistance 
performance and can obtain high-precision nonlinear dynamic response prediction numerical 
models. Mottershead [16] et al. conducted a comprehensive and systematic discussion on various 
sensitivity based model updating methods and demonstrated their application effects on Lynx 
helicopters. The work also includes the use of special updating parameters, such as compensation 
nodes and generic elements. Gorl and Link [17] updated the theoretical model based on the 
experimental data of the initial model and the damage model, respectively, and then extracted the 
damage parameters of the steel frame as a benchmark. Sarvi [18] et al. demonstrated the specific 
performance of usage of the enhanced Levenberg-Marquardt algorithm, which is designed for 
nonlinear least squares problems in the updating process. Moaveni [19] et al. applied model 
updating methods to detect damage in reinforced concrete frames filled with volume. 

From a practical perspective, the realization of finite element model updating technology is 
challenging, with the main difficulties reflected in how to construct the objective function, select 
the variables to be updated, and select optimization algorithms. The above factors directly 
determine the quality of the finite element model updating work [20]-[21]. 

Currently, particle swarm optimization (PSO) algorithms have been widely used in the 
research of solving optimization problems. PSO algorithms have the characteristics of fast 
convergence speed and high accuracy in solving optimal values. However, the combination of 
PSO algorithms and objective functions to achieve good model updating calculation results is the 
focus of current research. Maosen Cao [22] et al. used particle swarm optimization algorithm to 
identify the damage of a layered fixed beam at both ends, and accurately identified the damage of 
the beam structure through different delamination. Zhang [23] et al. used particle swarm 
optimization to update the geotechnical structure model, and also obtained relatively accurate 
updating results. Lin [24] et al. applied particle swarm optimization algorithms to estimate the 
parameters of nonlinear dynamic rational filters. Kathiravan and Ganguli[25] used particle swarm 
optimization algorithms to design the optimal layup of composite box girder structures that can 
be used as the main load-bearing components of helicopter rotor blades. Seyedpoor [26] proposed 
a two-stage damage detection method, in which the particle swarm optimization algorithm is used 
in the second stage to evaluate the degree of damage based on measured values of vibration modes. 
The work of Liu [27] et al. is to apply particle swarm optimization algorithm to the parameter 
identification problem of permanent magnet synchronous engines. Perez and Behdinan [28] 
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improved the basic particle swarm optimization algorithm for constrained structure optimization 
problems. Hassan [29] et al. provided a comparative study of particle swarm optimization 
algorithms and genetic algorithms, and found that both methods can provide high-quality 
solutions. The difference between them is that particle swarm optimization algorithms have higher 
computational efficiency when dealing with unconstrained nonlinear problems, while genetic 
algorithms perform better when applied to constrained nonlinear problems.  

Based on the existing research, this paper proposes an objective function of the eigenvector 
difference approach and an optimization algorithm combined with particle swarm optimization 
algorithm – ED-PSO model updating algorithm. The eigenvector difference approach was first 
used for model updating of multi degree of freedom structures. Yu Otsuki [30] et al. once took an 
18-story steel frame as the research object, simplified it to an 18-degree freedom structure, and 
conducted model updating calculations. The results show that, eigenvector difference approach 
has high accuracy in model updating calculation. In this paper, a simply supported beam is taken 
as the research object, and compared with the previous research - the combination of static and 
dynamic methods and particle swarm optimization (CSD-PSO) model updating algorithm. Taking 
the first three natural frequencies of the simply supported beam and the deflections of five 
measuring points under load as the research object, it is concluded that the updating error of the 
ED-PSO model updating algorithm is significantly lower than that of the CSD-PSO model 
updating algorithm. 

2. Method 

2.1. Eigenvector difference approach 

If the stiffness matrix 𝐾 and mass matrix 𝑀 of the structure are known, the generalized 
eigenvalues and generalized eigenvectors of the two matrices can be obtained from Eq. (1) [31]: [𝐾 − 𝜆௜𝑀]{𝜓௜} = 0, (1)

where 𝜆௜ and Ψ௜ represents the 𝑖th order generalized eigenvalues and generalized eigenvectors, 
respectively. The objective function formula of the eigenvector difference approach is shown in 
Eq. (2) [32]: 

𝑓 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍ ൝ቆ𝜆௜ா௫௣ − 𝜆௜𝜆௜ா௫௣ ቇଶ + ฮ𝜓௜ா௫௣ − 𝜓௜ ฮଶଶൡ௡೘೚೏೐
௜ୀଵ , (2)

where 𝑛௠௢ௗ௘  represents the order of system vibration, 𝜆௜ா௫௣ and 𝜓௜ா௫௣ represents the generalized 
eigenvalue and generalized eigenvector of the actual model, respectively. The generalized 
eigenvector represents the deflections of the 𝑖th vibration mode with different degrees of freedom 
when the system is free to vibrate. If the case under study is the deformation of the system under 
external loads, then 𝜓௜ in Eq. (2) can also represent the deflection vector of the system 
deformation. 

However, for continuous systems, solving the mass stiffness matrix is very troublesome, so it 
is necessary to improve the objective function of the eigenvector difference approach. Yang Wang 
[33] et al. proposed the relationship between the generalized eigenvalue of a structure and its 
natural frequency, as shown in Eq. (3): 𝜆 = 4𝜋𝑓, (3)

where 𝑓 represents the natural frequency of the structure, thus replacing the generalized 
eigenvalue in the eigenvector difference approach with the natural frequency. There is no need to 
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manually solve the mass stiffness matrix of the structure. By introducing Eq. (3) into Eq. (2), an 
improved objective function formula for the eigenvector difference approach can be obtained, as 
shown in Eq. (4): 

𝑓 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒෍ቐቆ𝑓௕௜ − 𝑓௔௜  𝑓௕௜ ቇଶ + ෍ฮ𝜓௕௝ −𝜓௔௝ ฮଶଶ௞
௝ୀଵ ቑ௡

௜ୀଵ , (4)

where, 𝑓௔௜ and 𝑓௕௜ represent the first n-order natural frequencies of the model to be updated and 
the actual model, Ψ௕௝, Ψ௔௝ represents the deflection calculated by the finite element model and 
the actual model for k points, respectively. 

2.2. ED-PSO model updating algorithm 

ED-PSO model updating algorithm optimization principle is the same as particle swarm 
algorithm, first assume that there is a swarm of particles in the space, to describe the characteristics 
of the particles in terms of position, velocity and adaptation value, the particles in the solution 
space through the individual extreme value and swarm extreme value to continuously update their 
own position velocity information, to derive a new adaptation value, and compare with the swarm 
extreme value, and finally find the assumption that in a D-dimensional search space, there are 𝑁 
swarm particles where the 𝑖-th particle can be represented as an i-dimensional vector:  𝑋௜ = ሺ𝑥௜ଵ, 𝑥௜ଶ, … 𝑥௜஽ሻ, the velocity of the 𝑖-th particle can also be expressed as an i-dimensional 
vector: 𝑉௜ = ሺ𝑣௜ଵ,𝑣௜ଶ, … 𝑣௜஽ሻ, the optimal position searched by the 𝑖-th particle so far is called the 
individual extreme value: 𝑃௕௘௦௧ = ሺ𝑝௜ଵ,𝑝௜ଶ, … 𝑝௜஽ሻ, the optimal position searched so far by the 
whole particle swarm is the global extreme value: 𝐺௕௘௦௧ = ሺ𝑔௜ଵ,𝑔௜ଶ, …𝑔௜஽ሻ, and after finding these 
two optimal values, the particle swarm is updated by Eqs. (5) and (6) as follows: 𝑣௜௝ሺ𝑘 + 1ሻ = 𝜔 ∗ 𝑣௜௝ሺ𝑘ሻ + 𝑐ଵ𝑟ଵൣ𝑝௜௝ሺ𝑘ሻ − 𝑥௜௝ሺ𝑘ሻ൧ + 𝑐ଶ𝑟ଶൣ𝑝௚௜ሺ𝑘ሻ − 𝑥௜௝ሺ𝑘ሻ൧, (5)𝑥௜௝ሺ𝑘 + 1ሻ = 𝑥௜௝ሺ𝑘ሻ + 𝑣௜௝ሺ𝑘ሻ, (6)

where 𝜔 denotes the inertia weight (generally taken as 0.8-1.2), 𝑖 = 1,2,…,𝑁, 𝑗 = 1, 2…,𝐷, 𝑘 
refers to the number of current iterations calculated, 𝑣௜௝ refers to the velocity of the current 
particle, 𝑥௜௝ refers to the position of the current particle, 𝑐ଵ, 𝑐ଶ are acceleration factors, and 𝑟ଵ, 𝑟ଶ 
are distributed as random numbers in [0, 1]. In order to prevent the particles from searching blindly 
in the solution space, the numerical intervals [𝑣௠௜௡ ,𝑣௠௔௫], [𝑥௠௜௡ , 𝑥௠௔௫] are generally set for the 
velocity and position of the particles, and the schematic diagram of the algorithm operation is 
shown in Fig. 1. 

 
Fig. 1. The schematic diagram of Particle Swarm Optimization 

However, the natural frequency and deflection often need to be calculated, which means that 
if the natural frequency and deflection are directly used as the variables of the objective function, 
the range of the function variables cannot be directly determined, and it is not possible to randomly 
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select a certain number of particles and iterative optimization within a certain range. However, the 
natural frequency and deflection are usually related to the material parameters of the structure, 
and the material parameters of the structure can be determined in a general range, so the ED-PSO 
model updating algorithm usually takes the material parameters of the structure as the object of 
the particle iterative optimization, and the ED-PSO model updating algorithm is implemented in 
the following steps: 

(1) Select the studied structural material parameters and determine their ranges; 
(2) Set the number of particle swarms, maximum number of iterations, inertia weights, learning 

factors, maximum and minimum particle positions, maximum and minimum values of motion 
velocity, and objective function tolerances for the ED-PSO model updating algorithm; 

(3) Generate random particle swarms within the parameter setting range; 
(4) Import the generated parameters into ANSYS for relevant calculations, obtain the natural 

frequency and deflection under each group of particles, and bring them into the objective function 
for comparison to obtain the local optimal particle; 

(5) Enter into the iterative optimization process, as in the particle swarm algorithm, the 
particles are moved within the parameter setting range, and the real particles are continuously 
updated; 

(6) Import the iterative optimization example into ANSYS for calculation, and get the 
corresponding natural frequency and deflection, and bring it into the objective function for 
calculation, and get the global optimal particle; 

(7) Output the values of natural frequency and deflection at this point as the result of the model 
updating calculation. 

3. Verification of the ED-PSO algorithm 

3.1. Model updating of a reinforced concrete beam 

In order to verify the superiority of the proposed ED-PSO model updating algorithm, this 
section takes a simply supported beam as the research object and performs the finite element 
model updating calculation by two methods respectively, and judges the advantages and 
disadvantages of the two methods by comparing the errors of the derived deflections and natural 
frequencies with the actual model. 

The dimensions of the simply supported beam are 3 m long, 0.15 m wide and 0.3 m high with 
four reinforcement bars, and the cross-sectional dimensions of the reinforced concrete beam are 
shown in Fig. 2. 

 
Fig. 2. Sectional dimension picture of reinforced concrete beam 

The modeling software is ANSYS APDL2021R1, which has strong finite element calculation 
capability and is very accurate in solving structural modal parameters and load problems. The 
concrete material is simulated by solid65 element, and the elastic modulus of concrete is set as 
3.25×104 MPa and the density is 2500 kg/m3; the reinforcement is simulated by Link180 element, 
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and the elastic modulus of reinforcement is 2×105 MPa and the density is 7850 kg/m3. The grid is 
divided as follows: 40 sections in the length direction of the reinforced concrete beam, 10 sections 
in the height and width direction, the grid shape is hexahedral cells, a total of 4000 cells, and the 
grid is divided by mapping, so that the grid is neatly arranged, and the constraint adopts simple 
support constraint, considering that the structure is a three-dimensional structure, so one end is 
displacement constrained in 𝑥, 𝑦, and 𝑧 directions, and the other end is displacement constrained 
in x and y directions with no moment constraint. The initial finite element model of the reinforced 
concrete beam is shown in Fig. 3. 

 
Fig. 3. Initial finite element model of reinforced concrete beam 

For the purpose of finite element model updating work, the reinforced concrete beam is cut 
into ten equal parts, each part being numbered 1-10. Apply a force of 100 KN in the middle of the 
reinforced concrete beam, as shown in Fig. 4. 

 
Fig. 4. Schematic diagram of reinforced concrete beam 

The elastic modulus of concrete of parts No. 2, 4 and 7 is reduced by 20 % as the actual model 
of the reinforced concrete beam. The middle deflection of beam bottom and the first third-order 
natural frequencies of beam vibration under free state at the beam length (𝑧 direction) of 0.3 m, 
0.6 m, 0.9 m, 1.2 m and 1.5 m under the load of 100 KN are taken as the reference data for the 
updating accuracy of the finite element model. According to the sectional structure of reinforced 
concrete beam and the calculation formula of the modal parameters of simply supported beam, it 
can be seen that the physical parameters that have a great influence on the modal parameters of 
beam structure are mainly the elastic modulus of concrete, concrete density, elastic modulus of 
reinforcement, section area, etc. The actual structure has equal cross-section and almost no change 
in cross-section, however, due to factors such as uneven mixing of concrete and impurities in 
reinforcement, the elastic modulus of concrete, concrete density and elastic modulus of 
reinforcement vary greatly, so the above three variables are selected here as the variables to be 
updated. Since concrete is the main material of the simply supported beam structure, the elastic 
modulus of concrete and density are set as local variables, according to the numbering in Fig. 3.7, 
the elastic modulus of concrete is set as 𝐸ଵ,𝐸ଶ, … ,𝐸ଵ଴,concrete density is set as 𝜌ଵ,𝜌ଶ, … ,𝜌ଵ଴, and 
the elastic modulus of reinforcement is a global variable set to 𝐸௞. In this way, there are 21 
variables to be updated, and all parameters take values between 0.8 times and 1.2 times the design 
value of the parameters. 

The finite element model updating numerical calculation of reinforced concrete beam is 
realized by ED-PSO model updating algorithm, setting the swarm size as 50, the maximum 
number of iterations as 200, each particle corresponds to 21 updating variables, the inertia weight 
w is set as 0.729, the learning factor 𝑐ଵ = 𝑐ଶ = 2, the particle position interval is the interval where 
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the parameters take values,and the maximum and minimum value of velocity is ±0.4 times of the 
parameter design value.The errors of the updated frequencies and deflections with the actual 
model are obtained as a reference. 

First, determine the value interval of the elastic modulus of concrete (𝐸௖௢௡௖௥௘௧௘), density of 
concrete (𝜌௖௢௡௖௥௘௧௘) and elastic modulus of reinforcement (𝐸௞), as shown in Table 1. 

Table 1. Value range of parameter variable 
Physical parameters 𝐸௖௢௡௖௥௘௧௘ (MPa) 𝜌௖௢௡௖௥௘௧௘ (kg/m3) 𝐸௞ (MPa) 

Range of values [2.6*104, 3.9*104] [2000, 3000] [1.6*105, 2.4*105] 

Since the first three orders of natural frequencies and five measured points of deflection are 
used as a reference for the updating results, Eq. (4) is rewritten as Eq. (7): 

𝑓 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒෍ቐቆ𝑓௕௜ − 𝑓௔௜  𝑓௕௜ ቇଶ + ෍ฮ𝜓௕௝ −𝜓௔௝ ฮଶଶହ
௝ୀଵ ቑଷ

௜ୀଵ . (7)

Because each swarm represents a 21-dimensional vector, in order to visualize the initial value 
of each variable in the vector, here the concrete elastic modulus, concrete density, and steel elastic 
modulus are combined, i.e., combined into three-dimensional coordinate points ሺ𝐸ଵ,𝜌ଵ,𝐸௞ሻ, ሺ𝐸ଶ,𝜌ଶ,𝐸௞ሻ,…, ሺ𝐸ଵ଴,𝜌ଵ଴,𝐸௞ሻ, and the resulting random particle coordinate points are shown in 
Fig. 5. 

By solving the particle swarm local optimum, the individual local optimum particle is 
obtained, at which time 𝐸௞ = 2.27×1011 Pa, and similarly, the individual local optimum particle is 
expressed in two-dimensional coordinates ሺ𝐸ଵ,𝜌ଵሻ, ሺ𝐸ଶ,𝜌ଶሻ,…, ሺ𝐸ଵ଴,𝜌ଵ଴ሻ, the individual local 
optimum particles are shown in Fig. 6, individual optimal particle values are shown in Table 2. 

 
Fig. 5. Initial particle distribution 

 
Fig. 6. Individual optimal particle distribution 

Table 2. Local optimization of random particles 
 𝐸௜ (MPa) 𝜌௜ (kg/m3) 𝐸௞ (MPa) 

1 3.16×104 2522 2.27×105 
2 3.84×104 2090  
3 3.34×104 2904  
4 3.70×104 2884  
5 2.96×104 2439  
6 3.41×104 2782  
7 3.36×104 2148  
8 3.85×104 2620  
9 2.71×104 2261  
10 3.25×104 2446  
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Import the above data into ANSYS as a text file, solve the structure’s natural frequency and 
deflection, and compare with the actual structure. The graphs of the first three orders of modal 
analysis of the reinforced concrete beam under load are shown in Fig. 7. 

 
a) First order vibration 

 
b) Second order vibration 

 
c) Third order vibration 

 
d) Load deformation 

Fig. 7. Diagram of first third order vibration and load deformation of beam 

Then set the parameters of the actual structure, calculate the corresponding deflection and 
natural frequency in the case of the actual structure, and finally calculate the deflection and natural 
frequency of the structure to be updated in the individual optimal case as the result before the 
model updating, and calculate the error of the deflection and natural frequency of the model to be 
updated with the actual structure by Eq. (8) and Eq. (9): 𝑒ୢୣ୤୪ୣୡ୲୧୭୬ = 𝜔௕௜ − 𝜔௔௜𝜔௕௜ × 100 %, (8)𝑒୤୰ୣ୯୳ୣ୬ୡ୷ = 𝑓௕௜ − 𝑓௔௜𝑓௕௜ × 100 %. (9)

The final relevant calculation results are shown in Table 3. 

Table 3. Data before beam updating 
Description Initial value Actual value Error (%) 

Deflection at 𝑧 = 0.3 m (mm) 6.19 6.70 7.61 
Deflection at 𝑧 = 0.3 m (mm) 13.09 14.32 8.59 
Deflection at 𝑧 = 0.3 m (mm) 19.47 21.28 8.51 
Deflection at 𝑧 = 0.3 m (mm) 24.25 26.43 8.25 
Deflection at 𝑧 = 0.3 m (mm) 26.24 28.38 7.54 

First order frequency (Hz) 78.04 76.67 1.79 
Second order frequency (Hz) 129.38 122.94 5.24 
Third order frequency (Hz) 159.01 161.34 1.44 

The global optimal particle is then solved, at which point 𝐸௞ = 1.85×1011 Pa, and the 
two-dimensional coordinates of the variables taken are shown in Fig. 8. The global optimal particle 
results are shown in Table 4. 

Similarly, save the calculated global optimal particles to a text file, and then import the data 
into ANSYS for the solution of deflection and natural frequency, and then carry out the error 
calculation of the deflection under the actual structure, the results of which are shown in Table 5. 
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The updated error is obtained and compared with the pre-updating error, as shown in Fig. 9. 
It is easy to see from the obtained data that the ED-PSO model updating algorithm has a high 

updating accuracy for the finite element model updating method. 

Table 4. Global optimization of random particles  𝐸௜ (MPa) 𝜌௜ (kg/m3) 𝐸௞ (MPa) 
1 3.10×104 2549 1.85×105 
2 2.75×104 2042  
3 3.30×104 2334  
4 3.25×104 2385  
5 2.80×104 2458  
6 2.95×104 2120  
7 3.47×104 2619  
8 3.21×104 2245  
9 3.13×104 2331  
10 3.23×104 2355  

Table 5. Data after beam updating 
Description Initial value Actual value Error (%) 

Deflection at 𝑧 = 0.3 m (mm) 6.64 6.70 0.89 
Deflection at 𝑧 = 0.3 m (mm) 14.19 14.32 0.90 
Deflection at 𝑧 = 0.3 m (mm) 21.09 21.28 0.86 
Deflection at 𝑧 = 0.3 m (mm) 26.32 26.43 0.40 
Deflection at 𝑧 = 0.3 m (mm) 28.46 28.38 0.31 

First order frequency (Hz) 77.82 76.67 1.51 
Second order frequency (Hz) 124.19 122.94 1.02 
Third order frequency (Hz) 161.85 161.34 0.32 

 

 
Fig. 8. Global optimal particle distribution 

 
Fig. 9. Error comparison before and after updating 

3.2. Comparison with CSD-PSO 

In order to verify the advantages of the proposed method, simply supported beams in the 
previous section are used as the research object in this section, and performs the model updating 
calculation by the previous study - the combination of static and dynamic methods and particle 
swarm algorithm (CSD-PSO), and compares the results with the proposed method, and the results 
show that the proposed method has higher accuracy. 

Particle swarm algorithm-based finite element model updating techniques combined with a 
variety of objective functions, model updating accuracy reference data are mainly natural 
frequency, deflection, etc. [34], static and dynamic methods are commonly used to measure the 
above data. The data measured by the static method are more accurate and easier to measure, but 
the measured data cannot reflect the dynamic changes of the structure. The data measured by 
dynamic method is less accurate and the testing process is tedious, but it can reflect the dynamic 
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changes of the structure. In order to combine the advantages of the two, the combination of static 
and dynamic methods of finite element model updating was produced and widely used in the study 
of finite element model updating. However, while the combination of static and dynamic methods 
combines the advantages of both, it also amplifies the disadvantages of both, and the combination 
of static and dynamic methods requires more objective functions and is more complicated to 
calculate. The commonly used objective function of the combination of static and dynamic 
methods is shown in Eq. (10) [35]: 

𝑓ሺ𝑥ሻ = 2𝑓௠𝑓௦𝑓௦ + 𝑓௠, (10)

where 𝑓௠ and 𝑓௦ are the dynamic and static objective functions of the structure, respectively. The 
objective function of the combination of static and dynamic methods is shown in 3.4, where 𝑓௠ 
and 𝑓௦ are the dynamic and static objective functions of the reinforced concrete beam, respectively, 
as shown in Eqs. (11 and 12): 

𝑓௠ = 13෍൬1 − 𝜔௕௜𝜔௔௜൰ଶଷ
ଵ , (11)

𝑓௦ = 15෍ቆ1 − 𝑓௕௝𝑓௔௝ቇଶ ,ହ
ଵ  (12)

where 𝜔௕௜ and 𝜔௔௜ denote the first three orders of natural frequencies calculated by the actual 
structure and the first three orders of natural frequencies calculated by the model to be updated, 
respectively. 𝑓௕௜, 𝑓௔௜ denote the middle deflection of the bottom of the beam at 0.3 m, 0.6 m, 0.9 m, 
1.2 m and 1.5 m in the direction of the length of the extended beam under the load action of the 
actual structure and the structure to be updated, respectively. 

As in the previous subsection, the range of values of concrete modulus of elasticity, concrete 
density, and steel modulus of elasticity is still the same as the range of values in Table 
1.Similarly,50 sets of particle vectors are randomly generated, and each variable will be expressed 
in three-dimensional coordinate points ሺ𝐸ଵ,𝜌ଵ,𝐸௞ሻ, ሺ𝐸ଶ,𝜌ଶ,𝐸௞ሻ,…,ሺ𝐸ଵ଴,𝜌ଵ଴,𝐸௞ሻ, the resulting 
random particle coordinate points are shown in Fig. 10. 

 
Fig. 10. Initial particle distribution 

 
Fig. 11. Individual optimal particle distribution  

Similarly, the optimal value among the 50 particle vectors is found by performing a local 
optimization search calculation, at which time 𝐸௞ = 2.11×1011 Pa, and the individual optimal 
particles are expressed in two-dimensional coordinates ሺ𝐸ଵ,𝜌ଵሻ, ሺ𝐸ଶ,𝜌ଶሻ,…, ሺ𝐸ଵ଴,𝜌ଵ଴ሻ, the 
results are shown in Fig. 11. The specific values of each parameter variable are shown in Table 6. 
Save the calculated individual optimal particles to a text file, and then import the data into ANSYS 
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for the solution of the deflection and natural frequency, and the final calculation results are shown 
in Table 7. 

Table 6. Local optimization of random particles 
 𝐸௜ (MPa) 𝜌௜ (kg/m3) 𝐸௞ (MPa) 

1 3.18×104 2246 2.11×105 
2 3.73×104 2173  
3 3.75×104 2260  
4 2.87×104 2957  
5 3.63×104 2609  
6 3.5×104 2609  
7 3.4×104 2250  
8 3.13×104 2785  
9 2.79×104 2011  
10 2.66×104 2123  

Table 7. Data before beam updating 
Description Initial value Actual value Error (%) 

Deflection at 𝑧 = 0.3 m (mm) 6.39 6.70 4.58 
Deflection at 𝑧 = 0.3 m (mm) 13.45 14.32 6.06 
Deflection at 𝑧 = 0.3 m (mm) 19.95 21.28 6.23 
Deflection at 𝑧 = 0.3 m (mm) 24.75 26.43 6.36 
Deflection at 𝑧 = 0.3 m (mm) 26.54 28.38 6.46 

First order frequency (Hz) 78.38 76.67 2.23 
Second order frequency (Hz) 127.66 122.94 3.84 
Third order frequency (Hz) 169.07 161.34 4.79 

The global optimal particle distribution is obtained by the global iterative optimization search 
of the particle swarm algorithm, at which time 𝐸௞ = 2.37×1011 Pa, similarly, the individual 
optimal particles are represented by two-dimensional coordinates ሺ𝐸ଵ,𝜌ଵሻ, ሺ𝐸ଶ,𝜌ଶሻ,…, ሺ𝐸ଵ଴,𝜌ଵ଴ሻ, 
the global optimal particle distribution is shown in Fig. 12. The specific values of the global 
optimal particles are shown in Table 8. 

 Fig. 12. Global optimal particle distribution 

Save the calculated global optimal particles to a text file, and then import the data into ANSYS 
for the solution of deflection and natural frequency, and the error is calculated with the deflection 
under the actual structure, and the calculated results are shown in Table 9. The error after updating 
is compared with the error before updating, as shown in Fig. 13. 

Compare the error of the updated data of the model updating method ED-PSO model updating 
algorithm and CSD-PSO model updating algorithm, and the result is shown in Fig. 14. 

As can be seen from Fig. 14, ED-PSO model updating algorithm is obviously superior to 
CSD-PSO model updating algorithm. 
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Table 8. Global optimization of random particles  𝐸௜ (Mpa) 𝜌௜ (kg/m3) 𝐸௞ (MPa) 
1 3.35×104 2171 2.37×105 
2 2.77×104 2643  
3 2.89×104 2385  
4 2.72×104 2684  
5 3.16×104 2453  
6 2.64×104 2553  
7 3.46×104 2717  
8 3.74×104 2156  
9 3.81×104 2217  
10 3.46×104 2765  

Table 9. Data after beam updating 
Description Initial value Actual value Error (%) 

Deflection at 𝑧 = 0.3 m (mm) 6.41 6.70 4.35 
Deflection at 𝑧 = 0.3 m (mm) 13.73 14.32 4.14 
Deflection at 𝑧 = 0.3 m (mm) 20.43 21.28 3.97 
Deflection at 𝑧 = 0.3 m (mm) 25.47 26.43 3.62 
Deflection at 𝑧 = 0.3 m (mm) 27.62 28.38 2.65 

First order frequency (Hz) 77.09 76.67 0.54 
Second order frequency (Hz) 127.08 122.94 3.36 
Third order frequency (Hz) 158.69 161.34 1.64 

 

 

 
Fig. 13. Error comparison before and after updating 

 
Fig. 14. Error comparison of two methods 

4. Conclusions 

At present, there are many optimization algorithms used to solve the optimization problem of 
finite element model updating. The finite element model updating based on particle swarm 
optimization algorithm is popular at present, and there are relatively many objective functions 
combined with it. This paper firstly propose the ED-PSO model updating algorithm, and a simply 
supported beam is taken as the research object, and the numerical calculation of finite element 
model updating is carried out. By comparing the calculation results with previous research on 
CSD-PSO model updating algorithm. The results show that the ED-PSO model updating 
algorithm has obvious advantages. 
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