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Abstract. An improved generative adversarial network model is adopted to improve the resolution 
of remote sensing images and the target detection algorithm for color remote sensing images. The 
main objective is to solve the problem of training super-resolution reconstruction algorithms and 
missing details in reconstructed images, aiming to achieve high-precision detection of medium 
and low-resolution color remote sensing targets. First, a lightweight image super-resolution 
reconstruction algorithm based on an improved generative adversarial network (GAN) is 
proposed. This algorithm combines the pixel attention mechanism and up-sampling method to 
restore image details. It further integrates edge-oriented convolution modules into traditional 
convolution to reduce model parameters and achieve better feature collection. Then, to further 
enhance the feature collection ability of the model, the YOLOv4 object detection algorithm is also 
improved. This is achieved by introducing the Focus structure into the backbone feature extraction 
network and integrating multi-layer separable convolutions to improve the feature extraction 
ability. The experimental results show that the improved target detection algorithm based on super 
resolution has a good detection effect on remote sensing image targets. It can effectively improve 
the detection accuracy of remote sensing images, and have a certain reference significance for the 
realization of small target detection in remote sensing images. 
Keywords: super-resolution reconstruction, multilayer separable convolution, characteristic 
pyramid network, attention mechanism. 

Nomenclature  

HR High Resolution 
SR Super Resolution 
LR Low Resolution 
CNN Convolutional Neural Networks 
RPN Region Rroposal Network 
SSD Single shot MultiBox Detector 
GAN Generative Adversarial Networks 
SRGAN Super-Resolution Generative Adversarial Networks 
ESRGAN Enhanced Super-Resolution Generate Adversarial Networks 
EDSR Deep Residual Networks for Single image Super-Resolution 
RRDB Residual in Residual Dense Block 
ECB Edge oriented Convolution Block 
HSB Hierarchical-Split Block 
BiFFN Bidirectional Feature Pyramid Network 

1. Introduction 

Due to the unique perspective imaging structure, remote sensing images are widely used in 
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military defense [1], marine detection, intelligent transportation, sudden disasters [2], emergency 
response, and more. These images provide valuable spatial information and are considered an 
important resource. Object detection in remote sensing image aims to use image processing 
technology to mark and extract interested objects from complex remote sensing background 
images and label their positions and categories accurately and efficiently. In recent years, with the 
rapid development of remote sensing technology [3], the amount of information contained in 
remote sensing images has become huge, and their spatial resolution has become higher and 
higher. High-resolution (HR) remote sensing images provide detailed structural information of 
scene coverage. However, the spatial resolution of remote sensing images is limited by hardware 
conditions and environmental noise in the imaging process. Compared with the existing physical 
imaging technology, super resolution (SR) image reconstruction is more convenient and cheaper 
to restore high-resolution images from low-resolution (LR) images. As a result, remote sensing 
image super-resolution reconstruction has become an effective method to obtain HR maps in 
remote sensing. Image super-resolution reconstruction plays a crucial role in the remote sensing 
field. 

In recent years, the target detection algorithms based on convolutional neural networks (CNN) 
have been developing continuously. These algorithms can be generally divided into: two step 
target detection algorithms and one step target detection algorithm based on regression [4]. The 
two-stage detection algorithm first generates candidate regions through the regional candidate 
network (RPN), and then performs classification and regression, that is, the location and 
classification results are obtained successively through two stages, such as Faster R-CNN [5], 
R-FCN [8], etc. The single-stage detection algorithm can directly locate the target through the 
neural network [6-7], output the target category detection information, and transform the target 
coordinate location problem into a regression problem, such as SSD (Single shot MultiBox 
detector) [9], and YOLO series [10-13]. 

Based on the complex background information and small target detection in remote sensing 
images, through the pretreatment of super-resolution reconstruction of original data in color 
remote sensing images, the target detection algorithm is improved to adapt to color remote sensing 
target detection. The super-resolution reconstructed image is used as the test data of the improved 
remote sensing image target detection algorithm to investigate the advantages of super-resolution 
reconstruction algorithm in improving target detection. 

2. Related work 

2.1. Super-resolution generative adversarial network 

SRGAN (Super-Resolution Generative Adversarial Networks) proposed by Ledig et al., was 
initially used the generation confrontation network for image SR. The structure of SRGAN is 
shown as Fig. 1. In image SR, the generation network aims to generate an HR image close to real 
data [14]. The discrimination network is used to evaluate whether the image generated by the 
generation network has the same distribution as the real data. The loss function [15] is adversarial 
loss, expressed as follows: 𝐿ீ஺ே಴ಶ೒൫𝐼መ;𝐷൯ = −log𝐷൫𝐼መ൯, (1)𝐿ீ஺ே಴ಶ೏൫𝐼መ; 𝐼௦;𝐷൯ = −ቄlog𝐷ሺ𝐼௦ሻ + log ቀ1 − 𝐷൫𝐼መ൯ቁቅ, (2)

where 𝐿ீ஺ே_஼ா_௚ is the adversarial loss function of the generated network in the SR model, and 𝐿ீ஺ே_஼ா_ௗ is the adversarial loss function of the discriminating network. 𝐷. 𝐼௦ refers to a real HR 
image, and 𝐼መ refers to the image generated by the generator. Fig. 2 shows the network structure of 
SRGAN. 
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Fig. 1. SRGAN network structure diagram 

2.2. ESRGAN fundamentals 

ESRGAN (Enhanced Super-Resolution Generate Adversarial Networks) has improved the 
network structure and loss function of SRGAN by removing all batch normalization layers from 
the generated network structure. It has been confirmed in EDSR that removing batch 
normalization layers contributes to the overall performance of the model. A multi-level residual 
dense connection structure (RRDB) composed of three residual dense blocks (RDBs) is used to 
replace the basic modules in the original generated network. This structure can better utilize 
multi-level features and extract rich local features. However, due to the embedded network 
structures in the network, the capacity of the model inevitably increases. Since dense connections 
can effectively reduce the difficulty of training, and also bring about great computational 
complexity [16]. Fig. 2 shows the structure diagram of the generating network portion of 
ESRGAN. 

 
a) RRDB structure diagram 

 
b) RDB structure diagram 

Fig. 2. Structure of ESRGAN feature extraction module 

ESRGAN uses a discriminator based on relativistic averaging to generate an adversary 
network Ra GAN. Unlike traditional GAN discriminators that estimate the probability of true 
input data, relativistic discriminators attempt to predict the probability that real data images are 
more realistic and natural than the generated data. Meanwhile, Ra GAN generators combine the 
gradient of generated data and real data during the training process, while traditional GAN 
generators only use the gradient of generated data during the training process. The mathematical 
expression of the relativistic discriminator is as follows: 𝐷ோ௔[𝐺(𝑥),𝑦] = 𝜎{𝐶[𝐺(𝑥)] − 𝐸(𝐶(𝑦))} → 0, (3)𝐷ோ௔[𝑦,𝐺(𝑥)] = 𝜎{𝐶(𝑦) − 𝐸(𝐶[𝐺(𝑥)])} → 1, (4)

where 𝐷ோ௔ represents a relative average discriminant network; 𝑥 represents the generator input 
data; 𝑦 represents the real data of the training set; 𝜎 represents the sigmoid activation function; 𝐺(⋅) represents the output of the generator; 𝐶(⋅) represents the output of the inactive 
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discriminator; 𝐸(⋅) represents the operation of averaging all data in a small batch. When the real 
image is more realistic and natural than the synthesized image, the result of 𝐷ோ௔[𝑦, 𝑥] tends to be 
1 (Eq. (4)); If the quality of the synthesized image is worse than that of the real image, 𝐷ோ௔[𝑦, 𝑥]′ 
result tends to be 1 (Eq. (3)). 

According to the principle of relativistic discriminators, the loss functions of discriminators 
and generators in ESRGAN can be defined as follows: 𝐿஽ = −𝐸{log𝐷ோ௔[𝑦,𝐺(𝑥)]} − 𝐸൛log{1 − 𝐷ோ௔[𝐺(𝑥),𝑦]}ൟ, (5)𝐿஽ = −𝐸൛log{1 − 𝐷ோ௔[𝑦,𝐺(𝑥)]}ൟ − 𝐸൛log{𝐷ோ௔[𝐺(𝑥),𝑦]}ൟ. (6)

3. Algorithm research 

3.1. Super-resolution reconstruction 

3.1.1. Generator 

3.1.1.1. Generator network structure 

To improve the resolution of the image and enhance the detail texture of the image, the 
generation network structure of ESRGAN is improved. The method of combining pixel attention 
with up-sampling method is used to enrich the feature details and perfect reconstruction tasks to 
improve image resolution and enhance image detail texture. The edge-oriented convolution block 
(ECB) is used to extract edge features. In reasoning stage, re parameterization technology is used 
to reduce model parameters. The network structure of the generator is shown in Fig. 3. 

 
Fig. 3. Network structure of adversarial training generator 

The overall generator network structure consists of three parts: First, in the initial stage of the 
network, conventional 3 is adopted × 3 convolutions for shallow feature extraction, aiming to 
roughly extract image features and prepare for further fine feature extraction in the network layer. 
Then, the features obtained from the convolution operation will go through 𝑀 deep feature 
extraction modules, namely the edge-oriented convolution modules. This section performs the 
convolution kernels of 1×1, 3×3, and 5×5 on the feature maps output from the previous layer, 
followed by 3×3-hole convolutions with the expansion rates of 1, 3, and 5, respectively. This aims 
to obtain multiple branches with different receptive fields, representing features of different scales. 
Then, all feature maps of different scales are connected through an addition operation, compressed 
by a 1×1 convolutional kernel, and then added to the feature maps from the previous layer as the 
output of this layer. The input LR image is fused with the output features of the deep feature 
extraction module through a skip connection using the nearest neighbor interpolation, and finally 
reconstructed by the up-sampling reconstruction module. 

When setting the network parameters, the padding is set to 2. The first initial convolutional 
layer uses 64 convolutional kernels with a step of 1. In the middle ECB layer, except for the 64 
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convolutional kernels used in the first convolutional block with a step of 2, the remaining parts 
are gradually incremented using convolutional kernels of 128 to 512, with the alternating steps of 
1 and 2. 

3.1.1.2. Architecture of the edge-oriented convolution module  

The edge-oriented convolution module (ECB) can effectively extract image edge and texture 
information [17], as shown in Fig. 4. The ECB consists of four well-designed operators. The first 
part consists of 3×3 convolution formation. The second part includes expansion convolution and 
compression convolution. It first uses C×D×1×1 to expand the channel dimension from C to D, 
and then uses C×D×3×3 to compress the feature back to channel dimension C. The third part is 
the first-order edge extraction. Sobel gradient is implicitly integrated into the third and fourth 
branches of the ECB module. The fourth part uses Laplace filter to extract the second order edge 
information. 

 
Fig. 4. Edge oriented convolution module (ECB) 

3.1.1.3. Reparameterization 

ECB is re-parameterized into a single 3×3 convolution to achieve efficient reasoning [18]. The 
1×1 convolution and 3×3 convolution in the second part can be combined into a single 
conventional convolution with the parameters 𝐾௘௦ and 𝐵௘௦: 𝐾௘௦ = 𝑝𝑒𝑟𝑚(𝐾௘) ∗ 𝐾ௌ, (7)𝐵௘௦ = 𝐾ௌ ∗ 𝑟𝑒𝑝(𝐵௘) + 𝐵ௌ, (8)

where 𝑝𝑒𝑟𝑚 represents the first and second dimensional permutation operations of the 
commutative tensor, with a shape of C×D×1×1. 𝑟𝑒𝑝 is a space broadcast operation that copies the 
original shape 1×D×1×1 of the offset into 1×D×3×3. 𝐾஽௫, 𝐾஽௬ and 𝐾௟௔௣ is defined as the weight 
value of the C×D×3×3 convolution with shape, which is equivalent to the depth convolution of 𝐹஽௫, 𝐹஽௬ and 𝐹௟௔௣ used for extraction: 

൜𝐾஽௫[𝑖, 𝑖, : , : ] = (𝑆஽௫ ⋅ 𝐷௫),     [𝑖, 1, : , : ],𝐾஽௫[𝑖, 𝑗, : , : ] = 0,     𝑖 ≠ 𝑗,  (9)ቊ𝐾஽௬[𝑖, 𝑖, : , : ] = ൫𝑆஽௬ ⋅ 𝐷௬൯,       [𝑖, 1, : , : ],𝐾஽௬[𝑖, 𝑗, : , : ] = 0,      𝑖 ≠ 𝑗,  (10)ቊ𝐾௟௔௣[𝑖, 𝑖, : , : ] = ൫𝑆௟௔௣ ⋅ 𝐷௟௔௣൯,       [𝑖, 1, : , : ],𝐾௟௔௣[𝑖, 𝑗, : , : ] = 0,       𝑖 ≠ 𝑗,  (11)
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where 𝑖, 𝑗 = 1, 2,..., 𝐶. Finally, after re-parameterization, the weight and offset are expressed as: 𝐾௥௘௣ = 𝐾௡ + 𝐾௘௦ + 𝑝𝑒𝑟𝑚(𝐾௫) ∗ 𝐾஽௫ + 𝑝𝑒𝑟𝑚൫𝐾௬൯ ∗ 𝐾஽௬ + 𝑝𝑒𝑟𝑚(𝐾௟) ∗ 𝐾௟௔௣, (12)𝐵௥௘௣ = 𝐵௡ + 𝐵௘௦ + (𝐾஽௫ ∗ 𝑟𝑒𝑝(𝐵௫) + 𝐵஽௫) + (𝐾஽௬ ∗ 𝑟𝑒𝑝(𝐵௬) + 𝐵஽௬)     +൫𝐾௟௔௣ ∗ 𝑟𝑒𝑝(𝐵௟) + 𝐵௟௔௣൯.  (13)

The output features in the reasoning phase can be represented by a single conventional 
convolution: 𝐹 = 𝐾௥௘௣ ∗ 𝑋 + 𝐵௥௘௣. (14)

3.1.1.4. Up-sampling reconstruction module 

In addition to adding the ECB module, pixel attention [19] is used in the final reconstruction 
module of the generator, and the mode of combining up-sampling and attention is used to achieve 
the reconstruction effect. Two up-sampling reconstruction modules are cascaded to achieve 4x 
magnification reconstruction, and only one up-sampling reconstruction module is used to achieve 
2x magnification reconstruction. The up-sampling reconstruction module is shown in Fig. 5, 
where PA represents the pixel attention. 

 
a) Up-sampling reconstruction module 

 
b) Pixel attention 

Fig. 5. Up-sampling reconstruction module 

3.1.2. Discriminator 

The discriminator is used to distinguish the image output by the generator from the real 
high-resolution image. Its output is the probability of judging the current input as a real image, 
and its structure is shown in Fig. 6. 

 
Fig. 6. Network structure of adversary training discriminator 
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A learnable PRe LU activation function is used in the discriminator network. In the 
feedforward network, each layer learns a slope parameter, which can better adapt to other 
parameters, such as weights and offsets. The batch normalization layer will be used here, because 
the main task of identifying the network is to judge the distribution difference between the real 
image and the image generated by the generated network. It does not need to reconstruct the image 
details, and adding the batch normalization layer can better relieve the training pressure. Similar 
to the basic structure of VGG networks, here 8 3 are used × 3 convolutional layers, which will 
gradually strengthen the confrontation between the discriminator and the generator. This allows 
the generator to generate a large number of real data samples without prior knowledge, ultimately 
allowing the generated sample data to reach the fake level. When the training network lacks 
sample data, GAN networks can be used to generate sample data for training, which is helpful in 
image generation and high-resolution image reconstruction. When setting the network parameters, 
64 convolution cores are used in the first convolution layer, with a step of 1. In the middle feature 
extraction layer, except that 64 convolution kernels are used in the first convolution block, the 
step is 2. The remaining part uses 128 to 512 convolution kernels to gradually increase, and the 
steps use 1 and 2 alternately. Finally, it is judged by two full connection layers and sigmoid 
activation function. 

3.1.3. Loss function 

The loss function is divided into the loss function of the generation network and the 
discrimination network. The loss function of the generation network is expressed by 𝐿ீ, which is 
weighted by the content loss function 𝐿௅ଵ, the perception loss function 𝐿௣௘௥ and the confrontation 
loss function 𝐿ோீ௔: 𝐿ீ = 𝐿௣௘௥ + 𝜆ଵ𝐿௅ଵ + 𝜆ଶ𝐿ோீ௔, (15)

where 𝜆ଵ and 𝜆ଶ are weighting coefficients used to balance the two loss functions. The problem 
with 𝐿௅ଵ is that its gradient will jump at the extreme point, and even small differences will bring 
about large gradients, which is not conducive to learning. Therefore, when using it, a learning rate 
decay strategy is usually set. When 𝐿ோீ௔ is used as a loss function, due to its own characteristics, it 
will scale the gradient. To balance these two factors, 𝜆ଵ and 𝜆ଶ are introduced as the weighting 
coefficients. 

The content loss function uses the  loss function 𝐿ଵ to evaluate the distance 𝐿ଵ between the 
image 𝐺(𝑥) generated by the generator and the true value 𝑦: 𝐿௅ଵ = 𝐸[‖𝐺(𝑥) − 𝑦‖ଵ]. (16)

The perception loss function follows the idea of ESRGAN and uses the pre-trained VGG19 
network to define the perception loss function. The fifth convolution of the input feature before 
the sixth largest pooling layer of the VGG19 network does not pass through the activation 
function. Because the features of the activation function will become sparse, especially after a 
deep network, sparsity will lead to weak supervision, resulting in poor performance. At the same 
time, the use of features after activation will result in differences from the actual brightness of the 
real image [20]. The perception loss function is defined as the Euclidean distance between the 
features of the reconstructed image 𝐺(𝑥) and the real image 𝑦, where 𝜑(⋅) represents the feature 
map extracted through VGG19 network: 𝐿௣௘௥ = 𝐸{‖𝜑[𝐺(𝑥)] − 𝜑(𝑦)‖ଶଶ}. (17)

The relativistic average discriminator RaD, expressed as 𝐷ோ௔, is used for countering losses. 
The loss function of the discriminant network is defined as: 
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𝐿஽ = −𝐸{log𝐷ோ௔[𝑦,𝐺(𝑥)]} − 𝐸൛log{1 − 𝐷ோ௔[𝐺(𝑥),𝑦]}ൟ, (18)

where, 𝑥 represents the input LR image, and 𝐺(⋅) represents the generated network output feature. 

3.2. Target detection algorithm 

For the detection of small target objects, dense target objects and complex background target 
objects, YOLOv4 target detection algorithm is selected as the basic framework, and 
CSPParknet53 [21] network structure is used as the backbone feature extraction network core to 
deepen the network and improve the network operation speed. Through adding the Focus structure 
after the image input, the scale feature of the input image is transformed into the channel feature, 
and the operation amount of the initial convolution is reduced. CSPDarknet53 is the core of the 
algorithm used to extract target features. From Fig. 7, it can be seen that the backbone network 
structure includes 5 CSP modules. The down-sampling of each CSP module can be achieved 
through 3×3 convolutional kernels. The YOLOv4 network model defines the input image as 
608×608. After feature extraction by five CSP models in the backbone network, the size of the 
feature map changes five times, ultimately changing from 608×608 to a 19×19 size feature map. 
In this way, rapid dimensionality reduction of the feature map is achieved. The advantages of 
using the CSPMarket53 network structure as the backbone network for YOLOv4 include two 
aspects. On one hand, it can improve the ability off convolutional network to extract features and 
improve detection speed without losing detection accuracy; on the other hand, it is necessary to 
reduce the computational loss of the entire model, enabling it to train the YOLOv4 model even on 
a simple CPU configuration. Here a multi-layer separable convolution module is introduced into 
CSPParknet53 to enhance feature extraction ability and enhance the extraction and learning ability 
of small-scale target feature maps through the sharing of receptive field information in different 
channels. Through applying a bidirectional feature pyramid network into multi-scale feature 
fusion, the feature information of different scale resolutions is aggregated. When constructing the 
feature aggregation network, a lightweight subchannel attention model is also introduced. The 
semantic information of different features is obtained through deep separable convolution and 
pooling operations [22]. Through dividing the feature graph into different subspaces to obtain 
different attention information, the multi-scale feature aggregation ability was improved. The 
target detection network structure is shown in Fig. 7. 

 
Fig. 7. Target detection network structure 
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3.2.1. Backbone feature extraction network 

The backbone feature extraction network is improved based on the CSPParknet53 network. 
According to introducing the Focus structure and the Hierarchical Split Block [23] (HSB) 
structure, it can effectively improve the feature extraction capability and enhance the sharing of 
feature information. This article replaces the residual structure with the CSPNet structure in 
YOLOv4 target detection algorithm, and replaces the residual convolution operation with HSB 
operation, to complete the implementation of HS-CSPNet structure. The HS-CSPDarknet53 
network is divided into five groups of HS-CSPNet structures. The number of HS-CSPNet is 1, 2, 
8, 8, and 4, respectively. Then, the high-level 19×19×1024 extracted from HS-CSPDarknet53 
network is input into the SPP structure to further increase the receptive field of deep features, and 
the channel receptive field of 19×19×2048 is expanded. Then, feature integration and channel 
number compression are performed through two 34 convolutions. In the backbone feature 
extraction network, each step of 3×3 convolution uses convolution plus batch normalization plus 
activation function. The HS-CSPDarknet53 network structure uses the Mish activation function, 
and other structures use the Leaky ReLU activation function. Finally, the 76×76×256 feature map 
obtained from the third layer of HS-CSPNet structure. The 38×38×512 feature map obtained from 
the fourth layer of HS-CSPNet structure and the 19×19×512 feature map after SPP structure 
operation will be used as the three different dimensional features extracted from the overall 
backbone network and input into the feature aggregation network for further feature aggregation.  

3.2.2. Feature aggregation network 

Based on YOLOv4 target detection algorithm, the feature pyramid structure of the aggregation 
network [25] is improved through Bidirectional Feature Pyramid Network [24] (BiFFN), adding 
the ULSAM structure at the end of the aggregation network. Improving the feature aggregation 
network structure and attention mechanism can improve the feature aggregation capability of the 
overall network. The improved aggregation network structure based on BiFFN and attention 
mechanism is shown in Fig. 8. 

The aggregation network aims to achieve feature aggregation through the feature pyramid 
structure, thereby effectively combining deep global semantic features and shallow 
high-frequency detail features. This enables better separation of location information and category 
information of the target to be detected. BiFFN structure can realize the aggregation and reuse of 
features between different dimensions, allowing for multiple iterations to deeply integrate both 
deep and shallow feature information. 

3.2.3. Prediction box regression loss 

The proposed algorithm uses prediction box regression loss, classification loss, and confidence 
loss to form a loss function. The prediction frame regression loss uses CloU loss. During training, 
CloU takes into account the distance between the target prediction frame and a priori frame, the 
overlap rate, size, and penalty mechanism. The penalty factor combines the prediction frame 
aspect ratio with the actual frame aspect ratio, making the prediction frame regression more stable. 
The CloU loss function is shown in Eq. (19): 

ℓ஼௟௢௎ == 1 − 𝐼𝑜𝑈 + 𝜌ଶ൫𝐵,𝐵௚௧൯𝜌ଶ + 𝛼𝜐, (19)𝛼 = 𝑣(1 − 𝐼𝑜𝑈) + 𝑣, (20)𝑣 = 4𝜋ଶ ቆarctan𝑤௚௧ℎ௚௧ − arctan𝑤ℎቇଶ, (21)
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where, 𝜌(⋅) represents the Euclidean distance between two points; 𝐵 and 𝐵௚௧ represent the center 
points of the prediction frame and the real frame; 𝑐 represents the farthest diagonal distance 
between the prediction frame and the real frame; 𝛼 represents the weight parameter formula; 𝜐 
represents a parameter that measures the consistency of the aspect ratio; 𝑤௚௧ and ℎ௚௧ represent the 
width and height of the real frame, respectively; 𝑤 and ℎ represent the width and height of the 
prediction box. 

The class loss function and confidence loss are as follows: 

ℓ௖௟௦ = −෍ ෍ 𝐼௜௝௢௕௝[𝐶መ௜log (𝐶௜) +ெ௝ୀ଴ௌ×ௌ௜ୀ଴ (1 − 𝐶መ௜)log(1 − 𝐶௜)], (22)ℓ௖௢௡௙ = −𝜆௡௢௢௕௝෍ ෍ 𝐼௜௝௡௢௢௕௝[𝐶መ௜log(𝐶௜) +ெ௝ୀ଴ௌ×ௌ௜ୀ଴ (1 − 𝐶መ௜)log(1 − 𝐶௜)]      −෍ 𝐼௜௝௡௢௢௕௝෍ [௖∈௖௟௔௦௦௘௦ 𝑝̂௜ௌ×ௌ௜ୀ଴ (𝑐)log(𝑝௜(𝑐)) + (1 + 𝑝̂௜(𝑐))log(1 − 𝑝௜(𝑐))], (23)

where 𝑆 × 𝑆 represents three different types of prior frame sizes, which are 19×19, 38×38 and 
76×76; 𝑀 represents the number of prediction boxes; 𝜆௡௢௢௕௝ represents a weight coefficient that 
is used to reduce confidence losses without targets. When the prediction box contains objects, 𝐼௜௝௢௕௝ = 1, 𝐼௝௡௢௢௕௝ = 0, and vice versa; 𝐶௜ represents the true value; 𝐶መ௜ represents the predicted 
value; 𝑝̂௜(𝑐) represents the probability of being predicted as a class 𝑐 target, and 𝑝௜(𝑐) is the true 
value probability. 

The overall loss function is as follows: ℓ = ℓ஼௟௢௎ + ℓ௖௟௦ + ℓ௖௢௡௙. (24)

4. Experimental results and analysis 

4.1. Preprocessing of remote sensing image data sets with different resolutions 

DIOR [26] dataset is used to analyze the impact of different resolutions on the performance of 
target detection tasks. Using the 4-fold down sampling data of the DIOR dataset and the 
low-resolution data of the NWPU-RESISC45 [27], [38], [39] dataset, the 4-fold super-resolution 
reconstruction is conducted to improve the resolution of remote sensing images. The 
super-resolution reconstruction target detection performance of remote sensing images is 
analyzed.  

4.1.1. DIOR dataset preprocessing 

DIOR dataset contains 20 different categories, with each image of 800×800 pixels, and 1500 
of which are randomly selected as the DIOR dataset used in this chapter. The remote sensing 
images in the DIOR dataset are performed separately, using 400 for twice the double triple × 400 
pixels, triple bicubic interpolation down sampling to 266×266 pixels, and sampling down to 200 
using 4x bicubic interpolation × 200 pixels. 

4.1.2. NWPU-RESISC45 dataset preprocessing 

The NWPU-RESISC45 dataset is a public remote sensing dataset that includes 45 different 
scene classifications, with 700 remote sensing images in each category, and a total of 31500 
images. Each image has a size of 256×256 pixels, with a spatial resolution of 30 to 0.2 meters. 15 
categories are selected, and100 for each category. A total of 1500 remote sensing images are as 
the NWPU-RESISC45 dataset, including 15 categories such as aircraft, airports, baseball fields, 
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basketball courts, bridges, chimneys, golf courses, track and field fields, overpasses, ships, 
stadiums, oil tanks, tennis courts, train stations, and automobiles. 

First, use the LabelImg tool in Python to label and save 1500 images in VOC format as a 
low-resolution remote sensing target detection dataset for NWPU-RESISC45. Then, using the 
improved super-resolution remote sensing image reconstruction algorithm based on generative 
adversarial networks proposed in this article, 1500 images are reconstructed as the 
NWPU-RESISC45 super-resolution reconstruction remote sensing target detection dataset for 
4-fold super-resolution reconstruction. 

4.2. Analysis of experimental results 

In the target detection of remote sensing image, the resolution of the image to be detected has 
a certain impact on the detection performance. On the DIOR dataset and NWPU-RESISC45 
dataset, the influence of super resolution reconstruction remote sensing image on target detection 
performance is analyzed. First, the 4-fold down sampled DIOR dataset is reconstructed into 
800×800 pixels by using the super-resolution remote sensing image reconstruction algorithm 
proposed. Then, the improved remote sensing target detection algorithm proposed in this paper is 
used for target detection, and the mAP value of detection performance is compared and analyzed. 
Second, the WPU-RESISC45 dataset is reconstructed into 1024×1024 pixels by 4 times super 
resolution reconstruction, and then the improved remote sensing target detection algorithm 
proposed in this paper is used for target detection to compare and analyze the detection 
performance of mAP value. The evaluation of target detection performance for reconstructing 
remote sensing images is shown in Table 1. 

Table 1. Target detection performance evaluation of super-resolution reconstructed images 
Data set Reconstruction multiple Resolving power mAP 

DIOR 
Nothing 800×800 0.684 
Nothing 200×200 0.287 

Quadruple 800×800 0.588 

NWPU-RESISC45 Nothing 256×256 0.342 
Quadruple 1024×1024 0.635 

It can be seen from Table 1 that for the DIOR dataset, the mAP value of the image without 
down-sampling and reconstruction is 0.684. For the target detection after 4 times down-sampling 
and super-resolution reconstruction, the mAP value is 0.588. Compared with the mAP detected 
after 4 times down sampling, the performance is nearly doubled. For the NWPU-RESISC45 
dataset, the performance of the target detection mAP value after super-resolution reconstruction 
is nearly doubled compared with the mAP value directly detected. One image is selected from the 
DIOR dataset and one from the NWPU-RESISC45 dataset to display the detection results, as 
shown in Fig. 8 and Fig. 9. 

 
a) Original image (800, 800, 3)  

 
b) 4-fold down sampling  

diagram (200, 200, 3) 

 
c) 4x super-resolution 

reconstruction image (800, 800, 3) 
Fig. 8. Target detection results of super resolution reconstruction of DIOR dataset 
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a) Original image (256, 256, 3)  

 
b) 4x super-resolution reconstruction  

image (1024, 1024, 3) 
Fig. 9. Target detection results of super resolution reconstruction of NWPU-RESISC45 dataset 

For NWPU-RESISC45 data set, the 4-fold super-resolution reconstructed image can 
effectively improve the target detection performance. Only a few cars can be detected in the 
original image in Figure 10, while the reconstructed image can accurately detect almost all cars. 

To verify the effectiveness of the proposed method, traditional algorithms such as Bilinear 
Interpolation [30], Nearest Neighbor Interpolation [31], and ESRGAN [32] is used in this 
experiment to improve the quality of low-resolution images. The improved results will be 
compared with the original image under multiple methods. The high-resolution raster images 
obtained by this method and different interpolation resampling methods are compared as shown 
in Table 2. 

Table 2. Similarity comparison results of different up-sampling methods 
Methods Resolution improvement 

factor 
Similarity with the original raster 

image 
Ours 4 93.1 % 

Bilinear interpolation 4 82.9 % 
Nearest neighbor interpolation 4 83.6 % 

ESRGAN 4 89.2 % 

As shown in Table 2, the proposed method is better than other conventional approaches in 
terms of similarity evaluation criteria for the mean hash algorithm. Its superior performance can 
be attributed to the utilization of a combined pixel attention mechanism and up-sampling method 
within the super-resolution enhancement model based on ESRGAN. Through constructing a prior 
knowledge base, the network model can effectively learn the features of converting low resolution 
images into high resolution images, thereby improving the quality of raster images. Additionally, 
this method combines edge-oriented convolution modules with multi-parameter concepts, further 
integrating edge-oriented convolution modules into traditional convolution to reduce model 
parameters. However, traditional resampling interpolation methods infer unknown pixels solely 
from neighboring pixels, leading to disparities in similarity indicators. 

To verify the impact of the number of generated samples on target recognition results, we 
continue to increase the number of generated samples in the sample set and incorporate them into 
the training and validation sets at a 4:1 ratio for training the target recognition model. The 
recognition accuracy of the detected targets is shown in Table 3. When the number of generated 
samples is 1000, the recognition accuracy of the target can be improved by 7.9 %. However, as 
the number of generated samples continues to increase, the detection accuracy of the target 
declines. When reaching 1500 generated samples, the generated images are greater than the 
original images, and the richness and diversity of the samples are limited. Consequently, 
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improvements in recognition accuracy become insignificant and even lead to overfitting issues. 
Therefore, when dealing with imbalanced datasets, the method of generating adversarial network 
expansion to training samples can effectively balance the dataset and improve target recognition 
accuracy. However, excessive generation of samples can increase redundant target information to 
be identified, leading to model overfitting. 

Table 3. Target detection accuracy of different number of generated samples 
Number of generated samples AP / % Degree of improvement / % 

500 33.9 3.9 
1000 39.3 7.9 
1500 36.6 5.8 

5. Conclusions 

This paper presents an analysis of super-resolution reconstruction algorithms based on 
generative adversarial networks for enhancing the resolution of low-resolution remote sensing 
images, followed by the application of an improved target detection algorithm for multi-target 
detection. According to analyze the impact of different resolutions on the performance of remote 
sensing target detection using the DIOR dataset, this study confirms significant enhancements in 
both super resolution remote sensing image reconstruction algorithm and remote sensing target 
detection algorithm, thereby improving the overall performance of remote sensing target detection 
tasks. Furthermore, through analyzing the target detection results of super-resolution 
reconstructed remote sensing images on the NWPU-RESISC45 dataset, and comparing with the 
original images, it further validates that the proposed method can effectively improve the target 
detection performance of medium and low-resolution color remote sensing images. These findings 
demonstrate practical applicability and highlight advancements made in super-resolution remote 
sensing image-based target detection algorithms. 

The performance of the super-resolution reconstruction algorithm still needs further 
improvement. The next work will study how to better improve the accuracy of the algorithm and 
how to actually use the proposed object detection algorithm in real scenes. 
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