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Abstract. In order to reduce the influence of historical measurement data errors in the process of 
vehicle state estimation and improve the accuracy of the vehicle state estimation, a limited 
memory random weighted extended Kalman filter (LMRWEKF) algorithm is proposed. Firstly, a 
3-DOF nonlinear vehicle dynamics model is established. Secondly, the limited memory extended 
Kalman filter is formed by fusing the limited memory filter and the extended Kalman filter. Then, 
according to the random weighting theory, the weighting coefficients that obey Dirichlet 
distribution are introduced to further improve the filtering estimation accuracy. Finally, a virtual 
test based on the ADAMS/CAR is used for the experimental verification. The results show that 
the error in the longitudinal velocity and the yaw rate is small, especially in the mean value of 
estimation error of side slip angle which is different in just 0.015 degrees between the virtual test 
and the simulation result. And also, the results compared with traditional methods indicate that 
the proposed LMRWEKF algorithm can solve the problem of vehicle state estimation with the 
performance of noise fluctuation suppression and higher estimation accuracy. The mean absolute 
error (MAE) and root mean square error (RMSE) are considered to verify the estimation accuracy 
of the proposed algorithm. And the comparison results indicate that the estimation accuracy of the 
LMRWEKF algorithm is significantly higher than those of the EKF and DEKF methods. 
Keywords: automotive engineering, vehicle dynamics, limited memory random weighted 
extended Kalman filter, vehicle state estimation. 

1. Introduction 

With the development of science and technology, vehicle active safety system has been proved 
to be one of the most effective ways to reduce traffic accidents. Accurate acquisition of vehicle 
status information is an important prerequisite for the effective operation of active safety system. 
However, due to some limitations of up-to-date measurement technology, current on-board 
sensors cannot directly measure the comprehensive vehicle status information. To solve this 
problem, it is possible to use expensive sensors for measurements. But because of the high cost of 
this method, it is difficult to meet the needs of mass production, and it remained only in the 
experimental stage. Another method is to combine the existing on-board sensors and use some 
advanced filters, observers, etc. to construct an algorithm which permits to measure, analyze and 
output the comprehensive vehicle state information [1]. The latter has become the focus of many 
experts and scholars because of its advantages such as low cost, easy operation, accurate 
estimation, etc. Vehicle state estimation based on vehicle kinematics model has excellent 
robustness, and can ignore the impact of changes in vehicle model parameters. But this method 
has very high requirements for the installation, calibration and accuracy of the sensor. Vehicle 
state estimation based on vehicle dynamics model requires less sensors, but the system model 
itself should reflect the vehicle dynamics characteristics as accurately as possible, and the 
inaccuracy of noise statistical characteristics will also affect the accuracy of state estimation  
[1, 2]. 

The problem of vehicle state estimation has been widely studied in previous researches. A 
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brief review is presented in what follows. 
Mo et al. proposed a framework of vehicle-infrastructure cooperative perception for the 

cooperative automated driving system to overcome the technical bottlenecks and limitations of 
autonomous vehicles on the information perception [3]. Kemsaram et al. presented a design model 
of a stereo vision system for cooperative automated vehicles based on the object-oriented analysis 
and design methodologies [4]. Yin et al. proposed to approximate the optimal filter gain by 
considering the effect factors within the infinite time horizon, on the basis of estimation-control 
duality [5]. Zhang et al. estimated the structure and motion of a moving object by an uncalibrated 
vehicle-mounted two-camera system [6]. Hao et al. investigated an asynchronous information 
fusion issue for a camera and radar in an intelligent driving system [7]. In order to improve the 
tracking and estimation accuracy, Gao et al. proposed the method of Generalized Group Lasso [8]. 
Galanido et al. estimated the hydrogen fuel filling time for hydrogen-powered fuel cell electric 
vehicles at different initial conditions through a dynamic simulation by using Aspen Dynamics 
v.11 with the Peng-Robinson equation of state for creating a thermodynamic model [9]. Soltani et 
al. presented an integrated control of longitudinal, yaw and lateral vehicle dynamics using active 
front steering and active braking systems [10]. Liang et al. proposed a framework to exploit the 
advantages of each individual sensor type to reach high accuracy and robustness [11]. Xiong et al. 
proposed G-VIDO, a vehicle dynamics, and intermittent Global Navigation Satellite System 
(GNSS)-aided visual-inertial state estimator, to address the state estimation problem of 
autonomous vehicle localization under various GNSS states [12]. Wang et al. developed a 
LiDAR-based estimation method to identify simultaneously the pose and the velocity information 
of an ego vehicle and its surrounding moving obstacles [13]. Li et al. presented a unified 
framework for concurrent dynamic multi-object joint perception [14]. Rout et al. proposed two 
dynamic sparsity-based state estimation approaches for distribution systems [15]. Xu et al. 
presented a novel dynamic vehicle tracking framework, achieving accurate pose estimation and 
tracking in urban environments [16]. Gao et al. proposed a new methodology to address the 
problem of tightly coupled GNSS/INS integration [17, 18]. 

The accurate acquisition of vehicle key state information is crucial to the vehicle stability 
control, vehicle active safety system, etc. The extended Kalman filter combined with the limited 
memory algorithm can solve well the impact of historical measurement data errors. Despite there 
were a lot of vehicle state estimation researches, they only slightly covered the extended Kalman 
filter combined with the limited memory filter and random weighting idea. Therefore, this paper 
proposes an algorithm based on the limited memory random weighted extended Kalman filter, 
which combines the extended Kalman filter algorithm with the limited memory filter. It improves 
the utilization of new measured values in the filtering estimation process, reduces the impact of 
old measurement data errors, and effectively improves the accuracy of the filtering algorithm. The 
MAE and RMSE are used to verify the estimation accuracy of the proposed algorithm. 

2. Mathematical model of vehicle state estimation problem 

2.1. 3-DOF vehicle model 

The vehicle state estimation model is established based on a 3-DOF vehicle model. The 3-DOF 
vehicle model is shown in Fig. 1. The vehicle coordinate system contains two axes 𝑚, and the 
origin of the vehicle coordinate system coincides with the center of mass of the vehicle. 

The dynamic equation of the 3-DOF vehicle model is as follows (Eqs. 1-4) [19]: 

𝜔ሶ ௥ = 𝑎ଶ𝑘ଵ + 𝑏ଶ𝑘ଶ𝐼௭ 𝜔௥𝑢 + 𝑎𝑘ଵ − 𝑏𝑘ଶ𝐼௭ 𝛽 − 𝑎𝑘ଵ𝐼௭ 𝛿, (1)𝛽ሶ = 𝑎𝑘ଵ − 𝑏𝑘ଶ − 𝑚𝑢ଶ𝑚 𝜔௥𝑢ଶ + 𝑘ଵ + 𝑘ଶ𝑚 𝛽𝑢 − 𝑘ଵ𝛿𝑚𝑢 , (2)𝑢ሶ = 𝑎௫ + 𝑣𝑥, (3)
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𝑎௬ = 𝑎𝑘ଵ − 𝑏𝑘ଶ𝑚𝑢 𝜔௥ + 𝑘ଵ + 𝑘ଶ𝑚 𝛽 − 𝑘ଵ𝑚 𝛿, (4)

where, 𝑢 and 𝑣 are the longitudinal and the lateral velocities; 𝜔௥ is the yaw rate, 𝑎௫ and 𝑎௬ are the 
longitudinal and lateral accelerations; 𝐼௭ is the moment of inertia around the 𝑧 axis of the vehicle; 𝑎 and 𝑏 are the distances from the center of gravity to the front and rear axles; 𝑚 is the vehicle 
mass; 𝛿 is the front steering angle; 𝑘ଵ and 𝑘ଶ are the synthesized stiffness values of front and rear 
tire, 𝑠 and 𝑥 is the horizontal coordinate of the body-fixed reference frame. 

The side slip angle of the center of mass is Eq. (5): 𝛽 = arctan ቀ𝑣𝑢ቁ. (5)

 
Fig. 1. 3-DOF vehicle model (𝜃 is the heading angle of the vehicle; 𝑥ᇱ𝑜ᇱ𝑦ᇱ is the vehicle coordinate 

system; 𝐹௫௙ and 𝐹௫௥ are the longitudinal forces of the front and rear tires) 

2.2. Tire model 

The lateral forces of front and rear wheels can be expressed as Eq. (6) [19]: 

൜𝐹௬௙ = 𝑐௙𝛼௙,𝐹௬௥ = 𝑐௥𝛼௥,  (6)

where 𝑐௙ and 𝑐௥ are the lateral stiffness values of the front and rear tires. 𝛼௙ and 𝛼௥  are the front 
and rear slip angles Eq. (7): 

⎩⎪⎨
⎪⎧𝑐௙ = 𝜕𝐹௬௙𝜕𝛼௙ ቤ 𝛼௙ = 0,
𝑐௥ = 𝜕𝐹௬௥𝜕𝛼௥ ฬ 𝛼௥ = 0.  (7)

3. Vehicle state estimation algorithm based on LMRWEKF 

3.1. State space equation model  

The state and measurement equation of the 3-DOF nonlinear vehicle system is established by 
consolidating Eqs. (1)-(4) Eq. (8): 
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ቊ𝑥ሶ ሺ𝑡ሻ = 𝑓൫𝑥ሺ𝑡ሻ,𝑢ሺ𝑡ሻ,𝑤ሺ𝑡ሻ൯,𝑧ሺ𝑡ሻ = ℎ൫𝑥ሺ𝑡ሻ, 𝑣ሺ𝑡ሻ൯.  (8)

The state and measurement variables are 𝑥(𝑡) = [𝜔,𝛽, 𝑣௫]் and 𝑧(𝑡) = [𝑎௬] respectively; the 
system input is 𝐮 = [𝛿,𝑎௫]். 𝑓 is the state transition function; ℎ is the measurement function; 𝑤(𝑡) and 𝑣(𝑡) are process and observation noises, and their sequences are independent of each 
other.  

3.2. Algorithm design of LMRWEKF 

3.2.1. Random weighted estimation 

It is assumed that (𝜎ଵ,𝜎ଶ,⋯ ,𝜎௡) is an independent identically distributed sample from the 
distribution function 𝐺(𝑥), and the empirical distribution function is Eq. (9) [20]: 

𝐺(𝑥) = 1𝑛෍𝐼௑೔ஸ௫ே
௜ୀଵ , (9)

where, 𝐼௑೔ஸ௫ is the indicating function, 𝐼௑೔ஸ௫ = ൜1,   𝑋௜ ≤ 𝑥,0,   𝑋௜ > 𝑥,; 𝑛 is the number of samples. 

Then the random weighted estimate of 𝐺(𝑥) is: 

𝐿௡(𝑥) = ෍𝜎௜𝐼௑೔ஸ௫ே
௜ୀଵ . (10)

The random weighting vector (𝜎ଵ,𝜎ଶ,⋯ ,𝜎௡) obeys the Dirichlet distribution. That is, the joint 
density function of (𝜎ଵ,𝜎ଶ,⋯ ,𝜎௡) satisfying ∑ 𝜎௜ே௜ୀଵ = 1 is: 𝑔(𝜎ଵ,𝜎ଶ,⋯ ,𝜎௡) = 𝛩(𝑛), (11)

where (𝜎ଵ,𝜎ଶ, … ,𝜎௡) ∈ 𝐷௡ିଵ, and 𝐷௡ିଵ = {(𝜎ଵ,𝜎ଶ, … ,𝜎௡ିଵ):𝜎௜ ≥ 0, 𝑖 = 1,2, … ,𝑛 − 1, ∑ 𝜎௜ ≤ 1௡௜ୀଵ ሽ. 
3.2.2. Limited memory filtering 

The traditional memory growing filter is an infinitely increasing storage filter. If the optimal 
estimation is to be performed at time 𝑘, then all data before time 𝑘 − 1 should be used. This means 
that the proportion of old data in the filter will increase with time, while the weight of new 
measured data will be relatively reduced. When the noise characteristics are unknown, the error 
will be too large, and the estimation will be inaccurate or even divergent. Therefore, by using the 
idea of limited memory filter, only 𝑁 − 1 observations at the current time and before are selected 
for the optimal estimation calculation that allows avoiding the above problems. 

3.2.3. LMRWEKF algorithm 

The LMRWEKF algorithm is proposed based on the EKF. 
For the discrete state and measurement equations, the following equation is used: ൜𝑋௞ = 𝐴௞|௞ିଵ𝑋௞ିଵ + 𝐵௞|௞ିଵ𝑈௞ିଵ + 𝑊௞ିଵ,𝑍௞ = 𝐻௞𝑋௞ + 𝑉௞,  (12)
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where 𝑋௞ିଵ and 𝑋௞ are the state variable matrices of 𝑘 − 1 and 𝑘 time respectively. 𝑈௞ିଵ is the 
control variable matrix at 𝑘 − 1 time; 𝑍௞ is the measurement output matrix at time 𝑘; 𝐴௞|௞ିଵ is 
the state transition matrix of 𝑘 − 1 to predict 𝑘 time; 𝐵௞|௞ିଵ is the control matrix for 𝑘 − 1 time 
to predict 𝑘 time; 𝐻௞ is the observation matrix at time 𝑘; 𝑊௞ିଵ is the process noise matrix at  𝑘 − 1 time; 𝑉௞ is the observation noise matrix at time 𝑘. 

The basic processing flow is: 
Step 1: The initial value 𝑋෠௞ିଵ∗  and its covariance matrix 𝑃௞ିଵ∗  are memorized. 
Step 2: Prediction of state equation is made: 𝑋ത௞ = 𝐴௞|௞ିଵ𝑋෠௞ିଵ∗ . (13)

Step 3: The state transition matrix and the observation matrix are linearized: ቄ𝐴 → 𝐴∗,𝐻 → 𝐻∗. (14)

Step 4: Prediction of the covariance matrix is made: 𝑃௞|௞ିଵ∗ = 𝐴௞|௞ିଵ∗ 𝑃௞ିଵ∗ 𝐴௞|௞ିଵ∗୘ + 𝑄௞ିଵ, (15)

where 𝑄௞ିଵ is the covariance matrix of process noise at time 𝑘 − 1. 
Step 5: Prediction of the observation equation is made: 𝑍̅௞ = 𝐻௞𝑋ത௞. (16)

Step 6: The observation error is calculated: 𝑟௞ = 𝑍௞ − 𝑍̅௞. (17)

Step 7: If 𝑘 ≤ 𝑁, then 𝑅෠௞∗ = 𝑅. If 𝑘 > 𝑁, then 𝑟̂௞∗ = ∑ 𝜎௜௞௜ୀ௞ିேାଵ 𝑟௜ = ∑ ଵିఌଵିఌಿ௞௜ୀ௞ିேାଵ 𝜀௞ି௜𝑟௜, 
where 𝜎௜ = ଵିఌଵିఌಿ 𝜀௞ି௜ obeys the Dirichlet distribution; 𝜀is the weighting coefficient and  𝜀 ∈ [0.95,0.995] (Eq. 18): 

𝑅෠௞∗𝑟 = ෍ 𝜎௜௞
௜ୀ௞ିேାଵ ൤(𝑟௜ − 𝑟̂௞∗)(𝑟௜ − 𝑟̂௞∗)் − 𝑁 − 1𝑁 𝐻௞∗𝑃௞|௞ିଵ∗ 𝐻௞∗்൨. (18)

Step 8: The filter gain is calculated: 𝐾௞∗ = 𝑃௞|௞ିଵ∗ 𝐻௞∗்(𝐻௞∗𝑃௞|௞ିଵ∗ 𝐻௞∗் + 𝑅෠௞∗)ିଵ. (19)

Step 9: The status is updated: 𝑋෠௞∗ = 𝑋ത௞ + 𝐾௞∗(𝑍௞ − 𝐻௞𝑋ത௞). (20)

Step 10: The covariance matrix is updated: 𝑃௞∗ = (𝐼 − 𝐾௞∗𝐻௞∗)𝑃௞|௞ିଵ∗ (𝐼 − 𝐾௞∗𝐻௞∗)் + 𝐾௞∗𝑅෠௞∗𝐾௞∗், (21)

where 𝐼 is the identity matrix. 
Then the updating of covariance matrix is simplified: 
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𝑃௞∗ = (𝐼 − 𝐾௞∗𝐻௞∗)𝑃௞|௞ିଵ∗ − 𝑃௞|௞ିଵ∗ 𝐻௞∗்𝐾௞∗் + 𝐾௞∗𝐻௞∗𝑃௞|௞ିଵ∗ ⋅ 𝐻௞∗்𝐾௞∗் + 𝐾௞∗𝑅෠௞∗𝐾௞∗்      = (𝐼 − 𝐾௞∗𝐻௞∗)𝑃௞|௞ିଵ∗ − 𝑃௞|௞ିଵ∗ ⋅ 𝐻௞∗்𝐾௞∗் + 𝐾௞∗(𝐻௞∗𝑃௞|௞ିଵ∗ 𝐻௞∗் + 𝑅෠௞∗)𝐾௞∗்      = (𝐼 − 𝐾௞∗𝐻௞∗)𝑃௞|௞ିଵ∗ − 𝑃௞|௞ିଵ∗ 𝐻௞∗்𝐾௞∗் + 𝑃௞|௞ିଵ∗ 𝐻௞∗்𝐾௞∗் = (𝐼 − 𝐾௞∗𝐻௞∗)𝑃௞|௞ିଵ∗ . (22)

4. Numerical simulation and experimental verification 

4.1. Numerical simulation 

In order to verify the feasibility and accuracy of the proposed algorithm, the longitudinal 
velocity, yaw rate, side slip angle and other related parameters of the vehicle are estimated in real 
time, and the estimation results are compared to verify the superiority of LMRWEKF algorithm. 
The vehicle dynamics simulation software Carsim in the Matlab/Simulink environment is used for 
simulation. 

Carsim is a simulation software for calculating the vehicle dynamics. Its model runs 3~6 times 
faster on the computer than in the real time. This software can simulate the response of the vehicle 
to the driver, road and aerodynamic inputs. It is mainly used to predict and simulate the handling 
stability, braking performance, power performance and economy of the whole vehicle. It is also 
widely used in the development of modern vehicle control systems. 

Carsim simulation software is composed of three parts: the graphic vehicle database, model 
solver and simulator for post-processing the results. Carsim dynamics software omits a series of 
tedious processes of modeling and debugging the structured software and user programming to 
establish mathematical models. Combining traditional vehicle dynamics and modern multi-body 
dynamics modeling methods, the software abstracts and simplifies the actual vehicle. On the basis 
of simplification, it calculates the vehicle characteristics and initial simulation conditions. The 
vehicle model in Carsim includes the body, wheels, steering, suspension, braking and transmission 
systems as well as aerodynamic systems. Therefore, the Carsim model can temporarily replace the 
actual vehicle to provide the required control input and measurement output for the algorithm in 
this paper. After the algorithm simulation is completed, the state simulation estimation value is 
compared with the corresponding Carsim output value to verify the effectiveness of the estimation 
algorithm. The flow chart of co-simulation of Carsim and Matlab/Simulink is shown in Fig. 2. 

 
Fig. 2. Flow chart of co-simulation of Carsim and Matlab/Simulink 

The longitudinal acceleration, lateral acceleration and steering wheel angle signals can be 
measured by the corresponding sensors. And the three states are taken as the input signals of the 
estimation module. The three input signals are shown in Fig. 3. 

In order to verify the effectiveness of the proposed method, the traditional method of EKF and 
the classical method of dual extended Kalman filter (DEKF) proposed in Reference [21] are used 
to establish comparison results. 

Fig. 4 shows the simulation results for a vehicle passing a double lane change road. 
From Figs. 4(a) and 4(c), it can be seen that compared with the traditional EKF algorithm, the 
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LMRWEKF algorithm can better approach the reference value, and the deviation is relatively 
smaller at the peak and trough of the curve, and has a strong inhibition effect on noise fluctuations. 
The longitudinal velocity estimation of LMRWEKF algorithm is obviously closer to the reference 
value than that of the traditional EKF algorithm. And when the noise characteristics are unknown, 
the LMRWEKF algorithm jitters less, which indicates that it has a good noise suppression effect 
and is more stable and robust.  

    
a) Lateral acceleration 

 
b) Longitudinal acceleration 

      
c) Steering angle 

Fig. 3. Signal input 

The EKF method is based on linear minimum variance estimation as the theoretical basis, and 
filters and estimates state variables through recursive algorithms. Although it has high estimation 
accuracy, it is an infinitely growing memory filter like traditional Kalman filters. Its computational 
efficiency and estimation accuracy will decrease over time, so the filtering algorithm cannot 
effectively solve the impact of model inaccuracy or unknown noise characteristics. 

The DEKF method utilizes two parallel driven EKFs that interact in a “guided” manner. One 
advantage of this method is that through the effective and improved estimation accuracy, the 
model uncertainty within the state estimator is reduced, allowing for the improved quality of state 
estimation and reducing the uncertainty of the state estimator.  

The LMRWEKF algorithm proposed in this paper can dynamically adjust the noise statistical 
characteristics of the filter estimation algorithm in a real time. So, it can deal with the problem of 
unknown noise characteristics. Its limited memory algorithm characteristics can still have faster 
response speed and estimation accuracy under the condition of poor computing capacity. From 
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Figs. 4(b) and 4(d), it can be seen that the filter estimation error of LMRWEKF algorithm is lower 
than that of traditional EKF algorithm, and the overall estimation performance is better. 

 
a) Longitudinal velocity 

 
b) Error of longitudinal velocity 

   
c) Yaw rate 

  
d) Error of yaw rate 

Fig. 4. Simulation results for vehicle passing double lane change road 

The mean absolute error and root mean square error are considered to verify the estimation 
accuracy of the proposed algorithm. 

From Table 1, it can be seen more intuitively that the estimation accuracy of the LMRWEKF 
algorithm is significantly higher than those of the EKF and DEKF methods. 

Driving on ice snow road is a common condition for vehicles. So, it is necessary to address the 
simulation analysis. The initial vehicle speed of the vehicle is set as 20 km/h and the tire-road 
friction coefficient is set as 0.2 for the ice snow road. 

The steering angle which is set as the input signal is shown in Fig. 5(a). 
From Fig. 5(b), it can be seen that estimation value of LMRWEKF is closer to the reference 
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value, indicating the good estimation performance of the LMRWUKF method. 

Table 1. MAE and RMSE indicators of three algorithms 
Evaluation index State value EKF DEKF LMRWEKF 

MAE 
𝑣 (m/s) 0.322 0.258 0.141 𝑢 (m/s) 0.191 0.161 0.0458 𝜔௥ (rad/s) 0.325 0.319 0.0166 

RMSE 
𝑣 (m/s) 0.355 0.302 0.136 𝑢 (m/s) 0.255 0.143 0.0509 𝜔௥ (rad/s) 0.432 0.334 0.0201 

 

 
a) Input signal 

 
b) Yaw rate under the condition of ice snow road 

Fig. 5. Simulation results for vehicle passing ice snow road 

4.2. Experimental verification 

ADAMS/CAR software is a virtual machine simulation and analysis software developed 
and designed by the MSC Company from the United States. At present, it is widely used in 
automobile, machinery and other manufacturing industries around the world. ADAMS/CAR 
software can design virtual components of the whole vehicle system, such as body, 
suspension system , tires, etc., and simulate and analyze the virtual simulation model to 
compare the simulation result with the virtual experiment results close to the real test, and 
can output the dynamic curve in the post-processing system, and dynamically analyze the 
virtual simulation model as per the dynamic curve. The method of virtual model creation in 
the ADAMS/CAR software applied for simulation experiment has the following advantages: 
(1) Before the company manufactures the actual products, a model of the products can be 
simulated, analyzed and modified to save the testing cost of the actual products; (2) The 
virtual prototype is analyzed on a computer, which greatly reduces the cost of testing the 
actual prototype. For some researches where it can be difficult to conduct real experiments, 
ADAMS/CAR software can be used to complete the researches safely and efficiently, 
ensuring the safety of personnel and the integrity of property; (3) The simulation experiment 
is conducted in the ADAMS/CAR software and will not be affected by external objective 
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factors such as weather. ADAMS/CAR has a variety of independent modules, and provides 
complete vehicle models of cars, trucks and buses. In the template builder mode, designers 
can adjust each module or create new modules, and import them into simulation experiments 
for use. Therefore, this paper mainly uses the template builder to modify the road module, 
tire module and truck module after establishing the vehicle tire road model. Finally, the 
vehicle tire road coupling model is simulated. 

The vehicle model for simulation is shown in Fig. 6. 

 
Fig. 6. Vehicle model in ADAMS 

   
a) Side slip angle 

   
b) Error of side slip angle 

 
c) Mean value of estimation error of side slip angle 

Fig. 7. Virtual test and simulation results 



VEHICLE STATE AND PARAMETER ESTIMATION BASED ON IMPROVED EXTEND KALMAN FILTER.  
YINGJIE LIU, DAWEI CUI, WEN PENG 

506 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

The results of the virtual test and the simulation are shown in Figs. 7(a) and (b) respectively.  
From Fig. 7(a), it can be seen that the simulation result of the LMRWEKF algorithm can better 

approach the virtual test value. Moreover, from Fig. 7(b) it can be seen that the deviation is 
relatively smaller. At the same time, from Fig. 7(c) it can be seen that the mean value of estimation 
error of side slip angle is just 0.015 degrees. From the above analysis, it can be seen that the 
proposed algorithm has higher estimation accuracy, and the filter estimation error of LMRWEKF 
algorithm is lower that demonstrates that the overall estimation performance of the proposed 
algorithm is better. 

5. Conclusions 

In this paper, a nonlinear vehicle dynamics model including longitudinal, lateral and yaw 
degrees of freedom is established. The extended Kalman filter is combined with the limited 
memory filter. In the limited memory length area, the covariance matrix of the current 
measurement noise matrix is obtained by detecting the innovation residual sequence and using 
mathematical statistics, so as to reduce the estimation error caused by an inaccurate model. Based 
on the random weighting theory, the random weighting coefficient is introduced to improve the 
utilization of the filtering system by obtaining new measured values, thus improving the accuracy 
of the filtering algorithm and enhancing the adaptability. It has a wide range of practical 
applications. For example, the method can provide on-line estimation of the model parameters in 
autonomous vehicles. Simulation experiments show that the algorithm can effectively suppress 
the filtering estimation error caused by noise fluctuations, and achieve effective estimation of 
vehicle yaw rate, side slip angle of the center of mass, and longitudinal acceleration under the 
condition of unknown measurement noise characteristics. The results show that the error of the 
longitudinal velocity and the yaw rate is small, especially the mean value of estimation error of 
side slip angle which is just 0.015 degrees between the virtual test and the simulation result. The 
MAE and RMSE are considered to verify the estimation accuracy of the proposed algorithm. And 
the comparison results indicate that the estimation accuracy of the LMRWEKF algorithm is 
significantly higher than those of the EKF and DEKF methods. 
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