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Abstract. A multi-machine-learning improved adaptive Kalman filtering method is proposed to 
address the problem of handling abnormal data encountered in the vehicle state estimation. Firstly, 
the unscented Kalman filter (UKF) algorithm is improved by introducing a BP neural network 
improved by the genetic algorithm (GA-BPNN) to regulate and correct the global error of the 
UKF method. Then, the anti-outlier technique is applied to fully eliminate isolated and speckled 
outliers in the measurement, achieving further improvement on GA-BPNN-UKF and significantly 
improving the robustness of the filtering process. Finally, a simulation is applied to verify the 
effectiveness of the proposed new algorithm, and then its results are analyzed to obtain a firm 
substantiation of its effectiveness for further practical applications. The simulation results indicate 
that the estimation performance of the GA-BPNN algorithm is significantly better than that of 
Extended Kalman filter (EKF) method.  
Keywords: automotive engineering, vehicle dynamics, UKF, genetic algorithm, BP neural 
network, anti-outlier algorithm. 

1. Introduction 

Being the main kind of transport in modern society, vehicles have promoted the development 
and progress of society. However, at the same time, with the rapid rise of automotive technology 
and the increase in vehicle ownership, they brought significant traffic safety hazards. 

In recent years, autonomous driving technology developed rapidly, and its safety was widely 
concerned by society. As autonomous driving technology leaves the laboratory and enters society, 
it will face more complex traffic conditions. In order to ensure the safety of the vehicle itself, it 
needs to accurately perceive the environment it faces and make reasonable decisions.  

At present, many high-precision sensors cannot be widely used in all vehicles due to their high 
cost. In addition, sometimes it is difficult to measure directly some key state parameters. 
Therefore, it is necessary to use some relatively inexpensive sensors to obtain a portion of state 
information firstly, and use this information to estimate the key vehicle states that are not suitable 
for direct measurement, effectively ensuring the safety and autonomous driving of vehicles. 

The implementation of automotive active control systems and intelligent driving systems is 
based on obtaining the basic plane motion state of the vehicle, that is, obtaining longitudinal and 
lateral velocities, and yaw rate. Generally speaking, this information can be directly obtained from 
sensors. However, due to the limitations of sensor accuracy and cost, as well as the difficulty in 
determining the distribution characteristics of measurement noise, it is impossible to find effective 
and applicable sensors for direct measurement, or the measurement accuracy is not optimal for 
some state information [1].  

A reasonable method is to use cheap sensor information combined with state estimation 
algorithms for soft measurement. The traditional motion state estimation algorithm mainly adopts 
the model-based method, using kinematic and dynamic models to describe the relationship 
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between longitudinal and lateral velocities, yaw rate and other vehicle parameters and states. 
Algorithms such as Kalman Filter (KF) unite a series of noise measurement results with estimation 
results based on linear models, which makes them suitable for conventional driving conditions. 
The Extended Kalman Filter (EKF) adopts a nonlinear vehicle model with a better estimation 
accuracy than KF. The unscented Kalman filter (UKF) utilizes the UT transform to avoid 
linearization processing and has higher estimation accuracy. 

The problem of vehicle state estimation has been widely studied. A brief review is presented 
in what follows. 

Tian et al. proposed the parameter estimation method based on multi-dimensional information 
fusion [2]. And also, a comprehensive evaluation of wheel dynamics state was also realized by 
this information fusion. Yu et al. introduced a vehicle mass estimation method based on fusion of 
the machine learning and vehicle dynamic model [3]. Cai et al. demonstrated and opened for 
academic research six sets of electric vehicle data collected during experiments on a low-adhesion 
road [4]. Amin et al. introduced a review on the vehicle-trailer state and parameter estimation 
including trailer snaking, jack-knifing, and roll-over [5]. Xiang et al. proposed a sideslip 
recognition model that used the perception information of driverless vehicles to assess the sideslip 
driving status of the surrounding vehicles [6]. Xu et al. proposed a hierarchical estimation model 
considering the current rate to solve this problem [7]. Xue et al. developed a novel robust 
unscented M-estimation-based filter (RUMF) for the state estimation of a vehicle with unknown 
driver steering torque [8]. Zhang et al. proposed a state estimation method based on the enhanced 
adaptive unscented Kalman filter (EAUKF) to solve vehicle estimation under unknown noise 
conditions [9]. Qin et al. proposed a lateral and longitudinal dynamics control framework of 
autonomous vehicles considering the multi-parameter joint estimation in order to improve the 
trajectory tracking accuracy and vehicle lateral stability [10]. Jasmina et al. proposed an innovative 
way for the mode mixing involving the state-vectors for the models with different size [11]. 
Muhammed Hafiz et al. proposed a method aiming to determine a queue and delay for a signalized 
intersection approach using the data obtained from RFID sensors [12]. Zhang et al. presented a 
joint state-of-charge (SOC) and state-of-available-power (SOAP) estimation method based on the 
online battery model parameter identification [13]. Jiang et al. investigated a novel cell-to-pack 
state estimation extension method based on a multilayer difference model (MDM) to address the 
difficulty of state estimation by cell inconsistency and to realize the joint estimation of the state-
of-charge (SOC) and capacity for series-connected battery packs [14]. Wael proposed a real-Time 
Monte Carlo Localization (RT_MCL) method for autonomous cars [15]. Wang et al. proposed a 
method of tire road friction coefficient estimation with review and research perspectives [16]. Duc 
et al. introduced an anti-slip controller for a quarter vehicle traction control system [17]. Karnika 
et al. proposed a method aiming at establishing an alternative approach to dynamic modeling and 
robust control with online estimation of slip parameters [18]. This approach provides for 
modifying the kinematic model such that it was capable to accommodate slip-disturbance inputs. 
Wang et al. proposed a novel vehicle detection and tracking method for small target vehicles to 
achieve high detection and tracking accuracy based on the attention mechanism [19]. Gao et al. 
proposed a vehicle localization system based on vehicle chassis sensors considering vehicle lateral 
velocity to improve the accuracy of vehicle stand-alone localization in highly dynamic driving 
conditions during Global Navigation Satellites Systems outages [20]. Ding et al. proposed a 
driving strategy for network and autonomous vehicles that considered multiple preceding vehicles, 
including human-driven vehicles [21]. 

To sum up, the above literature used a variety of methods to identify effectively the states and 
parameters of vehicles, but some of the applied methods can hardly achieve the effective 
estimation for systems with many parameters and strong nonlinearity. In the actual test system, 
due to the limitations of test means, test environment and other factors, the measurement may 
include outlier in addition to noise. This outlier will reduce the performance of the data processing 
algorithm, and in serious cases, it will lead to algorithm divergence, making the estimation error 
far greater than the impact of the measurement error. 
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In response to the above shortcomings, this article proposes a high-precision Kalman filtering 
algorithm with fault-tolerant performance based on multiple optimization algorithms. On the basis 
of the unscented Kalman filter, an anti-outlier algorithm is introduced to eliminate effectively 
isolated and spotted outliers that appear during the measurement process. At the same time, a BP 
neural network based on the improved genetic algorithm is introduced to improve effectively its 
filtering accuracy. 

2. Mathematical model of vehicle state estimation problem 

2.1. 3-DOF vehicle model 

Based on reasonable assumptions and simplification, this paper obtains a nonlinear vehicle 
dynamics model including the longitudinal and lateral yaw motion of the vehicle body as shown 
in Fig. 1: 

⎩⎪⎪⎨
⎪⎪⎧𝑥ሷ = 𝑦ሶ𝜑ሶ + 𝐹𝑇𝑚 ,
𝑦ሷ = −𝑥ሶ𝜑ሶ + 2൫𝐹𝑦𝑓 + 𝐹𝑦𝑟൯𝑚 ,
𝜑ሷ = 2൫𝑎𝐹𝑦𝑓 − 𝑏𝐹𝑦𝑟൯𝐼𝑧 ,  (1)

where 𝑚 is the vehicle mass; 𝐼𝑧 is the moment of inertia around the 𝑧 axis; 𝜑, 𝜑ሶ  and 𝜑ሷ  are the 
yaw, yaw rate and yaw angular acceleration of the vehicle respectively; 𝑎 and 𝑏 are the distances 
of front and rear axles from the center of gravity; 𝐹𝑦𝑓 and 𝐹𝑦𝑟 are the lateral forces of front and 
rear tires; 𝐹𝑇 is the longitudinal force of tire; 𝑥ሶ  and 𝑦ሶ  are the speed in vehicle coordinate system; 𝑥ሷ  and 𝑦ሷ  are the accelerations in the vehicle coordinate system. 

The motion of a vehicle in the global coordinate system can be represented as: 

ቊ𝑋ሶ = 𝑥ሶcos𝜑 − 𝑦ሶsin𝜑,𝑌ሶ = 𝑥ሶsin𝜑 + 𝑦ሶcos𝜑, (2)

where 𝑋ሶ  and 𝑌ሶ  are velocities of the lateral and longitudinal motions of vehicles in the global 
coordinate system. 

 
Fig. 1. 3-DOF vehicle model 
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2.2. Tire model 

The semi empirical tire model composed of the Magic formula (MF) reflects the dynamic 
response between the tire and the ground, and has high fitting accuracy when the vehicle has small 
lateral acceleration and tire slip angle. However, this model cannot reflect the differences in 
adhesion characteristics between different road surfaces. The expression is as follows: 𝐹௬(௙,௥) = 𝐷sin൛𝐶arctan[𝐵𝛼(௙,௥) − 𝐸(𝐵𝛼(௙,௥) − arctan(𝐵𝛼(௙,௥)))]ൟ, 
where 𝐹௭(௙,௥) is the vertical load on front and rear wheels; 𝛼(௙,௥) is the sideslip angle of the front 
and rear wheels; 𝐵 is the stiffness factor; 𝐶 is the shape factor; 𝐷 is the peaking factor; 𝐸 is the 
curvature factor. 

The calculation expressions for each parameter are: 𝐶 = 𝑎଴; 𝐷 = 𝑎ଵ𝐹௭(௙,௥)ଶ + 𝑎ଶ𝐹௭(௙,௥);  𝐵 = 𝑎ଷsin(2arctan(𝐹௭(௙,௥)/𝑎ସ)) 𝐶𝐷⁄ ; 𝐸 = 𝑎ହ𝐹௭(௙,௥) + 𝑎଺; 𝛼௙ = 𝛿௙ − (𝑦ሶ + 𝑎𝜑ሶ ) 𝑥ሶ⁄ ; 𝛼௥ =(𝑏𝜑ሶ − 𝑦ሶ) 𝑥ሶ⁄ , where 𝑎௜ (𝑖 = 1,2,⋯ ,6) are the fitted MF parameters based on experimental data; 𝛿௙ is the front steering angle. According to [22], the related parameters are set as: 𝐵 = 0.237,  𝐶 = 1.65, 𝐷 = 3610.5, 𝐸 = 0.707. 
The vertical load of the front and rear wheels is: 

൞𝐹௭௙ = 𝑚𝑔𝑏𝑎 + 𝑏 ,𝐹௭௥ = 𝑚𝑔𝑎𝑎 + 𝑏 .  (3)

2.3. Nonlinear vehicle system 

The state vector of the nonlinear vehicle system is set as 𝐱 = [𝑣௫, 𝑣௬, 𝑟]், the system input is 𝐮 = [𝑎௫]், and the observation vector is 𝐲 = [𝑎௬, 𝑟]. 
3. Anti-outlier unscented Kalman filter based on GA-BPNN method 

Because the convergence speed of traditional BP neural network is slow, and the network 
accuracy is not high, the paper uses the improved genetic algorithm to find the global optimal 
solution to optimize the initial weight and threshold value of BP neural network to improve the 
network accuracy and convergence speed. 

3.1. Design of BP network algorithm based on genetic optimization 

According to the design idea of the BP neural network algorithm optimized by the genetic 
algorithm, the initial weights and thresholds are optimized in the network. The fitness function is 
determined as: 𝐸 = ෍ (𝑇௜ − 𝑌௜௡௜ୀଵ )ଶ, (4)

where 𝑇௜ represents the actual output value of the 𝑖th training sample; 𝑌௜ represents the expected 
output value of the 𝑖th training sample. 

When the BP algorithm is optimized with the genetic algorithm, the roulette wheel gambling 
method is usually selected. In general, some individuals with excessive fitness will appear during 
population evolution, which are likely to determine the selection process reducing population 
diversity. Therefore, based on the GA algorithm used in reference, a new roulette selection method 
is proposed. A new roulette selection method is proposed, that is, each selected individual is 
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removed from the total selection sequence and will not participate in the next selection process. 
The specific selection steps are: 

Step 1: The individuals are arranged according to their fitness values, and the fitness values 
obtained by substituting them one by one are accumulated, and the sum is recorded as 𝑆. 

Step 2: The random number 𝑀 is generated, and introduced in the formula: 𝑀 ∈ (0, 𝑆). 
Step 3: The fitness function value of the first individual is taken and summed with the fitness 

function value of the following individuals in turn. If the cumulative value exceeds 𝑀, the 
calculation stops. The last individual whose fitness function value is accumulated is the selected 
parent. 

Step 4: These selected individuals are put out separately and Steps 2 and 3 are repeated until a 
sufficient number of parents is accumulated.  

According to the steps of the improved roulette selection algorithm, 𝑁/2 individuals are 
selected as the parents. This effectively prevents those individuals with abnormal fitness values 
from being selected for many times, enriching the diversity of the population, and improving the 
possible convergence of the algorithm to the local optimum. 

3.2. GA-BPNN-Optimized UKF 

In the paper, the improved BP neural network is used to optimize the UKF algorithm. The BP 
neural network is trained according to the input samples saving the trained weights and thresholds. 
When the trajectory parameters are estimated by the UKF, the parameters that affect the trajectory 
error are used as the input data for the improved BP network. So the global error can be adjusted 
to correct the UKF output results, thereby improving the trajectory measurement accuracy. The 
specific training steps are as follows: 

Step 1: The error between the one-step state prediction value and the state estimation value is 
taken as the input sample.  

Step 2: The error between the real value and the state estimate is taken as the output sample. 
Step 3: The mapping relationship between UKF prediction and actual error is studied. 
Step 4: The error 𝐵௣௘௥௥ between the filtered and the actual value is outputted. 
Firstly, the measurement information is inputted to the UKF filter to get the filtering results. 

And then the 𝑋෠௞ାଵ|௞ାଵ − 𝑋෠௞ାଵ|௞ is inputted to the trained improved BP neural network. Finally, 
the error between the filter and actual values is output. 

Finally, based on the GA-BPNN UKF algorithm the optimal estimation obtained through the 
UKF and the output value of the improved BP network are added to obtain the optimal estimation: 𝑋෠௞ାଵ/ = 𝑋෠௞ାଵ|௞ାଵ/ + 𝐵௣௘௥௥ , (5)

where 𝑋෠௞ାଵ|௞ାଵ/  is the output value of the UKF algorithm based on the GA-BPNN; 𝐵௣௘௥௥ is the 
output value of the improved BP network; 𝑋෠௞ାଵ|௞ାଵ is the state estimate of the UKF. 

3.3. Anti-outlier UKF based on GA-BPNN 

The improved UKF algorithm mentioned above can effectively improve the filtering accuracy, 
but for the data gross error, the algorithm lacks the anti-interference ability. And when the 
measuring equipment suddenly fails, it means that its fault tolerance ability is also poor. In order 
to solve the above problems, a fault tolerant identification algorithm is proposed. The algorithm 
combines the above improved UKF algorithm with outlier elimination, assesses the innovation 
sequence and processes outlier points, adjusts the filter gain in real time and calculates outliers, 
and uses this technology to remove and repair dynamic data streams with speckled outliers or 
isolated outliers. 

It is set that the innovation property is: 
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𝑒௞ାଵ = 𝑍௞ାଵ − 𝑍መ௞ାଵ|௞. (6)

When the filter works stably, the standard deviation of innovation is 𝜎 and  𝜎 = ට ଵଶ௡𝜔௜(௖)[(𝜉(௞ାଵ|௞(௜) − Z෠௞ାଵ|௞)][(𝜉(௞ାଵ|௞௜) − Z෠௞ାଵ|௞)]் + 𝑅௞ାଵ. 

A definition and identification method is applied to assess whether each component of the 
observed value 𝑍௞ାଵ is an outlier. The identification formula is: |(𝑒௞ାଵ)௜| ≤ 𝐶𝜎௜,௜ , (7)

where (𝑖, 𝑖) represents the 𝑖th element on the diagonal of innovation standard deviation; (𝑒௞ାଵ)௜ 
represents the 𝑖th component of 𝑒௞ାଵ; and C represents a constant.  

If the above identification formula is valid, then (𝑍௞ାଵ)௜ is the normal observation. If the 
identification formula is not satisfied, then (𝑍௞ାଵ)௜ is an outlier. And (𝑍௞ାଵ)௜ represents the 𝑖th 
component of 𝑍௞ାଵ. In the improved UKF algorithm, since there is not only one type of outliers, 
it is necessary to distinguish them all and remove one by one. 

For the removal of isolated outliers, according to the recursive formula of UKF, the state 
estimation value 𝑋෠௞ାଵ|௞ାଵ can be obtained by modifying the prediction value 𝑍መ௞ାଵ|௞. In this case, 
the gain matrix 𝐾௞ାଵ determines the influence strength of 𝑍௞ାଵ on 𝑋෠௞ାଵ|௞ାଵ. Therefore, if you 
want to get the correct 𝑋෠௞ାଵ|௞ାଵ, then 𝑍௞ାଵ cannot be distorted. If 𝑍௞ାଵ is distorted, it is necessary 
to adjust 𝐾௞ାଵ to obtain accurate 𝑋෠௞ାଵ|௞ାଵ.  

If the 𝑖th component (𝑍௞ାଵ)௜ of 𝑍௞ାଵ does not meet the identification formula conditions, then (𝑍௞ାଵ)௜ is an outlier. After obtaining 𝐾௞ାଵ, let 𝐾௞ାଵ = 𝑚𝐾௞ାଵ(0 ≤ 𝑚 ≤ 1), where 𝑚 is similar 
to a weight coefficient, and its value depends on the size of the innovation value. When the 
innovation value is high, it is necessary to reduce the gain 𝐾௞ାଵ, so that 𝑚 can effectively adjust 
it by selecting the small value between (0, 1). If the innovation value is very high, it is necessary 
to set 𝐾௞ାଵ to zero, and the value of 𝑚 at this time shall be 0. The adaptive control of the filter is 
realized. Then 𝑋෠௞ାଵ|௞ାଵ and filtering error covariance 𝑃௞ାଵ|௞ାଵ can be obtained, thus the problem 
of outlier point interference can be solved by obtaining the target state parameters. 

For a speckled outlier, the removal steps are as follows: 
Step 1: Firstly, the values 𝑋෠௞ାଵ|௞ାଵ and 𝑍௞ାଵ are calculated by using the improved UKF, and 

the data are saved at the same time. 
Step 2: the identification formula is used to identify whether 𝑍௞ାଵ is an abnormal value. 
Step 3: Then Step 2 is repeated and the point sequence k of each outlier is saved, while the 

identification, and recording of the number of outliers continue. 
Step 4: The predicted values are used instead of outliers. 
Step 5: Filtering is continued until the end. 
The flowchart of the adaptive Anti-Outlier UKF and GA-BPNN is shown in Fig. 2. 

4. Numerical simulation and experimental verification 

4.1. Numerical simulation 

Carsim and Matlab/Simulink software are used to conduct co-simulation experiments to verify 
the estimation algorithm. Carsim is a professional vehicle dynamics simulation software 
developed by the Mechanical Simulation Corporation (MSC) for feature oriented parametric 
modeling. It is aimed at making algorithm research and development in the automotive field, 
testing and shortening the vehicle cycle. Scholars or engineers can obtain operational results that 
can highly simulate the response of actual vehicles through Carsim, and conduct more in-depth 
analysis on them. 
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Fig. 2. Flowchart of adaptive Anti-Outlier UKF and GA-BPNN 

The main interface of Carsim consists of three parts: 
Database. The database includes databases of the entire vehicle model, driver model, and 

external environment (road surface information, environmental wind information, etc.). These 
databases comprehensively consider the human vehicle road factors of the automotive operating 
environment. During the operation, you can either default to an already existing database or create 
a new database. 

Model solver. This section is the core part of Carsim operation solving, where users can set 
simulation termination conditions, simulation step size, and other information. It can also be easily 
connected to Matlab/Simulink, C language, and VB language. 

Post-processing. Carsim software has powerful post-processing capabilities. During its 
operation, the user can choose to analyze quantitatively the curve of a specific characteristic 
changing over time or other parameters, or observe the response of the vehicle visually and vividly 
through simulation animations. In general, Carsim is easy to use, its graphical interface is easy to 
operate, and data visualization is powerful. The accuracy of its mathematical model has been 
recognized by academia and the industry, because the software has excellent scalability, which 
can be easily integrated into Matlab/Simulink, C language, VB and other simulation environments. 

The key parameters of the vehicle are shown in Table 1.  

Table 1. Simulation parameters 
Parameter Value 𝑚 (kg) 1522 𝐼௭ (kg∙m2) 2430 𝑎 (m) 1.47 𝑏 (m) 1.08 𝑡௙ (m) 1.53 𝑡௥ (m) 1.56 
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The computing platform comprises a MacBook Air (Intel Core i5-5250U 1.6 GHz, Windows 
10 Enterprise Edition) with MATLABR2009a. The BPNN is set as: the structure has 2 nodes in 
the input layer; 5 nodes in the hidden layer, and 1 node in the output layer, with a total of 15 nodes. 
And the running interval is 1 s. 

 

 
Fig. 3. Longitudinal velocity simulation 

Fig. 3 compares and analyzes the estimated longitudinal velocity using the traditional EKF 
algorithm and the GA-BPNN algorithm proposed in this paper with the Carsim output parameter 
values. From Fig. 3, it can be observed that the estimation performance of the GA-BPNN 
algorithm is significantly better than that of EKF, with the maximum error of only 0.1 km/h. The 
numerical fluctuations can be stable and close to the actual values. The maximum error of EKF 
method reaches 0.113 km/h. Its estimated values are always near the actual values with very small 
errors, while the traditional EKF algorithm exhibits divergence at certain times. 

 

  
Fig. 4. Yaw rate simulation 

Fig. 4 compares and analyzes the estimated yaw rate using the traditional EKF algorithm and 
the GA-BPNN algorithm proposed in this paper with the Carsim output parameter values. From 
Fig. 4, it can be observed that the estimation performance of the GA-BPNN algorithm is 
significantly better than that of EKF. Traditional EKF exhibits more than one divergence 
phenomenon in 10 seconds, while the GA-BPNN algorithm maintains good convergence, with its 
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estimated value located near the actual value, with the maximum error of only 0.1 (°/s), so the 
numerical fluctuation can be in a stable state. 

 

  
Fig. 5. Side slip angle simulation 

Fig. 5 compares and analyzes the estimated side slip angle using the traditional EKF algorithm 
and the GA-BPNN algorithm proposed in this paper with the Carsim output parameter values. 
From Fig. 5, it can be observed that the estimation performance of the GA-BPNN algorithm is 
significantly better than that of EKF. According to the simulation results, it can be concluded that 
the GA-BPNN method can correct the noise covariance through the involvement of parameter 
optimization estimation methods. Therefore, the GA-BPNN algorithm has excellent estimation 
accuracy and good convergence, which can effectively solve the problem of vehicle driving state 
estimation when the noise covariance is not accurately obtained. 

The mean absolute error (MAE) and root mean square error (RMSE) are considered to verify 
the estimation accuracy of the proposed algorithm. 

Table 2. MAE and RMSE indicators of two algorithms 
Evaluation index State value EKF GA-BPNN 

MAE 
𝑣௬ (m/s) 0.321 0.142 𝑣 ௫ (m/s) 0.192 0.0465 𝑟 (rad/s) 0.323 0.0179 

RMSE 
𝑣௬ (m/s) 0.354 0.139 𝑣௫ (m/s) 0.251 0.0518 𝑟 (rad/s) 0.422 0.0219 

From Table 2, it can be seen more intuitively that the estimation accuracy of the GA-BPNN 
algorithm is significantly higher than that of the EKF method. 

4.2. Experimental verification 

According to BS ISO 3888-2002, a double lane change test is carried out to verify the 
algorithm effectiveness. The main measurement devices are shown in Fig. 6. And the real test 
vehicle is shown in Fig. 7. 
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a) GPSSD-20 speed instrument 

 
 

 
b) Steering torque/angle tester 

 
 

 
c) AM-2800 vehicle 

comprehensive  
performance test system 

Fig. 6. Measurement devices 

  
Fig. 7. Real test vehicle 

Fig. 8 depicts a comparison of the estimated and test values. 
It can be seen from Fig. 8 that due to the existence of the vehicle dynamics model, tire model 

and sensor measurement errors, the errors of the longitudinal velocity, yaw rate and side slip angle 
appear as estimated. But the overall estimation effect is good, and it maintains a good consistency 
with the actual measured value indicating the good estimation accuracy and robustness of the 
proposed algorithm. 

5. Conclusions 

A 3-DOF vehicle model based on the longitudinal vehicle speed, yaw rate, and side slip angle 
is constructed, taking into account the nonlinear relationship between longitudinal vehicle speed 
and traditional vehicle state parameters to solve more rigorously the problem of vehicle state 
estimation. The UKF algorithm is improved by introducing a BP neural network improved by the 
genetic algorithm (GA-BPNN) to regulate and correct the global error and to improve the 
estimation accuracy of the UKF method. And the simulation has verified that this algorithm could 
provide more accurate vehicle state estimation in environments with inaccurate noise covariance. 
And also, compared with the traditional method, the simulation results indicate that the estimation 
performance of the GA-BPNN algorithm is significantly better than that of EKF. The proposed 
algorithm exhibits excellent characteristics such as clear physical meaning of states, good 
real-time performance. It plays an irreplaceable role in real-time and signal post-processing and 
has broad application prospects. In the future, the algorithm stability and the practical 
implementation of the proposed method require further in-depth research. And also, the weight 
optimization of the genetic algorithms has to be addressed with an intensive study. 
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a) Test and estimated values of longitudinal velocity 

 
b) Estimation error of longitudinal velocity 

 
c) Mean value of estimation error  

of longitudinal velocity 

d) Test and estimated values of yaw rate e) Estimation error of yaw rate 

 
f) Mean value of estimation error of yaw rate 

 
g) Test and estimated values of side slip angle 

 
h) Estimation error of side slip angle 

 
i) Mean value of estimation error of side slip angle 

Fig. 8. Comparison of estimated and test values 
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