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Abstract. The quality of rolling bearings determines the safety of mechanical equipment 
operation, and bearings with more precise structures are prone to damage due to excessive 
operation. Therefore, cross domain fault diagnosis of bearings has become a research hotspot. To 
better improve the accuracy of bearing cross domain fault diagnosis, this study proposes two 
models. One is a cross domain feature extraction model constructed using a mixed attention 
mechanism, which recognizes and extracts high-level features of bearing faults through channel 
attention and spatial attention mechanisms. The other is a bearing cross domain fault diagnosis 
model based on multi-layer perception mechanism. This model takes the feature signals collected 
by the attention mechanism model as input to identify and align the differences between the source 
and target domain features, facilitating cross domain transfer of features. The experimental results 
show that the mixed attention mechanism model has a maximum accuracy of 97.3 % for feature 
recognition of different faults, and can successfully recognize corresponding signal values. The 
multi-layer perception model can achieve the highest recognition accuracy of 99.5 % in bearing 
fault diagnosis, and it can reach a stable state when it iterates to 26, and the final stable loss value 
is 0.28. Therefore, the two models proposed in this study have good application value. 
Keywords: MLP-Mixer, attention mechanism, rolling bearing, fault diagnosis, cross domain. 

1. Introduction 

Rolling bearings, as important components of mechanical equipment, have important 
application value in industrial production. They are widely used in various industrial and 
agricultural production occasions [1]. Due to the complex and ever-changing working 
environment, the occurrence rate of faults is relatively high, which can easily cause significant 
economic losses and personal injury accidents. Therefore, how to ensure the safe operation of 
rolling bearings is a research hotspot in mechanical manufacturing. The traditional fault diagnosis 
method uses neural network technology. Although this technology can process vibration signals 
and construct their time-frequency maps through continuous wavelet transform, the computational 
accuracy of this method is relatively low [2]. There are still problems with incomplete feature 
recognition and poor transferability of cross domain features in current bearing fault diagnosis. 
This study addresses two current fault diagnosis issues. Compared with other methods that 
emphasize more obvious high-level features, this study innovatively combines the hybrid attention 
mechanism (AM) to construct a bearing cross domain feature diagnosis (CDFD) model, which 
collects and extracts both high and low-level features through the channel and the spatial AMs, to 
achieve the ability to completely identify the fault feature signal [3]. However, the mixed AM 
model cannot effectively solve the decline of cross domain feature diversion, so this study uses 
the multi-layer perception machine (MLP-Mixer) algorithm to build a CDFD model for bearings 
on the basis of the AM model. This model takes the feature signals collected by the AM model as 
input values, and adds two feature correction modules during the operation to correct and balance 
the feature differences in different domains to achieve the effect of not losing information when 
features transfer across domains [4]. To complete the above research content, the article is divided 
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into five parts. The first part is an overall overview of the research content. The second part 
provides a review of the current research status on bearing fault diagnosis. The third part is divided 
into two sections, which respectively study the application principles of AM and MLP-Mixer 
algorithm in bearing fault diagnosis. The fourth part analyzes the application performance of the 
above two algorithms. The fifth part is a summary of the research content and results of the entire 
article. 

2. Related works 

The safety of rolling bearings plays an important role in the operation of mechanical 
equipment. At present, bearing fault diagnosis has become a research hotspot, and many scholars 
have explored it. Liu et al. [5] developed an eddy current sensing film diagnostic method that used 
current detection of bearing thickness to determine the bearing damage. The experimental results 
indicated that this method was feasible. Tang et al. [6] proposed using discrete digital models for 
bearing fault diagnosis. First, the original current signal of the bearing was measured by the 
probability density function, and then the characteristics of the original current were extracted and 
recognized according to the distributed discrete digital model. The effectiveness of this algorithm 
has been demonstrated through simulation experiments. Wang et al. [7] constructed a bearing fault 
warning model using empirical mode decomposition algorithm. Firstly, the empirical mode 
decomposition algorithm was used to extract and process the signal, obtain the corresponding 
signal entropy, and then calculate the fault feature vector based on the signal entropy, ultimately 
achieving fault warning. The experimental results showed that the accuracy of early warning was 
above 94 %, and the alarm time was about 0.27 seconds. Yin et al. [8] proposed using a 
combination of materials with high elastic modulus to optimize the bearing structure to reduce the 
causes of bearing friction failures. Through the screening of wear and friction experiments, the 
results showed that the bearing using the combination of YN6X/SiC material had the optimal 
friction performance. Cui et al. [9] conducted research on bearing faults in wind turbines. Firstly, 
a three-stage learning algorithm was constructed by combining fault feature vectors and regression 
functions. Then, sensitivity analysis was performed on fault features based on this algorithm to 
extract advanced features. The experimental results indicated that this algorithm had certain 
application value in the wind turbine fault diagnosis. Zhang et al. [10] proposed to optimize the 
deep learning fault diagnosis model to address the poor alignment of edge features in bearing fault 
diagnosis. The optimization model introduced adversarial learning to extract edge features and 
used a weighting mechanism to reflect them. The experimental results indicated that the 
optimization model could effectively solve the CDFD. Chen et al. [11] proposed a fault diagnosis 
regression framework to solve fault diagnosis in complex scenarios. This framework used 
adversarial domain invariant generalization to diagnose fault features, while feature normalization 
and adaptive weight methods were also used to improve diagnostic performance. The 
experimental results indicated that this framework could be effectively applied to CDFD of 
bearings in complex scenarios. Wang et al. [12] constructed a new type of fault diagnosis model 
using SATLN network to improve the accuracy of fault diagnosis. This model extracted 
transferable features of faults through convolution operations, and then constructed corresponding 
target subdomains to reduce distribution bias. The experimental results indicated that the model 
had good advantages in the CDFD. 

In summary, many scholars have developed various bearing CDFD methods, but currently 
there are still problems in this field such as incomplete feature recognition and poor transferability 
of features across domains. AM, as an effective feature recognition method, has comprehensive 
feature search capabilities. MLP-Mixer can effectively align feature differences and has good 
feature correction ability. Therefore, this study proposes the use of AM and MLP-Mixer to 
construct a CDFD model to address the poor cross domain feature recognition and reduced 
transferability. 
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3. CDFD of bearings based on AM and MLP-Mixer 

At present, many scholars have conducted extensive research on bearing fault diagnosis using 
deep learning network technology, and diagnostic steps include three steps: fault signal collection, 
fault feature extraction, and fault classification diagnosis. Among them, the sources of fault signals 
exist in multiple source domains. Traditional deep learning network technology is difficult to deal 
with multi-domain fault diagnosis signal processing due to its tendency to lead to incomplete 
collected multi-domain signals and poor signal feature transferability. To solve the above 
problems, this research will combine AM and MLP-Mixer to optimize the CDFD technology of 
bearings. 

3.1. Constructing a multi-domain fault feature extraction model based on AM 

The main types of bearing fault features are low and high level features. Due to the fact that 
high-level features should have more profound signal semantics, in bearing CDFD, only the 
transfer of high-level features is generally analyzed, and some detailed semantics of low-level 
features are ignored. This will result in incomplete fault signal features collected during CDFD. 
To effectively collect low-level features, this study constructs a cross domain bearing fault low-
level feature extraction model using AM. AM is a deep learning model that performs 
dimensionality reduction and fusion operations on input data, and then distinguishes the 
information differences of features to complete feature classification and extraction. This 
mechanism is commonly used for processing multi-sequence data due to its good feature 
classification [13]. 

 
Fig. 1. Mixed AM 

Fig. 1 shows the mixed AM. The operation object of the AM is the local information of the 
feature, which will maximize the search for complete local feature information during the 
operation. From Fig. 1, the mixed AM is composed of channel AM and spatial AM. Channel AM 
is often used for two-dimensional image processing. By establishing image channels, the 
dimensions of different feature information are compressed, and then the compressed features are 
compared with the original features to obtain the differences in features and differentiate them 
accordingly [14]. The spatial AM extends the computational level of the channel AM. After the 
channel AM completes feature classification based on differences, the spatial AM will confirm 
the spatial position of the feature and find the area containing the most feature information. 

The AM used in this study is the mixed AM. The mixed AM can not only classify high and 
low-level fault features based on feature differences, but also determine the location of low-level 
features and extract them to complete the collection of low-level feature information [15]. Firstly, 
it is necessary to construct a basic feature extraction model based on the existing source domain 
fault features, and then input the feature information of the target domain to the model. To 
effectively distinguish between high and low-level features inputted into the target domain, it is 
necessary to establish a feature classification module using AM in the basic model. The first step 
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in establishing this module is to construct a channel sub-module based on the channel AM. This 
sub-module is divided into a source domain containing existing feature data and a target domain 
containing the data to be tested. Assuming that the feature data in the source domain is 𝑦௧, all 
feature sets in the source domain are 𝑦௦, and 𝑌௜ denotes the tensor of the 𝑖th feature in the source 
domain. The feature data of the target domain is 𝑚௧; 𝑀௜ is the tensor of the 𝑖th feature in the target 
domain. The expression for the feature sets of the source and target domains is Eq. (1): ൜𝑦௦ = ሾ𝑦ଵ,𝑦ଶ, . . .𝑦௧ሿ,𝑚௦ = ሾ𝑚ଵ,𝑚ଶ, . . .𝑚௧ሿ. (1)

 
Fig. 2. Channel module schematic 

Fig. 2 is a schematic diagram of the channel module, from which the number of channels in 
this module is 2. The calculation is to first input the feature information of the source and target 
domains into the global pool, extract the features, then average the dimensions of the information, 
and then input the processed features with the same dimensions into the fully connected layer. 
After weight calculation and mapping function operation, the final feature data 𝑦ሶ௧ and 𝑚ሶ ௧ are 
obtained. The expression for calculating the weight ratio of the source and the target domains is 
shown in Eq. (2): 

ቐ𝑊௬ = 𝛼 ቀ𝑘൫Re𝐿𝑈ሺ𝑌௜ሻ൯ቁ ,𝑊௠ = 𝛼 ቀ𝑘൫Re𝐿𝑈ሺ𝑀௜ሻ൯ቁ . (2)

In Eq. (2), 𝑊௬ and 𝑊௠ are the weight ratios of input feature channels in the source and target 
domains, respectively. 𝛼 means the sigmoid function. 𝑘 denotes the dimension. Re𝐿𝑈 is the 
activation function. After obtaining the weight ratio in the two domains, mapping operations can 
be performed based on the weight ratio and the original feature tensor to obtain the final input 
channel feature data. The mapping expression is shown in Eq. (3): ൜𝑦ሶ௧ = 𝑊௬ × 𝑌௧,𝑚ሶ ௧ = 𝑊௠ × 𝑀௧ . (3)

After completing the classification of different domain features through the channel module, 
the spatial module can be established. The spatial module is operated on the theoretical basis of 
spatial AM, and compared to the channel module, the spatial module focuses more on the spatial 
dimension importance of features. 

Fig. 3 shows the spatial module operation. From the figure, this operation first performs 
maximum and average pooling operations on the results obtained by the channel module, and then 
performs spatial weight ratio calculation and mapping operations again to obtain the final spatial 
feature output values 𝑦∗௧ and 𝑚∗ ௧. The calculation of spatial weight ratio is shown in Eq. (4): 
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ቐ𝑊∗௬ = 𝛼 ቀ𝑓൫𝑀𝑎𝑥𝑝𝑜𝑜𝑙ሺ𝑦ሶ௧ሻ;𝐴𝑣𝑔𝑝𝑜𝑜𝑙ሺ𝑦ሶ௧ሻ൯ቁ𝑊∗௠ = 𝛼 ቀ𝑓൫𝑀𝑎𝑥𝑝𝑜𝑜𝑙ሺ𝑚ሶ ௧ሻ;𝐴𝑣𝑔𝑝𝑜𝑜𝑙ሺ𝑚ሶ ௧ሻ൯ቁ (4)

In Eq. (4), 𝑊∗௬ and 𝑊∗௠ are divided into spatial weight ratios of source and target domain 
features. 𝑓 is a convolutional function. By mapping the obtained feature space weight ratio with 
the input channel feature vector can obtain the final spatial feature tensor. The expression is shown 
in Eq. (5): 

൝𝑦∗௧ = 𝑊∗௬ × 𝑦ሶ௧ ,𝑚∗ ௧ = 𝑊∗௠ × 𝑚ሶ ௧ . (5)

The channel and spatial modules constructed through AM can not only extract high-level 
features of bearing faults, but also recognize and classify low-level features. And the combination 
of the two modules can also reduce the differences between different levels of fault features. 

 
Fig. 3. Space module operation flow 

3.2. CDFD model based on MLP-mixer 

In the CDFD of bearings, due to the diverse reasons for mechanical equipment failures, the 
situations that require classification processing in diagnosis are also more complex. The AM 
model constructed in the study can effectively reduce the feature differences between different 
domains for feature classification and extraction. However, no clear solution has been provided 
for the transferability of features. To efficiently solve the feature transferability in CDFD, this 
study adds two feature correction modules using MLP-Mixer on the basis of the AM model to 
improve the transferability of cross domain fault features [16]. 

 
Fig. 4. MLP-Mixer computing flow chart 



CROSS DOMAIN FAULT DIAGNOSIS METHOD BASED ON MLP-MIXER NETWORK.  
XIAODONG MAO 

458 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

Fig. 4 shows the operational process of MLP-Mixer which is a technical framework that adopts 
multi-layer perception mechanism in computer vision technology, mainly including dimension 
conversion, feature mixing, pooling and connection layers. Among them, the pooling and 
connection layer functions together form a classifier for feature classification. The function of the 
dimension conversion layer is to convert the dimensions of features for subsequent feature fusion. 
The function of the feature mixing layer is to locally fuse information from different spatial 
positions. The classifier composed of pooling and connection layers is used to classify the fused 
information features according to their differences [17]. 

Due to the strong discriminative ability of the MLP-Mixer to the information features, its 
application in bearing fault diagnosis is based on this method to construct a fault diagnosis model 
under feature correction. The module is mainly divided into three steps, namely image 
segmentation, processing, and correction. It assumes that the target domain features input by the 
feature correction module are 𝑡௣ and the corresponding feature set is 𝑡௦. The expression of 𝑡௦ is 
shown in Eq. (6): 𝑡௦ = ൣ𝑡ଵ, 𝑡ଶ, . . . 𝑡௣൧. (6)

The input feature of the source domain is 𝑙௣, and the corresponding feature set is 𝑙௦. The 
expression of 𝑙௦ is shown in Eq. (7): 𝑙௦ = ൣ𝑙ଵ, 𝑙ଶ, . . . 𝑙௣൧. (7)

The number of channels for feature transfer in this module is 2, with 𝐷 and 𝑀 being the 
corresponding two channel dimensions. 

 
Fig. 5. Fault diagnosis model built by MLP-Mixer 

Fig. 5 shows a CDFD model constructed using MLP-Mixer. This model first divides the fault 
image into 𝑁 image blocks according to different dimensions. Then, an image processing layer is 
used to process the information of the fault image, and the processed image is input into the 
MLP-Mixer layer to obtain more complete image information. To improve the transferability of 
image features in the target domain, two feature correction modules are set up before feature 
output. By distinguishing between the corrected target source image and the processed source 
domain image based on the difference in image information, the vector matrix expression of the 
target source image information can be obtained as Eq. (8): 

𝑡௦ = ቎𝑡ሶଵ . . .   𝑡ሶ௣஽. . . . . .𝑡ሶ௦ே . . . 𝑡ሶ௦ே஽ ቏. (8)

In Eq. (8), 𝑡ሶଵ is the first of the segmented 𝐷 dimension image matrix vector, and 𝑡ሶ௣஽ is the last 
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of the first row vector of the 𝐷 dimension image matrix. 𝑡ሶ௦ே  means the last column vector in the 
first column, and 𝑡ሶ௦ே஽  denotes the last vector of the matrix. Among them, each image block 
represents different feature information. 

 
Fig. 6. Information fusion method 

Fig. 6 shows the interaction method of image information. The information exchange method 
of different channels in the same space is called channel information exchange. The information 
exchange method in the same channel and different spaces is spatial information exchange. In the 
image information vector matrix containing the target domain, row vector can conduct channel 
information interaction, and column vector can conduct spatial information interaction. The 
information exchange is the image processing. After completing the image processing of the target 
domain, the processed feature data can be input into the feature correction module. The feature 
correction module is mainly composed of a fully connected layer and ReLU function, which can 
correct the feature differences between the target domain and the source domain to solve the 
reduced feature transferability. It assumes that the target and source domain feature values of the 
first feature correction module are 𝐻൫𝑡௣൯ and 𝐻൫𝑙௣൯, respectively. The difference between the two 
features is Δ𝐻ଵሺ𝑝ሻ. The expression for outputting the target source feature correction value is 
shown in Eq. (9): 𝐻ഥଵ൫𝑡௣൯ = Δ𝐻ଵሺ𝑝ሻ + 𝐻൫𝑡௣൯. (9)

In Eq. (9), 𝐻ഥଵ൫𝑡௣൯ is the output target source feature correction value of the first correction 
module. This value is used as the input value for the second feature correction module, which 
corrects the target domain feature values 𝐻൫𝑙௣൯ and 𝐻ഥଵ൫𝑡௣൯ with a difference value of Δ𝐻ଶሺ𝑝ሻ. 
The expression for the final cross domain difference correction value obtained is shown in 
Eq. (10): 𝐻ഥଶ൫𝑡௣൯ = Δ𝐻ଶሺ𝑝ሻ + 𝐻ഥଵ൫𝑡௣൯. (10)

In Eq. (10), 𝐻ഥଶ൫𝑡௣൯ is the final feature difference correction result between the target domain 
and the source domain. In summary, the fault diagnosis model constructed through MLP-Mixer 
can achieve cross domain feature differentiation balance by extracting and correcting spatial and 
channel information of features. When the differences in features between different domains are 
balanced, the error caused by cross domain transfer will be reduced and the transferability of 
features will be improved during CDFD. 

4. Analysis of CDFD model based on AM and MLP-Mixer 

This study used a mixed AM and the MLP-Mixer algorithm to construct two models. One was 
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a multi-domain feature classification model constructed through the mixed AM. This model 
completed the search for high and low-level features of faults by classifying the differences in 
local feature information. Therefore, this type of model needed to conduct performance analysis 
by judging its accuracy and the fault feature signals it searched for. The other was a feature 
correction fault diagnosis model constructed using the MLP-Mixer algorithm. This model 
improved the transferability of features by performing differential classification and balancing on 
cross domain fault features. Therefore, the performance of such models needed to be analyzed 
based on the accuracy, iteration times, and loss rate of fault diagnosis. 

4.1. Design of experimental platform for bearing failure 

In order to determine the performance of the bearing fault diagnosis model proposed in the 
study, a simulation experimental bench was designed and constructed. The test bench consists of 
an electric motor, a rack and pinion, a rotating shaft, a bearing steering and a load-bearing block. 
The coordinated operation between the rack and pinion and the rotating shaft is utilized to realize 
the operation of the experimental bench under the power provided by the electric motor. At the 
same time, the load-bearing block can simulate the actual shaft bearing force. 

4.2. Rolling bearing fault signal vibration acquisition and measurement system design 

The experiment uses the uT2502 wireless environmental excitation experimental modal test 
system for the vibration system, which is mainly composed of SR150M model sensors, signal 
receivers and computer systems containing analysis software. uT2502 vibration system has a 
built-in sensor signal acquisition range of 0-500 Hz, and an external sensor measurement 
frequency range of 0.1-10000 Hz. embedded hardware Integration circuit, can be directly realized 
multi-grade data measurement. Therefore, the sensor can meet the rolling bearing vibration signal 
acquisition. The signal receiver is uT3704FRS-ICP, with a sampling frequency of 51.2 kHz. The 
signal receiver is connected to the sensor, and after receiving the signals from the sensor, it will 
pass them to the computer system, which can analyze the data through the analysis software. The 
analysis software is added to the research to propose the corresponding detection algorithm 
module. 

5. Experimental program design 

The aim of this study is to evaluate the feature extraction models constructed using AMs. The 
performance evaluation was done using Convolutional Neural Network (CNN), Deep Domain 
Confusion (DDC) and Improved Convolutional Neural Network (TLCNN) algorithms for 
comparison where CNN has excellent feature recognition, DDC has domain feature search, and 
TLCNN has signal recognition capability. Four algorithmic modules are added to the uT2502 
vibration system for detection of each. The SKF bearing dataset from Case Western Reserve 
University was chosen for this experiment, which is favorable for fault feature extraction because 
it has a high signal-to-noise ratio. The dataset contains four types of bearing data: internal structure 
failure, external structure failure, rolling ball failure and normal bearing. The specific types of 
fault features are shown in Table 1. 

Table 1. Bearing failure classification 
Bearing failure type Fault content Fault number 
Rolling ball failure Ball breakage F1 

Internal structural failure Cracks in the internal structure F2 
External structural failure Cracks in the external structure F3 

Normal bearing Difficult to run bearings F4 

Table 1 shows the classification of bearing faults for this experimental study. Where, different 
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fault types were labeled for subsequent ease of analysis, and the four algorithmic models described 
above were used to determine bearing faults. 
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Fig. 7. Recognition accuracy of four algorithms under four fault types 

Fig. 7 shows the comparison of recognition accuracy of four algorithms in four types of bearing 
faults. Among them, Figs. 7(a), (b), (c), and (d) respectively show the recognition accuracy of the 
four algorithms under four types of faults: F1, F2, F3, and F4. Under the four types of fault 
identification, the model constructed using AM algorithm had the highest recognition accuracy, 
while the CNN algorithm had the lowest recognition accuracy. The recognition accuracies of the 
AM algorithm were 92.6 %, 91.2 %, 96.8 % and 97.3 % for the four bearing fault types F1, F2, 
F3 and F4, respectively. This was because the fault feature recognition model constructed using 
AM could not only effectively recognize signals from high-level features, but also extracted 
signals from low-level features, reducing the error in bearing fault feature recognition. Therefore, 
the feature recognition model constructed using AM had good application performance. 

Fig. 8 shows the signal values of AM in fault diagnosis. Among them, Figs. 8(a), (b), (c) and 
(d) show the detected signal values of the bearings in states F1, F2, F3 and F4, respectively. It can 
be seen that the fluctuation range and trend of the detected signal values of the bearings in different 
states are different. The signal values of the bearings in the normal state are uniform, while the 
signal values corresponding to different faults have certain fluctuations. This was because the 
channel AM could distinguish the differences in feature information, and the spatial AM could 
determine the position of features. The combination of the two could obtain comprehensive feature 
information. This indicated that in actual bearing fault diagnosis, AM could effectively collect 
feature information and identify signal values of different faults. Therefore, AM had certain 
practical application value in bearing fault diagnosis. 
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Fig. 8. Fault diagnosis signal values under the AM model 

5.1. CDFD model based on MLP-Mixer 

To verify the performance of the fault diagnosis model constructed using MLP-Mixer, this 
study used envelope frequency transfer component analysis (ET-TCA), with DDC and CNN as 
comparative algorithms. Among them, ET-TCA had the function of aligning source and target 
domain features. The domain feature search function of DDC could search for cross domain 
features with high similarity. CNN could identify the differences in features and predict fault 
types. This experiment used the above four algorithms to diagnose and analyze the four types of 
faulty bearings in Table 1. And it compared performance based on the accuracy, iteration times, 
and loss rate of fault diagnosis. 

Fig. 9 shows the accuracy of the bearing condition diagnostic model with the four detection 
models. Among them, Figs. 9(a), (b), (c) and (d) show the diagnostic accuracies of the four 
modified algorithms for the four fault types F1, F2, F3 and F4, respectively. The MLP-Mixer 
algorithm has the highest accuracy in recognizing the four fault types, while the CNN algorithm 
has the lowest accuracy. The MLP-Mixer has the highest accuracy for the four bearing types and 
can achieve 98.8 %, 97.9 %, 98.9 %, and 99.5 % for the F1, F2, F3, and F4 states, respectively. 
This was because the MLP-Mixer fault diagnosis model had two correction modules, which could 
reduce the feature differences between different domains, make the expression of information 
content more specific, and improve the transferability of cross domain features. Therefore, the 
MLP-Mixer model had effective feature correction ability and had certain application value in 
fault diagnosis. 

Fig. 10 shows the iteration times of four correction algorithms. From Fig. 10, all four 
algorithms could reach a stable state after varying degrees of convergence speed. Among them, 
MLP-Mixer algorithm had the fastest convergence speed. When it iterated to the 26th generation, 
it converged to a stable state. At this time, the algorithm had the ability of stable optimization, and 
the stable fitness value was 0.27. The CNN algorithm had the slowest convergence speed. It started 
to converge to a stable state when it iterated to the 32nd generation. At this time, the stable fitness 
value was 0.35. Therefore, the MLP-Mixer algorithm had a certain ability to search for optimal 
values, which could effectively search for characteristic values with differences to achieve the 
effect of balancing the differences in cross domain features. Therefore, the MLP-Mixer algorithm 
had good feature correction ability. 
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Fig. 9. Accuracy of bearing condition diagnostic model with four detection models 
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Fig. 10. Number of iterations of the four calibration algorithms 

Fig. 11 shows the loss curves of four correction algorithms. From the graph, the loss values of 
the four correction algorithms first decreased and then gradually stabilized as the number of 
samples increased. Among them, the MLP-Mixer algorithm had the fastest loss curve to reach a 
stable state, the smallest loss value at stability, and a stable loss value of 0.28. Next was ET-TCA, 
with a stability loss value of 0.30, followed by DDC, with a stability loss value of 0.41. The CNN 
algorithm had the highest stability loss value, which could reach 0.58. In summary, the 
MLP-Mixer algorithm had a higher degree of loss in the computation than the other three 
algorithms. 
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Fig. 11. Loss curves for the four correction algorithms 

6. Conclusions 

The structural composition of modern mechanical equipment is relatively complex, and the 
operation are closely connected. As the core component for safe operation of equipment, the safety 
performance of rolling bearings is of certain importance. Although traditional bearing CDFD 
methods can perform fast operations, their recognition accuracy is relatively low. To address the 
above issues, this study first adopted a mixed AM to construct a cross domain feature extraction 
model. Through this model, different layers of features were recognized, classified, and extracted 
to improve the comprehensiveness of feature extraction. Then, a CDFD model was constructed 
based on the MLP-Mixer algorithm, with the extracted feature signal values as input and two 
feature correction modules added to balance the differences between different domains. The 
experimental results showed that the highest recognition accuracy of the AM model for different 
fault types was 92.6 %, 91.2 %, 96.8 % and 97.3 %, respectively, which was higher than the other 
three comparative algorithms. Moreover, the model could successfully extract the corresponding 
global signal values. This indicated that compared to other algorithms, the model had excellent 
feature recognition and extraction capabilities. The highest recognition accuracy of the 
MLP-Mixer model for four types of faults was 98.8 %, 97.9 %, 98.9 % and 99.5 %, respectively, 
which was superior to the other three correction algorithms. And the model could converge to a 
stable state when it iterated to the 26th generation. The stability fitness value was 0.27, and the 
stability loss value was 0.28, which showed that the model had good feature optimization ability. 
Liu et al. used a combination of generative adversarial nets and feature matching for fault detection 
of rotary bearings. The average detection accuracy of this method could reach 98.36 %, and the 
study proposed that the accuracy of the approach was slightly better than the generative adversarial 
nets method [18]. Therefore, the two models proposed in the article have good application value 
in rolling bearing fault diagnosis, and the performance of this model can be verified by increasing 
the number of domains in the future. 

Acknowledgements 

The research was supported by: Research and Practice Project of Higher Education Teaching 
Reform in Henan Province and Research and Practice of Smart Classroom Teaching Effect 
Evaluation Based on Teaching Diagnosis Reform (No. 2019SJGLX791). 

Data availability 

The datasets generated during and/or analyzed during the current study are available from the 
corresponding author on reasonable request. 



CROSS DOMAIN FAULT DIAGNOSIS METHOD BASED ON MLP-MIXER NETWORK.  
XIAODONG MAO 

 JOURNAL OF MEASUREMENTS IN ENGINEERING. DECEMBER 2023, VOLUME 11, ISSUE 4 465 

Conflict of interest 

The authors declare that they have no conflict of interest. 

References 

[1] K. I.-K. Wang, X. Zhou, W. Liang, Z. Yan, and J. She, “Federated transfer learning based cross-domain 
prediction for smart manufacturing,” IEEE Transactions on Industrial Informatics, Vol. 18, No. 6, 
pp. 4088–4096, Jun. 2022, https://doi.org/10.1109/tii.2021.3088057 

[2] S. Han, S. Oh, and J. Jeong, “Bearing fault diagnosis based on multiscale convolutional neural network 
using data augmentation,” Journal of Sensors, Vol. 2021, pp. 1–14, Feb. 2021, 
https://doi.org/10.1155/2021/6699637 

[3] Z. Chai, C. Zhao, and B. Huang, “Multisource-refined transfer network for industrial fault diagnosis 
under domain and category inconsistencies,” IEEE Transactions on Cybernetics, Vol. 52, No. 9, 
pp. 9784–9796, Sep. 2022, https://doi.org/10.1109/tcyb.2021.3067786 

[4] Z. Huang et al., “A multisource dense adaptation adversarial network for fault diagnosis of machinery,” 
IEEE Transactions on Industrial Electronics, Vol. 69, No. 6, pp. 6298–6307, Jun. 2022, 
https://doi.org/10.1109/tie.2021.3086707 

[5] Q. Liu, H. Sun, Y. Chai, J. Zhu, T. Wang, and X. Qing, “On-site monitoring of bearing failure in 
composite bolted joints using built-in eddy current sensing film,” Journal of Composite Materials, 
Vol. 55, No. 14, pp. 1893–1905, Jun. 2021, https://doi.org/10.1177/0021998320979737 

[6] H. Tang, H.-L. Dai, and Y. Du, “Bearing fault detection for doubly fed induction generator based on 
stator current,” IEEE Transactions on Industrial Electronics, Vol. 69, No. 5, pp. 5267–5276, May 2022, 
https://doi.org/10.1109/tie.2021.3080216 

[7] P. Wang, D. Li, and N. Zhang, “Research on early warning of rolling bearing wear failure based on 
empirical mode decomposition,” International Journal of Materials and Product Technology, Vol. 63, 
No. 1/2, p. 72, 2021, https://doi.org/10.1504/ijmpt.2021.117036 

[8] F. Yin, W. Lu, S. Nie, F. Lou, H. Ji, and Z. Ma, “Failure analysis and improvement of the tribological 
performance of sliding bearing tribopair in integrated energy recovery-pressure boost device,” 
Ceramics International, Vol. 47, No. 21, pp. 30367–30380, Nov. 2021, 
https://doi.org/10.1016/j.ceramint.2021.07.217 

[9] B. Cui, Y. Weng, and N. Zhang, “A feature extraction and machine learning framework for bearing 
fault diagnosis,” Renewable Energy, Vol. 191, pp. 987–997, May 2022, 
https://doi.org/10.1016/j.renene.2022.04.061 

[10] W. Zhang, X. Li, H. Ma, Z. Luo, and X. Li, “Open-set domain adaptation in machinery fault diagnostics 
using instance-level weighted adversarial learning,” IEEE Transactions on Industrial Informatics, 
Vol. 17, No. 11, pp. 7445–7455, Nov. 2021, https://doi.org/10.1109/tii.2021.3054651 

[11] L. Chen, Q. Li, C. Shen, J. Zhu, D. Wang, and M. Xia, “Adversarial domain-invariant generalization: 
A generic domain-regressive framework for bearing fault diagnosis under unseen conditions,” IEEE 
Transactions on Industrial Informatics, Vol. 18, No. 3, pp. 1790–1800, Mar. 2022, 
https://doi.org/10.1109/tii.2021.3078712 

[12] Z. Wang, X. He, B. Yang, and N. Li, “Subdomain adaptation transfer learning network for fault 
diagnosis of roller bearings,” IEEE Transactions on Industrial Electronics, Vol. 69, No. 8,  
pp. 8430–8439, Aug. 2022, https://doi.org/10.1109/tie.2021.3108726 

[13] Y. Yao, B. Gu, M. Alazab, N. Kumar, and Y. Han, “Integrating multihub driven attention mechanism 
and big data analytics for virtual representation of visual scenes,” IEEE Transactions on Industrial 
Informatics, Vol. 18, No. 2, pp. 1435–1444, Feb. 2022, https://doi.org/10.1109/tii.2021.3089689 

[14] X. Zhao, M. Qi, Z. Liu, S. Fan, C. Li, and M. Dong, “End‐to‐end autonomous driving decision model 
joined by attention mechanism and spatiotemporal features,” IET Intelligent Transport Systems, 
Vol. 15, No. 9, pp. 1119–1130, Sep. 2021, https://doi.org/10.1049/itr2.12086 

[15] Y. Guo, Z. Mustafaoglu, and D. Koundal, “Spam detection using bidirectional transformers and 
machine learning classifier algorithms,” Journal of Computational and Cognitive Engineering, Vol. 2, 
No. 1, pp. 5–9, Apr. 2022, https://doi.org/10.47852/bonviewjcce2202192 

[16] M. H. Farrell, T. Liang, and S. Misra, “Deep neural networks for estimation and inference,” 
Econometrica, Vol. 89, No. 1, pp. 181–213, 2021, https://doi.org/10.3982/ecta16901 



CROSS DOMAIN FAULT DIAGNOSIS METHOD BASED ON MLP-MIXER NETWORK.  
XIAODONG MAO 

466 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

[17] F. Amato, L. Coppolino, F. Mercaldo, F. Moscato, R. Nardone, and A. Santone, “CAN-bus attack 
detection with deep learning,” IEEE Transactions on Intelligent Transportation Systems, Vol. 22, 
No. 8, pp. 5081–5090, Aug. 2021, https://doi.org/10.1109/tits.2020.3046974 

[18] S. Liu, J. Chen, S. He, E. Xu, H. Lv, and Z. Zhou, “Intelligent fault diagnosis under small sample size 
conditions via Bidirectional InfoMax GAN with unsupervised representation learning,” Knowledge-
Based Systems, Vol. 232, p. 107488, Nov. 2021, https://doi.org/10.1016/j.knosys.2021.107488 

 

Xiaodong Mao received his Master’s in Engineering in Control Engineering from Henan 
University of Technology in 2011. He is currently an Associate Professor of Electronic 
Information Engineering at Yongcheng Vocational College. His research directions are 
mainly computer control technology and computer network technology. 

 




