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Abstract. In response to the complex issue of predicting lateral spreading of liquefied soil during 
earthquakes, this study establishes a comprehensive seismic database. The Newmark sliding block 
method is utilized to calculate lateral displacements, and a sensitivity analysis model for 
liquefaction-induced lateral spreading is developed by considering multiple parameters. Based on 
the three most influential parameters identified through sensitivity analysis, a novel 
liquefaction-induced lateral spreading prediction model is proposed. The reliability of this new 
model is then demonstrated by comparing it with existing classical prediction models, as well as 
by analyzing correlation coefficients and root mean square errors.  
Keywords: lateral spreading, prediction model, neural network, sensitivity analysis. 

1. Introduction 

Liquefaction refers to the phenomenon where saturated sandy soil experiences an increase in 
pore water pressure due to cyclic shear during an earthquake, leading to continuous reduction in 
strength. The lateral spreading of the ground caused by liquefaction is a typical form of damage 
in seismic areas. This lateral spreading can result in shear failure of pile foundations and cause 
cracking, stretching, and even collapse of ground structures. The magnitude of lateral spreading 
can significantly impact the seismic design of infrastructure. When lateral spreading displacement 
is significant, it can cause considerable damage to engineering facilities. Therefore, it is essential 
to propose an accurate prediction method for liquefaction-induced lateral spreading. 

In recent years, with the rapid development of artificial intelligence and big data technology, 
machine learning methods in lateral spreading prediction research have gained increasing attention 
and application. Among them, algorithms based on machine learning have shown great potential 
in developing data-driven predictive models [1]. Traditional analytical methods often require 
precise functional relationships, however, complex seismic problems like lateral spreading are 
difficult to accurately describe using simple mathematical models. Therefore, many researchers 
have turned to data-driven approaches, utilizing machine learning algorithms to discover patterns 
and regularities in data and build corresponding predictive models. For instance, Yang et al. [2] 
trained an artificial neural network model based on lateral spreading examples to predict the 
residual shear strength ratio of liquefied soil, which is used for subsequent lateral spreading 
prediction. Demir and Sahin [3] utilized multiple machine learning models, such as eXtreme 
Gradient Boosting, Categorical Boosting, and Light Gradient Boosting Machine, to predict lateral 
spreading values and compared them using the particle swarm optimization algorithm, finding 
that the particle swarm optimization algorithm outperformed other models. Gade et al. [4] 
considered factors like moment magnitude, focal mechanism, and yield acceleration, and proposed 
a new neural network displacement prediction model based on the Newmark sliding block method 
using a large amount of data, demonstrating its good applicability in slope displacement 
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prediction. Kaya et al. [5] compared the applicability of multigene genetic programming, 
multilayer perceptron, and random forest models in lateral spreading prediction, and found that 
the MGGP model was more accurate in predicting lateral spreading values for free-face and gently 
sloping ground compared to MLP and RF. From the aforementioned literature, it can be observed 
that machine learning algorithms can quickly grasp the characteristics of data and output 
predictions. However, they require high-quality input data and cannot judge the reasonableness of 
the input data itself. Therefore, in order to obtain accurate displacement prediction models, it is 
crucial to establish a strong and reasonable database for training. 

The Newmark sliding block method was first proposed by Newmark [6] in 1965 for calculating 
the permanent displacement of dams under seismic loads. It has since been widely used to compute 
the permanent displacement of slopes and embankments under earthquake loads. The author has 
already evaluated the reliability of the Newmark sliding block method for analyzing lateral 
spreading [7]. Therefore, the purpose of this study is to use the Newmark sliding block method to 
calculate the lateral spreading values under different yield accelerations. Additionally, based on 6 
input parameters, namely, peak ground acceleration (PGA), yield acceleration (𝑘 ), moment 
magnitude (𝑀 ), the average shear wave velocity of the top 30 meters of soil (𝑉 ), focal 
mechanism (FM), and rupture distance (𝑅 ), as well as 1 output variable, the calculated lateral 
spreading value, a neural network is employed to train the sensitivity analysis model for lateral 
spreading parameters, facilitating the sensitivity analysis of each parameter. Utilizing the results 
of the sensitivity analysis, 3 critical seismic parameters are selected as inputs to train the lateral 
spreading prediction model. The reliability of this model is assessed from three different 
perspectives, 𝑅 , RMSE, and classical prediction models.  

2. Earthquake motion database and research methods 

In this study, a seismic motion database consisting of 1960 records from 27 earthquake events 
was collected and compiled from various countries such as China, the United States, Canada, Iran, 
Turkey, and Japan. Some of the notable earthquakes included the 1995 Kobe earthquake in Japan, 
the 1999 Chi-Chi earthquake in Taiwan (China), and the 1989 Loma Prieta earthquake, among 
others. The seismic motion database was obtained from the PEER-NGA-West2 database [8]. 
Additionally, relevant seismic parameters were gathered for each earthquake event, including peak 
ground acceleration, moment magnitude, and rupture distance. It is important to note that the 
selected seismic records are all from surface horizontal ground motion, encompassing both EW 
(East-West) and NS (North-South) directions, and both directions are considered as independent 
seismic records for analysis. 

As previously mentioned, machine learning algorithms can quickly learn the features of data 
and generate predictive results. However, these algorithms have higher demands for input data 
and cannot assess the reasonableness of the input data. Therefore, in this section, to obtain a large 
number of liquefaction-induced lateral displacement values suitable for machine learning 
algorithms, we assume different yield accelerations, specifically 0.01 g, 0.03 g, 0.05 g, 0.75 g, 
0.1 g, 0.15 g, 0.2 g, 0.25 g, and 0.3 g. It is important to note that the selection of the range of yield 
accelerations is based on the analysis of corresponding models as determined by Yang et al. [2] in 
their compilation of 23 verified liquefaction-induced lateral displacement instances. Moreover, 
the calculation of yield acceleration requires the establishment of a limit equilibrium analysis 
model based on parameters such as soil distribution, soil strength, soil density, and groundwater 
level [7]. Therefore, by considering yield acceleration, we implicitly account for the information 
from the aforementioned parameters. 

Based on this, using the collected 1960 seismic records, liquefaction-induced lateral 
displacement values are calculated for different yield accelerations. It is important to note that 
before calculating the lateral displacement values, records with yield accelerations greater than 
the peak ground acceleration are excluded. This is because if this condition is not met, the 
calculated lateral displacement value would be zero. As a result, 8914 valid liquefaction-induced 
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lateral displacement values are obtained after applying this condition. 

3. Sensitivity analysis model for liquefaction lateral movement parameters 

Based on the research findings from references [4], [9], this study selects six seismic 
parameters, namely PGA, 𝑘 , 𝑀 , 𝑉 , FM, and 𝑅 , as feature inputs. The ln (𝐷 ) is used as 
the output parameter for training the lateral displacement parameter analysis model. The 
distribution of PGA and 𝑀  is shown in Fig. 1(a), while the distribution of 𝑅 , 𝑀  and FM is 
depicted in Fig. 1(b). From Fig. 1, it is evident that the seismic parameter ranges are  
0.015 ≤ PGA ≤ 1.779 g, 0.01 ≤ 𝑘  ≤ 0.30g, 5.3 ≤ 𝑀  ≤ 7.6, 116 ≤ 𝑉  ≤ 1070 m/s,  
0.1 ≤ 𝑅  ≤ 100.0 km, and FM with values 1, 2, or 3. Here, 1 represents a normal fault 
mechanism, 2 indicates a reverse fault mechanism, and 3 signifies a strike-slip fault mechanism. 
The output parameter is ln(𝐷 ), representing the lateral displacement in millimeters. As the data 
is derived from 1960 seismic records of 27 seismic events, it is evident that Fig. 1 illustrates 
comprehensive coverage of parameters such as 𝑀 , PGA, 𝑘 , and 𝑅 . This extensive parameter 
coverage provides a reliable foundation for training the neural network. 

 
Fig. 1. Distribution of relevant parameters of seismic records used in this study:  

a) distribution of PGA and 𝑀 , b) distribution of 𝑅 , 𝑀  and FM 

In this study, there are a total of 6 input neurons and 1 output neuron in the neural network 
architecture. Moreover, according to the Universal Approximation Theorem, a single hidden layer 
is sufficient to describe continuous nonlinear functions [4]. Therefore, the number of hidden layers 
is set to 1. Furthermore, recognizing the nonlinear relationship between input and output features, 
this research employs the Sigmoid function as the activation function to approximate the predicted 
values close to the input features. The network operation involves feeding forward the input, and 
when the output signal meets the desired criteria, the computation stops. If not, error 
backpropagation is executed. By propagating the error value back to the hidden layer and 
iteratively adjusting the network weights, the hidden layer gains strong nonlinear mapping 
capabilities, ultimately producing the desired output. 

To implement this, the data is randomly split into an 80 % training set and a 20 % testing set. 
Bayesian regularization is employed to train the data. After several attempts, it was determined 
that the optimal regression performance was achieved when there were 10 hidden neurons. The 
obtained lateral displacement parameter sensitivity analysis model is shown in Fig. 2. According 
to the results in Fig. 2, it can be observed that both for the training set, validation set, and overall 
dataset, the predicted results have a correlation coefficient (𝑅 ) of 0.94 or higher with the original 
target values. This indicates that predicted values of the model have a high level of reliability. 

The sensitivity analysis was performed to assess how the 6 input features affect the predicted 



PREDICTION MODEL OF LATERAL SPREADING OF LIQUEFIED SOIL DURING EARTHQUAKES BASED ON NEURAL NETWORK.  
YANXIN YANG, ZIYUN LIN, HUA LU, XUDONG ZHAN 

 VIBROENGINEERING PROCEDIA. OCTOBER 2023, VOLUME 51 45 

results of the model. Each input feature PGA, 𝑘 , 𝑀 , 𝑉 , FM and 𝑅  was multiplied by 
coefficient factors of 1.2 and 1.5 to create modified data for the second prediction using the model. 
The results of this second prediction were then compared with the initial predictions. Based on the 
changes in 𝑅  and RMSE values presented in Table 1, the correlation coefficients 𝑅  and root 
mean square error RMSE of the original data were used for comparison. From this analysis, it was 
observed that among the 6 input parameters, the lateral displacement value was most significantly 
influenced by 𝑀 , 𝑘 , and PGA, followed by FM, 𝑉 , and 𝑅 . 

   
Fig. 2. Training results of sensitivity analysis model for liquefaction drift parameters 

Table 1. Input feature sensitivity analysis 
Parameters Coefficient of variation 𝑅  RMSE 

 1.0 0.9493 0.6962 

PGA 1.2 0.9454 0.9132 
1.5 0.9304 1.3904 𝑘  1.2 0.9455 0.9476 
1.5 0.9248 1.8560 𝑀  1.2 0.8613 2.0743 
1.5 0.7256 5.7561 𝑉  1.2 0.9469 0.7238 
1.5 0.9347 0.8338 

FM 1.2 0.9297 0.8237 
1.5 0.8821 1.0501 𝑅  1.2 0.9468 0.7130 
1.5 0.9380 0.7704 

4. The liquefaction lateral displacement prediction model and classical prediction model 

Based on the original data and the sensitivity analysis results of the input features in Table 3, 
a neural network model was trained with the input features of 𝑀 , 𝑘 , and PGA. The Sigmoid 
function was chosen as the transfer function for the hidden layer. The dataset was randomly 
divided into 80 % training set and 20 % test set. Bayesian regularization was applied to train the 
data. After several trials, it was found that setting the number of hidden neurons to 7 yielded the 
best regression performance. The training results of the liquefaction lateral displacement 
prediction model are shown in Fig. 3. By comparing Fig. 3, it is evident that although reducing 
the number of input features in the liquefaction lateral displacement sensitivity analysis model has 
lowered the complexity of the model, it has also led to a slight decrease in prediction accuracy. 

To objectively assess the reliability of the proposed liquefaction lateral displacement 
prediction model in this study, a comparison was made with three existing classical prediction 
models [10], [11] that use the same input variables (𝑀 , 𝑘 , and PGA) and are based on the 
Newmark sliding block theory. To satisfy the constraints imposed by the literature [10], [11] and 
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the prediction model proposed in this research, the ranges of 𝑀 , 𝑘 , and PGA are as follows,  
5.5 ≤ 𝑀  ≤ 7.6, 0.01 ≤ 𝑘  ≤ 0.30 g, and 0.2 ≤ PGA ≤ 1.779 g, as shown in Fig. 4.  

1. The Jibson 2007 model [10], referred to as J07: 

log 𝐷 = −2.710 + log 1 − 𝑘PGA . 𝑘PGA . + 0.424𝑀 . (1)

2. The Rathje and Saygili 2009 model [11], abbreviated as RS09: 

ln 𝐷 = 4.89 − 4.85 𝑘PGA − 19.64 𝑘PGA + 42.49 𝑘PGA − 29.06 𝑘PGA             +0.72ln PGA + 0.89 𝑀 − 6 .  (2)

In Eq. (1-2), 𝐷  represents the lateral displacement, measured in cm. 

   
Fig. 3. Liquefaction side shift prediction model 

   
Fig. 4. Comparison of the lateral spreading predictions model with the existing classical prediction models; 

a) variation with respect to 𝑀  with 𝑘 = 0.15 g, PGA = 0.3 g; b) variation with respect to 𝑘   
with 𝑀 = 7.0, PGA = 0.3 g, c) variation with respect to PGA with 𝑀 = 7.0, 𝑘 = 0.15 g 

From Fig. 4(a), it can be observed that when the other seismic parameters are held constant, 
the lateral ground displacement increases with the increase in 𝑀 . This is because a larger 𝑀  
indicates a greater amount of energy carried by the seismic waves, making the occurrence of 
liquefaction-prone conditions more likely in the seismic area. As a result, the lateral displacement 
also increases. Based on Fig. 4(b), it can be seen that when the other seismic parameters are 
constant, the lateral ground displacement decreases with an increase in 𝑘 . This can be understood 
as per the Newmark displacement calculation theory, which shows that the lateral displacement 
decreases with larger values of 𝑘  [6]. Additionally, a larger 𝑘  indicates a higher residual shear 
strength of the liquefied soil. Only when the combined shear force from seismic and gravitational 
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actions exceeds the residual shear strength of the soil will it start to slide, leading to a decrease in 
lateral displacement. From Fig. 4(c), it can be observed that different PGA have varying effects 
on the lateral spreading displacement. However, overall, as the PGA increases, the lateral ground 
displacement also increases. This follows a similar pattern as the moment magnitude and is 
consistent with the Newmark displacement calculation theory [6]. Overall, the prediction model 
proposed in this study maintains good consistency with the existing classical models, while also 
aligning with theoretical analysis. 

5. Conclusions 

This study proposes a neural network-based liquefaction-induced lateral spreading prediction 
model based on the existing database and sensitivity analysis. The following conclusions are 
drawn. 

1) The proposed prediction model demonstrates good consistency with existing classical 
models under the premise of agreement with theoretical analysis. This indicates that the developed 
model effectively captures the complex nonlinear relationships between input parameters and 
output parameters related to liquefaction-induced lateral spreading.  

2) The sensitivity analysis results indicate that the lateral spreading value prediction is highly 
sensitive to moment magnitude, yield acceleration and peak ground acceleration. On the other 
hand, the impact of focal mechanism, the average shear wave velocity of the top 30 meters of soil, 
and rupture distance on lateral spreading is relatively small. 
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