MAGNEX and PILCCU in Finland: deployment of CO₂ mineralisation in circular economies

Ron Zevenhoven¹, Päivö Kinnunen², Jarkko Levänen³, Heikki Pirinen⁴, Erkki Levänen⁵

¹Åbo Akademi University, Turku, Finland
²University of Oulu, Oulu, Finland
³Lappeenranta-Lahti University of Technology, Lahti, Finland
⁴Geological Survey of Finland, Kuopio, Finland
⁵Tampere University, Tampere, Finland
¹Corresponding author
E-mail: ¹ron.zevenhoven@abo.fi, ²paivo.kinnunen@oulu.fi, ³jarkko.levanen@lut.fi, ⁴heikki.pirinen@gtk.fi,
⁵erkki.levanen@tuni.fi

Received 15 August 2023; accepted 29 August 2023; published online 13 October 2023 DOI https://doi.org/10.21595/bcf.2023.23569

Check for updates

Baltic Carbon Forum 2023 in Riga, Latvia, October 12-13, 2023

Copyright © 2023 Ron Zevenhoven, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Two ongoing projects in Finland, MAGNEX (*Viable magnesium ecosystem: exploiting Mg from magnesium silicates with carbon capture and utilization*) and PILCCU (*Piloting of ÅA CCU*) aim at using CO₂ mineralisation technology for the overlapping purposes of large-scale CO₂ emissions mitigation and bringing several valuable material streams into circular economies, including construction. Of central importance are magnesium-based materials, such as magnesium carbonate hydrate (MCH), besides (amorphous) silica and several metallic species. On top of revenues from these, CO₂ emissions mitigation lowers the financial penalty from CO₂ emission rights under for example the European ETS.

The ÅA process routes are stepwise processes based on extraction of magnesium (and other species) from serpentinite-containing mining tailings from Finland, followed by precipitation of metallic species, carbonation using a CO_2 containing gas-stream (no separate capture step needed) and recovery of solvent salt, respectively. Several separation steps involve (ion-selective) membrane electrodialysis. Besides ongoing mapping and characterisation of Finnish rock resources as tailings or other side-streams at metal and mineral mines in Finland, the projects address public acceptance, legislation and other non-technical issues related to large-scale roll-out of this type of CCU technology.

For the use of the solids, magnesium-based cement binders and plaster-like recipes are investigated as well as applications for the (amorphous) silica and other residues, including the use of MCH for cyclic thermal energy storage (TES). Special focus is on accelerating the carbonation step and the final outcome of MCH production, considering pressure (including supercritical CO_2 levels), and the role of recoverable catalysts and other additives.

The work receives funding from the Academy of Finland (2022-2025) and from Business Finland plus industry partners (2022-2024), respectively.

Keywords: CO₂ mineralisation, Finland, technology deployment, circular economies, public acceptance, rock resources, process chemistry.

Acknowledgements

Academy of Finland: MAGNEX (2022-2025). Business Finland "Veturi": PILCCU (Phase 1, 2022-2024), incl. 8 companies.