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Abstract. This study conducted modal and vibration-characteristic tests using transient excitation 
and spectrum analysis methods to find the variation law of vibration characteristics of wind wheels 
with bifurcated tip structures as compared to wind wheels with unmodified tips when the coupling 
between a wind wheel and its tower is considered. Additionally, a finite element analysis was used 
to calculate the mechanical characteristics of wind power manoeuvres. The following are the 
major results of this study. As compared to the non-trailer state, the coupling action of the wind 
wheel and the tower reduced the static frequency of the unmodified wind wheel and the bifurcated 
blade tip structure wind wheel under the trailer state. The static frequency of the bifurcated blade 
tip structure wind wheel under the coupling action decreases more significantly. Compared with 
the single wind wheel which is not affected by coupling, the dynamic frequency of the whole 
machine decreases after being affected by coupling, and the bifurcated blade structure has less 
influence on the coupling effect. Compared with the non-trailer state, the dynamic frequency 
curves of the two blade tip structure wind wheels in the trailer state decrease, the speed range in 
the resonance area is shortened, and the corresponding speed in the resonance area is reduced. The 
results of this study provide data support and design reference for reliable design of wind turbines.  
Keywords: double-forked tip structure, fluid-solid coupling, dynamic response. 

1. Introduction 

Traditional energy sources, such as fossil fuels, are often difficult to obtain and cause serious 
pollution. Wind turbines use wind energy to rotate their blades that are attached to generators, 
which in turn generate electricity [1]. As the blades and tower of a wind turbine are flexible 
components, the wind wheel is subject to aerodynamic loads while the wind turbine is under 
operation, which causes the tower to oscillate, and the oscillation of the tower in turn affects the 
wind wheel blades. Therefore, analysis of the vibration of the wind turbine wheel and tower when 
designing wind turbine blades is necessary, to provide a theoretical basis for improving or 
alleviating wind turbine resonance [2]. 

At present, domestic and foreign researchers have usually used two modes of analysis to 
analyze the vibration of wind turbines, namely, numerical calculations and tests. Chen et al. [3] 
tested the vibration characteristics of wind turbine blades with trailing winglets. This study 
analyzed the static and dynamic frequency of the blades with trailing winglets installed on vertical 
wind turbine blades, but they only considered the increase in wind speed without considering its 
effect on the dynamic frequency. Zhao [4] and others use the operating state of a 1.5 MW wind 
turbine and the vibration response of the tower to monitor and make data analysis of offshore wind 
turbine vibration under different operating conditions, using data-driven stochastic subspace 
identification method, based on the results of the intrinsic frequency to draw Campbell diagrams 
of the wind turbine in the direction of the FA direction and the direction of the SS, but the lack of 
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targeted analysis. Guo [5] and others validate the effectiveness and accuracy of the computational 
model by simulating the steady-state response of the NREL 5 MW straight blade; effectively 
simulating the nonlinear deformation of the swept-back blade and the non-constant aerodynamic 
characteristics, but did not explore the applicability of the program to other models in depth. Wu 
et al. [6] conducted an experimental investigation on the static and dynamic frequency of a wind 
turbine tower, but they did not consider the influence of the centrifugal load on the tower. In terms 
of numerical calculation, Bai at al. [7] studied and analyzed wind turbine vibration and stress 
harmonics under rotating excitation airflow by using ANSYS harmonic response analysis, but the 
effect of centrifugal load was not taken into account. Nazokkar et al. [8] used variable head loss 
coefficients and variable frequencies, as well as DBG, VBG and Bang-Bang algorithms. To 
investigate the effect of a semi-active liquid column gas damper (SALCGD) on the control of 
FOWT vibration under different wind and wave loads. The dynamic response analysis model of 
the combined wind turbine-damper system is established, and the time course analysis but lack of 
vibration characteristics is verified. Wang [9] used Matlab to establish a wind load model, 
imported the wind load into Ansys for transient dynamics simulation analysis of the blade, and 
designed three kinds of vibration suppression structures according to the different locations of the 
damping layer: the outer surface of the blade with additional damping structure, the built-in 
constrained damping structure, and the inner surface of the blade with additional damping 
structure, to investigate the simulation design of wind turbine blades and vibration suppression 
and control analysis of the wind condition in the Beibu Gulf Sea area. However, the applicability 
of this method at vibration frequency is not studied in depth. Ning [10] and others proposed a rigid 
body finite element method to establish a dynamic model to study the dynamic response of 
displacement and velocity under a turbulent wind field, and a wind turbine as an example to verify 
the accuracy of the method, but did not make the analysis of resonance and so on. Hicham [11] 
used ABAQUS finite element analysis software to analyze a floating wind turbine blade. The 
study determined the natural modal modes and frequencies of the three-beam blade in the free 
vibration process to avoid resonance, but no resonance analysis was carried out on the blade while 
working. Yang [12] employed finite element analysis to analyze the influence of wind shear on 
the structural dynamics of the blade. The study calculated the structural dynamic characteristics 
of a blade such as natural frequency, displacement, and stress under wind shear effect, but 
neglected the variation rule of wind turbine and the fact that the whole machine was affected by 
the wind shear effect. At present, most of the modification ideas mainly focus on the dynamics of 
wind turbine blade structure after changing its structure, such as changing the material layer inside 
the blade. 

Wind wheels subjected to aerodynamic loads will exert force on the tower while the tower 
deformation will affect the wind wheels in reverse. Therefore, changes in the structure of the tip 
of a blade of the wind wheel cause changes in the aerodynamic loads of the wind wheel, and the 
coupling relationship between the wind wheel and the tower will affect the vibration performance 
of the whole machine. Therefore, this study entailed the development of a blade with a bifurcated 
blade tip by orthogonal test. The vibration characteristics of wind turbines with bifurcated blade 
tip structures with different parameters are investigated by numerical calculation and wind tunnel 
tests. The simulation calculation results are corroborated with the analysis of the test data results, 
and the results of the study provide data support and design references for the dynamics study of 
the wind turbine and tower. 

2. Schematic design 

2.1. Blade design principles 

2.1.1. Leaf tip velocity ratio 

The ratio of the pre-designed wind speed and the linear velocity of the blade tip when the wind 
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turbine blade is in operation is the tip speed ratio 𝜆, which is calculated as follows: 

𝜆 = 𝜔𝑅𝑣 = 2𝜋𝑅𝑛𝑣 , (1)

where 𝑛 – rotational speed (r/s); 𝜔 – angular speed (rad/s); 𝑅 – wind wheel radius (m); 𝑣 – preset 
wind speed (m/s). 

2.1.2. Wilson design method 

The Wilson design method was used to design the blades: 𝐵𝑐𝐶௅cos𝜙8𝜋𝑟sinଶ𝜙 = (1 − 𝑎𝐹)𝑎𝐹(1 − 𝑎)ଶ , (2)𝐵𝑐𝐶௅8𝜋𝑟cos𝜙 = 𝑎′𝐹1 + 𝑎′, (3)

where 𝐵 – number of blades; 𝑐 – leaf vein chord length (m); 𝐶௅ – lift coefficient; 𝜙 – incoming 
flow angle (°); 𝑎 – axial factor; 𝑎′ – circumferential factor; 𝐹 – loss factor of leaf tip; 𝑟 – distance 
from cross-section to leaf root (m). 

From the above Eq. (2) and Eq. (3) can be obtained: 𝑎(1 − 𝑎𝐹) = 𝑎ᇱ(1 + 𝑎ᇱ)𝜆ଶ, (4)

where 𝐹 – leaf tip loss coefficient, 𝑓 = ஻ଶ ோି௥ோୱ୧୬థ. 
After considering leaf tip losses, the local wind energy utilization factor is: 𝑑𝐶௉ = 8𝜆ଶ 𝑎ᇱ(1 − 𝑎)𝐹𝜆ଷ𝑑𝜆. (5)

After calculating ௗ஼ುௗఒ  the maximum value of 𝑎, 𝑎′, 𝐹, it can be calculated by using Eq. (2): 𝐵𝑐𝐶௅𝑟 = (1 − 𝑎𝐹)𝑎𝐹(1 − 𝑎)ଶ 8𝜋sinଶ𝜙cos𝜙 . (6)

The incoming flow angle for each foliation can be calculated by Eq. (6), and the torsion angle 
and chord length can be obtained. 

2.2. Modal test 

2.2.1. Test object 

The test was carried out on a small 100 W wind turbine having three blades. The rated wind 
speed was 8 m/s, and the rated speed was 600 r/min. Tower elevation was 1.6 m. Specific 
parameters of the blades are shown in Table 1. 

Table 1. Parameters of the blades 
Parameter Numerical value Parameter Numerical value 

Number of blades B 3 Chord length of leaf tip 𝑡 / m 0.041 
Leaf length 𝑙 / m 0.65 Maximum aspect ratios 4.14 

Wind wheel diameter 𝑑 / m 1.3 Relative thickness 10.26 % 
Rated tip-speed ratio 𝜆 5 Vane wing S825 
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The three-dimensional view of the unmodified tip of the blade and the blade having a 
bifurcated blade tip structure is shown in Fig. 1, and Fig. 2 presents the diagram of the bifurcated 
blade tip structure. In the figure, 𝜃 is the angle between the opening and forking of the tip, and the 
angle between the opening and forking of the bifurcated blade tip structure is 𝜃 = 30° and  𝜃 = 60°, respectively. The tip length is denoted by a; the tip length of the bifurcated blade tip 
structure was 47 mm; ℎ is the width of the leaf tip, and the width of the bifurcated blade leaf tip 
structure was 45 mm and 63.5 mm respectively. 

 
a) Unmodified blades 

 
b) Bifurcated blade tip structure 

Fig. 1. Blade structure 

 
Fig. 2. Bifurcated blade tip structure 

2.2.2. Test methods and equipment 

Using the transient excitation method, the blades were driven by a force hammer in the state 
of the trailer and non-trailer. Wind wheels in the state of the trailer were installed on the tower 
using the coupling effect of the wind wheel and the tower. Wind wheels in the state of non-trailer 
were fixed using a three-jaw chuck without using the coupling effect. After knocking, sensors 
arranged on the blades collected vibration information generated by the excitation of the blades. 
The data was first transmitted to the front for data acquisition and then to the switch with a wireless 
module. Finally, the data transmission system, consisting of the front end for data acquisition and 
the switch, transmits the collected original information to the computer after conversion. Vibration 
analysis software, BK Connect, was used to process and analyze the data to get the modal 
parameters of the wind wheel. 

 
a) Sensor display 

 
b) Data acquisition system 

Fig. 3. Modal test equipment 

The force hammer used was a B&K8206 force hammer, the sensor was a 7507 B acceleration 
sensor, the data acquisition front-end model was a 3053 B 12-channel data acquisition front-end 
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in the data transmission system, and the switch was a 3660 C module wireless LAN cabinet. 
Photos of the test equipment are given in Fig. 3. 

2.2.3. Arrangement of measuring points 

To obtain more accurate results, measuring and excitation sensors were placed at multiple 
points. The positions of the measuring and excitation points are shown in Fig. 4. Points 1-18 are 
the measuring points and 19-33 are the excitation points of the force hammer. 

 
Fig. 4. Measuring points of the wind wheel 

2.3. Vibration characteristics test 

2.3.1. Test methods and equipment 

The wind turbine vibration test adopts the spectrum analysis method. The wind turbine was 
installed in front of the wind tunnel, and the rotation plane of the wind turbine was 0.5 m away 
from the opening of the wind tunnel. After the wind tunnel was opened and the wind turbine 
rotated, the electronic load meter was used to control the speed of rotation of the wind wheel. The 
vibration signals of the wind turbine were collected by the three-way acceleration sensors installed 
on the head and the tower. The collected vibration signals were stored by the data acquisition 
system and transmitted to the computer for analysis by the data analysis system after conversion 
to obtain the dynamic frequency of the wind turbine. The test equipment is shown in Fig. 5. 

 
Fig. 5. Acceleration sensor 

The three-way acceleration sensor used was the 4524B three-way acceleration sensor (Brüel 
& Kjær), and the electronic load meter used was the IT8512A+ load meter (IDEX). 
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Fig. 6. Wind tunnel-vibration characterization test bed page 

2.3.2. Measuring points layout 

The schematic of the measuring points is shown in Fig. 7. Three-way acceleration sensors were 
arranged at the front end of the generator and the top of the tower to obtain the vibration signals 
of the wind turbine as well as the whole machine. The laser speed measuring probe was placed 
behind the blade rotation plane to obtain the speed information of the wind turbine. 

 
Fig. 7. Schematic diagram of measuring points 

3. Results 

3.1. Modal parameters 

Using multi-point excitation and multi-point response, the modal parameters of the wind 
turbine and tower are comprehensively analysed under each working condition. The static 
frequency curves of the wind wheel in the on-hook state and the not-on-hook state are given in 
Fig. 8. It can be seen from the graph that after coupling with the tower, the static frequency of the 
wind turbine wheel decreased, and the amplitude of reduction was different after the change in the 
blade tip structure and introduction of the coupling effect. It can be observed that the amplitude 
of reduction of the third-order static frequency is small, and the law of the fourth-order static 
frequency is not evident. According to the data analysis, compared with the wind turbine in the 
not-on-hook state, the static frequency of the unmodified wind wheel (𝜃 = 0°) in the on-hook state 
decreased by 4.12 % and 3.0 % in the first and second order, respectively, and decreased by 2.61 % 
and 1.73 % in the fifth and sixth order, respectively. The static frequency of the wind wheel with 
the bifurcated blade tip structure (𝜃 = 30°) decreased by 10.29 % and 6.5 % in the first and second 
order, respectively, and by 3.75 % and 4.06 % in the fifth and sixth order, respectively. The static 
frequency of the wind wheel with the bifurcated blade tip structure (𝜃 = 60°) decreased by 
11.69 % and 6.01 % in the first and second order, respectively, and by 8.29 % and 5.33 % in the 
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fifth and sixth order, respectively. The wind turbine tower coupling reduces the static frequency 
of the wind turbine wheel, and the bifurcated blade tip structure increases the influence of the 
coupling on the static frequency of the wind turbine, wherein the wind wheel with the bifurcated 
blade tip structure with 𝜃 = 60° has the greatest impact. 

 
Fig. 8. Static frequencies of each order of wind turbine 

3.2. Dynamic frequency 

3.2.1. Constant aerodynamic load and increased centrifugal force load  

The electronic load meter was connected to the wind turbine system. The aerodynamic load 
was kept unchanged, i.e., the incoming wind speed was the same. The centrifugal force load was 
increased, i.e., the electronic load meter was used to control the speed of rotation of the wind 
wheel. The wind speed maintained the rated wind speed of 8 m/s, and the rotation speed was 500, 
600, 700, and 800 rpm respectively. After pre-testing, it was found that the three-way acceleration 
sensor at the front of the nacelle measured data more accurately than the rear end, so the data 
collected by the sensor at the front of the nacelle was used in the analysis. 

 
Fig. 9. The centrifugal force increases the dynamic frequency of the wind wheel 

Fig. 9 shows the first-order vibration frequency of the wind turbine when the centrifugal load 
of the wind turbine is increased, as measured by the three-way accelerometer installed at the front 
of the nacelle. It can be observed from the graph that the dynamic frequency of the whole machine 
decreased. The dynamic frequency decreased slightly when the rotation speed was 500 r/min, and 
there was a more prominent decrease in the dynamic frequency when the rotation speed was 
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800 r/min. Compared with the dynamic frequency of the wind wheel, the dynamic frequency of 
the unmodified wind turbine (𝜃 = 0°) was reduced by 1.5 % at 800 r/min. The dynamic frequency 
of the complete machine with bifurcated blade tip structure (𝜃 = 30°) was reduced by 0.74 % at 
800 r/min, while that of 𝜃 = 60° was reduced by 1.47 % at 800 r/min. This indicates that when 
the pneumatic load remains unchanged and the centrifugal force load increases, the dynamic 
frequency of the whole machine decreases and the magnitude decreases with the increase of 
centrifugal force loads. However, the effect of the bifurcated blade tip structure on the reduction 
of the dynamic frequency of the whole machine is not evident. 

3.2.2. Constant centrifugal force load and increased aerodynamic load 

When the centrifugal force load was kept unchanged and the pneumatic load was increased, 
the speed of the wind wheel was controlled by an electronic load meter. The speed of the wind 
wheel was kept constant, and the pneumatic load was gradually increased by adjusting the wind 
speed at the outlet of a wind tunnel. The test maintained the speed of the wind wheel at 600 r/min, 
and the wind speed was set at 5, 6, 7, and 8 m/s. 

As shown in Table 2, when the centrifugal force load was unchanged and the pneumatic load 
was increased, the dynamic frequency of the wind wheel and the whole machine changed slightly, 
where the increase of the pneumatic load and the change amplitude was less than 1 Hz. Compared 
with the wind wheel, the dynamic frequency of the whole machine tends to decrease, but it is not 
very apparent. This indicates that the increase of aerodynamic load is not the main influencing 
factor for the variation of dynamic frequency of the wind wheel and the whole machine. 

Table 2. Pneumatic load increases the dynamic frequency of the wind wheel and the whole machine (Hz) 

Wind speed (m/s) Wind wheel Wind Turbine 𝜃 = 0° 𝜃 = 30° 𝜃 = 60° 𝜃 = 0° 𝜃 = 30° 𝜃 = 60° 
5 59.50 60.25 60.25 59.25 59.75 60.00 
6 59.75 60.25 60.50 59.50 60.00 60.25 
7 60.00 60.75 60.75 60.00 60.50 60.50 
8 60.25 60.50 60.25 60.00 60.50 60.00 

4. Numerical simulation 

To obtain the dynamic characteristics of wind turbines under trailer and non-trailer conditions, 
the wind turbine used in the test was used as the model for numerical simulation. The 
three-dimensional model was imported into the meshing software for meshing, and the fluid grid 
and solid finite element model were obtained. The fluid grid is shown in Fig. 10. 

 
Fig. 10. Mesh generation 

In numerical computation, the quality of mesh delineation directly affects the computational 
results, so it is required that the mesh not only achieve a certain degree of accuracy but also have 
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a fast convergence speed of computation. In this paper, 6 groups of meshes with good convergence 
effects are selected for grid-independent verification. As shown in Table 3, from the 1st group to 
the 4th group with the grid number of 350,000-400,000, the grid has a large impact on the wind 
turbine output power, and the change between groups is more than 4.68 %; from the 4th group, 
the change between groups is less than 0.89 %. This indicates that the effect of the grid on the 
power is negligible in this grid interval. To save calculation time and calculation accuracy, the 
number of grids is selected as 400,000 in this paper. 

Table 3. Verification of grid-independence 
Group 1 2 3 4 5 6 

Grid number  350000 300000 350000 400000 450000 500000 
Power output /W 86.3 91.6 95.8 100.5 101.4 102.1 

The solid finite element model included a single wind wheel model (non-trailer state wind 
wheel): A three-blade wind wheel was formed by a circular array of unmodified blades spaced 
120° from the bifurcated blade tip blades.  

The complete machine model (trailer-state wind wheel) was as follows. The whole machine 
model including the wind wheel, tower, shaft, and engine room was connected between different 
components by the MPC multi-point constraint coupling algorithm. Fluid-solid coupling method 
was used to study and analyze the dynamic characteristics of the wind wheel with the continuous 
increase in rotational speed. 

Campbell diagram was used to analyze the dynamic characteristics of the wind turbines in 
trailer state and non-trailer state. Fig. 10 shows the Campbell diagram of the first-order dynamic 
frequency of the wind turbine. For three-blade wind turbines, triple frequency (3P) was selected 
as the main frequency, and the main frequency (+10 %) was set as the resonance zone. The 
difference between the wind turbine dynamic frequency curve and the transverse coordinates of 
the two intersecting points in the resonance zone was the frequency width. The shorter the 
frequency curve was, the farther the speed distance from the resonance zone to the rated speed, 
and the smaller the probability of wind turbine resonance. 

 
Fig. 11. First-order Campbell diagram of a wind turbine 

From the analysis of Fig. 11, the frequency width of the unmodified wind wheel (𝜃 = 0°) under 
a non-trailer state was 1.79 Hz, and the speed in the resonance zone was 478.03 r/min; the 
frequency width of the wind wheel with the bifurcated blade tip structure (𝜃 = 30°) was 1.54 Hz, 
and the speed in resonance zone was 399.69 r/min; the frequency width of the wind wheel with 
the bifurcated blade tip structure (𝜃 = 60°) was 1.44 Hz, and the speed in resonance zone was 
384.37 r/min. For the wind wheels under trailer state, the frequency width of unmodified wind 
wheel (𝜃 = 0°) was 1.76 Hz, and the speed in resonance zone was 469.41 r/min; the frequency 
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width of the wind wheel with the bifurcated blade tip structure (𝜃 = 30°) was 1.47 Hz, and the 
speed in resonance zone was 393.37 r/min; the frequency width of the wind wheel with the 
bifurcated blade tip structure (𝜃 = 60°) was 1.39 Hz, and the speed in resonance zone was 
378.63 r/min. the results of the analysis reveal that the dynamic frequency curve of the wind wheel 
under the trailer state is lower than that under the non-trailer state, which indicates that the duration 
of the wind wheel in the resonance area is shorter and the speed in the resonance area is far from 
the rated speed. The first-order dynamic frequency of the wind turbine decreased remarkably when 
the blade was modified, and the dynamic frequency decreased continuously and slightly with the 
increase of the opening angle of the bifurcated blade tip structure. 

5. Conclusions 

By analyzing the data from simulation calculations and wind tunnel tests, the results show that 
the two results coincide and the accuracy of the following conclusions can be determined: 

1) By analyzing the static frequencies of wind wheels in different states, it can be seen that the 
first, second, fifth, and sixth static frequencies of the wind turbines in the trailer state decrease, 
and the bifurcated blade tip structure can increase the reduction extent of static frequencies. The 
wind turbines having the bifurcated blade tip structure with 𝜃 = 60° show the most significant 
increase. 

2) The dynamic frequency of the whole machine decreases, the whole machine frequency 
decreases more with the increase of centrifugal force load. The bifurcated blade tip structure has 
little influence on the dynamic frequency of the whole machine when the centrifugal force load 
increases and the law is not evident. When the aerodynamic load increases and the centrifugal 
force load remains unchanged, the amplitude of dynamic frequency change between the wind 
turbine and the whole machine is small. 

3) The dynamic frequency curve of the wind wheel passes through the resonance band more 
quickly in the hang-up condition, and the speed corresponding to the resonance zone decreases, 
even less than the rated speed. The dynamic frequency of the wind wheel can be considerably 
reduced by the bifurcated blade tip structure, and the dynamic frequency can be further reduced 
by increasing the opening angle of the bifurcated blade tip structure. 
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