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Abstract. Based on Kirchhoff thin plate and Mindlin thick plate theories, the vibration and energy 
flow characteristics of clamped stiffened plate are studied by using the analytical model 
constructed by finite integral transform method. The results show that the energy flow 
characteristics of the stiffened plate at the beam/plate coupling interface depend on the position of 
the rib in the vibration modes of the plate. The effects of shear deformation and rotatory inertia on 
the energy flow across the beam/plate coupling interface of the stiffened plate are further 
investigated. It is found that the inclusion of rotatory inertia of the beam and plate in the model 
only affects the energy flow component controlled by the moment coupling but not that controlled 
by the shear force coupling. Whilst the inclusion of the shear deformation of the beam and plate 
mainly causes a decreased amplitude of the energy flow for the mode group where the beam is 
located away from both the nodal and antinodal lines of modes, in addition to the shear 
deformation of the plate which also leads to an increased amplitude of the energy flow component 
controlled by the shear force coupling for the mode group where the beam locates at the antinodal 
line of modes. The understanding of energy flow characteristics of the stiffened plate at the 
beam/plate interface is essential to effectively control the noise and vibration problems of 
structures such as transformer tanks and machine covers. 
Keywords: vibration, energy flow, clamped stiffened plates, finite integral transform. 

Nomenclature 𝑎, 𝑏 Length and width of plate, m 𝐶, 𝐷  Bending and shear stiffness of plate 𝜌௣, 𝜌௕ Mass density of plate and beams, kg/m3  𝐸௣, 𝐸௕ Young’s modulus of plate and beam, N/M2  𝜂 Structural damping coefficient of plate and beams 𝜈 Poisson’s ratio ℎ Plate thickness, m 𝜅 Shear coefficient 𝐼௣ Area moment of inertia per unit length of plate, m3 𝛿 Dirac delta function 𝑥௔ Positions of the ribs on the plate in the 𝑦 direction, m 𝐺௕ Shear modulus of beams, N/M2  𝐴௕ Cross-sectional area of beams, m2 𝐼௕ Area moment of inertia of beams, m4 𝑘௧ Torsion wavenumber of beams 𝑘௕ Flexural wavenumber of beams 𝑇 Torsional stiffness of beams 𝐵 Flexural stiffness of beams 
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𝜔 Circular frequency, rad/s 𝐹଴ External excitation force amplitude acting on plate, N 𝑊 Transverse displacement of plate 𝜑௫,𝜑௬ Rotation angles of the normal line of plate 𝑈 Transverse displacements of beams 𝜓 Rotation angles of beams 𝜃 Torsional displacements of beams 𝑄 Shear forces per unit length at the rib/plate interfaces 𝑀 Bending moments per unit length at the rib/plate interfaces 〈𝑃ொ〉 Energy flow governed by the shear force component 〈𝑃ெ〉 Energy flow governed by the moment component 

1. Introduction 

Beams, plates and their coupled forms are the fundamental structural components in marine, 
aerospace, vehicle transportation engineering and other fields. The average vibration energy of 
these structures is often used to describe their vibration and acoustic radiation characteristics at 
middle and high frequencies. Therefore, energy-based analysis methods are generally used for the 
study of the mid- to high-frequency vibroacoustic response of stiffened plate structures currently, 
which mainly include statistical energy analysis (SEA) and energy flow analysis (EFA). EFA is a 
propagation wave method based on an energy equation, while SEA is a modal method. For 
example, Langley et al. [1] investigated the vibration energy transmission characteristics of 
periodically stiffened plates using SEA and analyzed the effect of periodic spacing of stiffeners 
on energy transmission. Bercin [2] investigated the effects of shear distortion and rotary inertia on 
the flexural energy transmission of a stiffened plate structure using the direct-dynamic stiffness 
method and SEA, and showed that energy flow decreases significantly compared with the 
transmitted energy calculated using the classical thin plate theory. Lin et al. [3] applied SEA 
method to study vibration energy transmission in L-shaped plates with fully simply supported 
boundary and calculated the energy flow between plates under definite force and moment 
excitation conditions.  

Wester and Mace [4-6] developed a wave-based method for the analysis of energy flow in 
deterministic models involving two- and three-dimensional subsystems as well as complex 
uncertain structures, and then analyzed the energy flow in coupled structures comprising two 
regularly or irregularly rectangular plates. Li et al. [7] investigated vibrational wave and energy 
flow characteristics of infinite thin plate of finite width with a part-through surface crack base on 
wave method, and considered modeling the crack as a linear spring whose elasticity was derived 
from the relationship between strain energy and stress intensity factor in fracture mechanics. They 
showed that the vibrational energy flow of cracked plate is highly related to the depth and location 
of the part-through crack. In addition, Pany et al. [8-11] investigated wave propagation and free 
vibration of plate and shell structures based on the wave method and finite element method. For 
example, Pany et al. [8] solved the natural frequencies for a circular cylindrical shell in radial 
vibration using a wave propagation method. They found that the bounding frequencies and the 
corresponding modes in all the propagation bands can be determined by choosing a proper periodic 
element, and all the natural frequencies of a row of curved panels with simply supported extreme 
edges can be determined from the phase frequency curves. Pany and Parthan [9] investigated wave 
propagation along the axis of an infinite cylindrical curved plate supported at a regular interval to 
determine its natural frequency in bending vibration using two approximate methods, one of which 
uses beam functions and sinusoidal modes form of bending deflection to obtain propagation 
constant curves, and the other uses a high-precision trigonometric finite element in conjunction 
with the wave method to determine natural frequencies. Pany [10] investigated the propagation of 
free waves in a two-dimensional periodic plate using the finite element method combined with 
Floquet’s theory (periodic structure concept), which can be used to solve for the natural frequency 
of a finite multi-supported flat plate with internal line supports by discretizing the propagation 
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band. Pany and Parthan [11] studied the free vibration of a multi-supported finite curved panel 
continuous in circumferential and axial directions using high-precision triangular finite element. 
Zhang et al. [12] formulated the dynamic model of periodically coupled plate structure using the 
dynamic stiffness method (DSM), which is a powerful tool for vibration analysis of periodic plate 
structure due to its efficient substructure coupling technique. It is found that the DSM can obtain 
accurate results with much less computational time than the finite element method. 

Cotoni et al. [13] extended the energy flow approach to sound transmission problems through 
a finite plate. Seo et al. [14] developed a power flow analysis method to predict the vibration 
response of reinforced plate structures with simply supported boundaries from moderate to high 
frequencies and analyzed the power transmission and reflection coefficients at the coupled 
plate/beam interface. Song et al. [15] analyzed vibrational energy and intensity distribution of the 
coupled beam-plate structures by EFA in medium-to-high frequencies ranges. Han et al. [16] 
developed EFA method to predict the vibration energy density of the thin plate with mean flow in 
the high frequency range. Ma et al. [17] studied the medium frequency vibration of a built-up plate 
structure by EFA and calculated mode count, modal density, damping and coupling loss factors 
and input mobility of plate structures. Zhu and Yang [18] investigated the power flow 
characteristics and energy transmission of variable stiffness laminated composite plates with 
curvilinear fibres subjected to harmonic excitation using the finite element method based on the 
vibration power flow analysis. They indicated that the fibre angles can be tailored to change the 
vibration transmission paths according to the specific excitation. Zhou et al. [19] investigated the 
vibration energy flow transmission behavior of laminated composite plate structures coupled with 
a line hinge using the substructure-based power flow analysis method and analyzed the effects of 
the fiber orientation, boundary conditions and the position of coupling hinge on the vibration 
transmission path. Teng et al. [20] calculated the energy density of the laminated plate with free 
damping layers under high-frequency excitation based on EFA and analyzed the effects of the loss 
factor and the thickness of the damping layer on the energy density.  

In addition, there are several other methods used to analyze the vibration energy transmission 
and sound energy transmission of plates and beams. Krishnappa and McDougall [21] investigated 
sound intensity distribution and energy flow in the nearfield of a clamped circular plate vibrating 
at its resonant frequencies using Rayleigh's integral formula and finite difference method, and 
analyzed sound energy flow of the axisymmetric modes and sound intensity distributions of non-
axisymmetric modes. Cieślik and Bochniak [22] presented a numerical analysis method of 
structural intensity distribution to analyze the vibration energy flow across a stiffened rectangular 
plate with simply supported boundary conditions. Pavić [23] presented a model of a beam-plate 
system for studying the distribution of vibration energy and energy flow in beams and rods under 
excitation sources using numerical method. They showed that axial vibration is of equal 
importance to transverse vibration in terms of energy flow of beams. Bercin [24] analyzed the 
effects of in-plane vibrations on the energy transmission in plate-type structures using the dynamic 
stiffness technique and showed that excluding in-plane modes may lead to large errors in energy 
prediction unless the structure is very simple. Han et al. [25] developed a transfer function method 
and an impedance method for calculating the energy response of simply supported beams and 
plates excited by discrete random forces. Weaver [26] calculated the average square response of 
an infinite homogeneous plate with undamped sprung massed distributed randomly based on 
diagrammatic multiple-scattering theory. They found that the radiative transfer equation governs 
the energy flow on time scales larger than the frequency inverse, while the diffusion equation 
governs the energy flow at times larger than the residence time of the energy in the substructure. 
Kessissoglou [27] investigated active attenuation of the plate flexural wave transmission through 
a reinforcing beam on a semi-infinite simply supported stiffened plate. They showed that 
significant attenuation of all the resonance peaks in the flexural wave transmission can be achieved 
by using a single force and a single moment collocated on the beam. Sorokin [28] studied the 
vibration and energy propagation in an infinitely long fluid-loaded sandwich plates bearing 
concentrated masses and supported by springs based on the sixth order theory of multilayered 
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plates coupled with the standard theory of linear acoustics. It is found that inclusions responding 
to transverse motions do not affect the energy propagation in sandwich plates with a soft core. Xu 
et al. [29] analyzed the transmission of vibration energy flow in simply supported stiffened plates 
using the structural intensity method and showed that the existence of stiffeners can change the 
energy flow in plate. Wang et al. [30] investigated the power flow characteristics of a complex 
plate-cylindrical shell system using the substructure method. Zhu et al. [31] investigated the 
vibration transmission and power flow behaviour of harmonically excited laminated composite 
plates attached with an inerter-based suppression device based on the substructure method and 
analyzed the effects of fibre orientations and different lamination schemes on vibration power 
flow input and transmission as well as the kinetic energy. Tang et al. [32] presented the method 
of reverberation-ray matrix for the free vibration analysis of plate/shell coupled structures based 
on the classical thin plate theory and the Flügge thin shell theory, but the method is only applicable 
to the plate/shell coupled structures where the plate is simply supported boundary conditions on 
both opposite sides. Wang et al. [33] calculated the bending coupling loss factor of L-shaped plate 
using finite element method (FEM), and analyzed the effect of the plate length, internal loss factor, 
concentrated mass and boundary condition on coupling loss factor. It is found that the energy of 
longitudinal and transverse waves increases sharply with the decrease of plate length, and then the 
accuracy of the coupling loss factor calculated using FEM decreases. 

The above analysis of energy flow of stiffened plate structures is basically focused on the 
simply supported boundary. Moreover, the analytical solution for stiffened thin plates with fully 
clamped boundary based on the wave method is currently available [34], but the vibration energy 
flow of stiffened thick plates has not been analyzed and investigated. Therefore, based on the finite 
integral transform technique [35], an analytical model is established for the analysis of the 
vibration energy flow of stiffened thin and thick rectangular plates with fully clamped boundary 
at medium and high frequencies. The natural frequencies and input mobilities of a stiffened 
rectangular plate are calculated using the developed analytical model, and the accuracy of the 
model is validated by the finite element and propagation wave method [34]. The energy flow 
characteristics across the beam of the stiffened plate are classified into three categories according 
to the vibration modes, and the effects of transverse shear deformation and rotatory inertia on the 
energy flow at the beam/plate coupling interface are investigated. 

2. Formulations of the stiffened plates 

A structural model of a fully clamped stiffened rectangular plate is shown in Fig. 1. The 
stiffener is a beam structure of rectangular cross-section inserted symmetrically into the plate 
structure. It is assumed that the insertion position of the beam is parallel to the direction of the 𝑦-coordinate of the plate (𝑥 = 𝑥௔). The internal force components at the coupled boundary of the 
plate and beam are also shown in Fig. 1, where 𝑄 is the shear force per unit length and 𝑀 is the 
moment per unit length. 𝐹଴ is the amplitude of a point excitation source applied at position ሺ𝑥,𝑦ሻ = ሺ𝑥଴,𝑦଴ሻ. 

 
a) 

 
b) 

 
c) 

Fig. 1. a) A graphic illustration of a fully clamped stiffened rectangular plate, b) the base plate and the 
coupling force and moments at the interface, c) the stiffening beam 
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2.1. Analytical solution of clamped stiffened Kirchhoff plate 

Based on the finite integral transform method [35], the analytical solution of vibration response 
of a stiffened rectangular thin plate with fully clamped boundary is given in this subsection. In 
addition, Kirchhoff thin plate theory is employed for the plate structure, and Euler-Bernoulli thin 
beam theory is in the beam structure. For a steady state vibration, the governing equation of the 
bending displacement (𝑊) of stiffened plate under the point force excitation can be reduced to 
[36]: 

𝐷 ቆ𝜕ସ𝑊𝜕𝑥ସ + 2 𝜕ସ𝑊𝜕𝑥ଶ𝜕𝑦ଶ + 𝜕ସ𝑊𝜕𝑦ସ ቇ − 𝜌௣ℎ𝜔ଶ𝑊= 𝐹଴𝛿ሺ𝑥 − 𝑥଴ሻ𝛿ሺ𝑦 − 𝑦଴ሻ − 𝑄𝛿ሺ𝑥 − 𝑥௔ሻ −𝑀𝛿ᇱሺ𝑥 − 𝑥௔ሻ, (1)

where 𝐷 are the bending stiffness of the base plate, in which ℎ is the thickness, 𝜌௣ is the surface 
mass, and 𝜔 is the angular frequency. 

For a stiffened thin plate with fully clamped edges, the analytical solution of the vibration 
response is obtained using a finite sine integral transform, whose Fourier transform integral pair 
is [35]: 

𝑊ഥ ሺ𝑚,𝑛ሻ = න න 𝑊ሺ𝑥,𝑦ሻ sinሺ𝑘௠𝑥ሻ sinሺ𝑘௡𝑦ሻ 𝑑𝑥𝑑𝑦௕
଴

௔
଴ , (2)

𝑊ሺ𝑥,𝑦ሻ = 4𝑎𝑏 ෍ ෍𝑊ഥ ሺ𝑚,𝑛ሻஶ
௡ୀଵ

ஶ
௠ୀଵ sinሺ𝑘௠𝑥ሻ sinሺ𝑘௡𝑦ሻ. (3)

The governing equations for the flexural (𝑈) and torsional (𝜃) displacements of the thin beam 
can be written as [36]: 𝜕ସ𝑈𝜕𝑦ସ − 𝑘௕ସ𝑈 = 𝑄𝐵, (4)∂ଶ𝜃𝜕𝑦ଶ + 𝑘௧ଶ𝜃 = 𝑀𝑇 , (5)

where 𝑘௕ and 𝑘௧ are the flexural and torsional wavenumbers, 𝐵 and 𝑇 are the flexural and 
torsional stiffness. 

Similarly, the Fourier transform pairs of bending and torsional displacements of a clamped 
thin beam write [35]: 

𝑈ഥሺ𝑛ሻ = න 𝑈ሺ𝑦ሻ sinሺ𝑘௡𝑦ሻ௕
଴ 𝑑𝑦, (6)

𝑈ሺ𝑦ሻ = 2𝑏෍𝑈ഥሺ𝑛ሻ sinሺ𝑘௡𝑦ሻஶ
௡ୀଵ , (7)

𝜃̅ሺ𝑛ሻ = න 𝜃ሺ𝑦ሻ sinሺ𝑘௡𝑦ሻ 𝑑𝑦௕
଴ , (8)

𝜃ሺ𝑦ሻ = 2𝑏෍ 𝜃̅ሺ𝑛ሻ sinሺ𝑘௡𝑦ሻஶ
௡ୀଵ . (9)

The two-dimensional finite sine integral transform as shown in Eq. (2) is applied to each term 
of the governing equation shown in Eq. (1), and then substituting its boundary conditions [36], the 
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vibration response solution of the stiffened rectangular thin plate with fully clamped boundary 
under the excitation force can be obtained as: 𝑊ሺ𝑥,𝑦ሻ= 4𝑎𝑏 ෍ ෍𝐻௠௡ሺ௣ሻ൫𝐹଴ sin(𝑘௠𝑥଴) sin(𝑘௡𝑦଴) − sin(𝑘௠𝑥௔)𝑄௡ − 𝑘௠ cos(𝑘௠𝑥௔)𝑀௡ஶ

௡ୀଵ
ஶ

௠ୀଵ+ 𝐷𝑘௡((−1)௡𝐼௠ − 𝐽௠) + 𝐷𝑘௠((−1)௠𝐾௡ − 𝐿௡)൯ sin(𝑘௠𝑥) sin(𝑘௡𝑦), (10)

where: 𝐻௠௡(௣) = 1 ൫𝐷𝑘௠ସ + 2𝐷𝑘௠ଶ 𝑘௡ଶ + 𝐷𝑘௡ସ − 𝜌௣ℎ𝜔ଶ൯⁄ , 𝑄௡ = න 𝑄௕଴ sin(𝑘௡𝑦)𝑑𝑦 ,      𝑀௡ = න 𝑀௕଴ sin(𝑘௡𝑦)𝑑𝑦, 𝐼௠ = න 𝜕ଶ𝑊𝜕𝑦ଶ ቤ௬ୀ௕௔
଴ sin(𝑘௠𝑥)𝑑𝑥 ,       𝐽௠ = න ∂ଶ𝑊𝜕𝑦ଶ ቤ௬ୀ଴௔

଴ sin(𝑘௠𝑥)𝑑𝑥, 
𝐾௡ = න ∂ଶ𝑊𝜕𝑥ଶ ቤ௫ୀ௔௕

଴ sin(𝑘௡𝑦)𝑑𝑦 ,       𝐿௡ = න ∂ଶ𝑊𝜕𝑥ଶ ቤ௫ୀ଴௕
଴ sin(𝑘௡𝑦)𝑑𝑦. 

Accordingly, a single finite sine integral transform as shown in Eqs. (6) and (8) is performed 
for each term of the governing equations shown in Eqs. (4) and (5), respectively, and then 
substituting its boundary conditions [36], the vibration response of the thin beam on the plate is 
solved as: 

𝑈(𝑦) = 2𝑏෍𝐻௡(௕) ቆ𝑄௡𝐵 + 𝑘௡((−1)௡𝐿௕ − 𝐿଴)ቇ sin(𝑘௡𝑦)ஶ
௡ୀଵ , (11)

𝜃(𝑦) = 2𝑏෍𝐽௡ 𝑀௡𝑇 sin(𝑘௡𝑦)ஶ
௡ୀଵ , (12)

where 𝐻௡(௕) = 1 (𝑘௡ସ − 𝑘௕ସ)⁄  and 𝐽௡ = 1 (𝑘௧ଶ − 𝑘௡ଶ)⁄ . 𝐿௕ = பమ௎డ௬మቚ௬ୀ௕ and 𝐿଴ = பమ௎డ௬మቚ௬ୀ଴ can be 

determined by the boundary conditions of the clamped thin beam [36]. 

2.2. Analytical solution of clamped stiffened Mindlin plate 

Cremer et al. [37] suggested that the thin plates model is applicable to the vibroacoustic 
predictions of plates where the ratio of the bending wavelength of the plate to its thickness is 
greater than a factor of six. However, even if the plate is very thin, vibroacoustic predictions can 
be subject to large errors near the applied position of concentrated force or at the medium to high 
frequencies. Therefore, Zhang and Lin [38] revised the criteria for the thin plates model by Cremer 
[37], pointing out that the standard for using the thin plate model should be doubled, that is, the 
bending wavelength to thickness ratio of the plate is greater than 12, in order to achieve a 
prediction error of less than 5 %. Based on the finite integral transform method, the analytical 
solution of vibration response of a stiffened rectangular thick plate with fully clamped boundary 
is given in this subsection. In addition, Mindlin thick plate theory is employed for the plate 
structure, and Timoshenko thick beam theory is in the beam structure. The thick plate theory is a 
first-order shear deformation theory, which is applicable to investigate the vibration of moderately 
thick plates with thickness not exceeding twenty percent of the shortest planform dimension [39]. 
For a steady state vibration, the governing equations of the bending displacement (𝑊) and rotation 
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angles 𝜑௫ and 𝜑௬ of the normal with regard to the x and y coordinates for stiffened plate under 
point force excitation can be described as [40]: 𝜕ଶ𝑊𝜕𝑥ଶ + 𝜕ଶ𝑊𝜕𝑦ଶ − 𝜕𝜑௫𝜕𝑥 − 𝜕𝜑௬𝜕𝑦 + 𝜌௣ℎ𝜔ଶ𝑊𝐶= 𝐹଴𝐶 (𝑥 − 𝑥଴)𝛿(𝑦 − 𝑦଴) − 𝑄𝐶 𝛿(𝑥 − 𝑥௔) −𝑀𝐶 𝛿′(𝑥 − 𝑥௔), (13)

𝜕ଶ𝜑௫𝜕𝑥ଶ + 1 − 𝜈2 𝜕ଶ𝜑௫𝜕𝑦ଶ + 1 + 𝜈2 𝜕ଶ𝜑௬𝜕𝑥𝜕𝑦 + 𝐶𝐷 ൬𝜕𝑊𝜕𝑥 − 𝜑௫൰ + 𝜌௣𝐼௣𝜔ଶ𝜑௫𝐷 = 0, (14)𝜕ଶ𝜑௬𝜕𝑦ଶ + 1 − 𝜈2 𝜕ଶ𝜑௬𝜕𝑥ଶ + 1 + 𝜈2 𝜕ଶ𝜑௫𝜕𝑥𝜕𝑦 + 𝐶𝐷 ൬𝜕𝑊𝜕𝑦 − 𝜑௬൰ + 𝜌௣𝐼௣𝜔ଶ𝜑௬𝐷 = 0, (15)

where 𝐶 is the shear stiffness of plate, and 𝐼௣ is the area moment of inertia per unit length of plate.  
The normal transform for the bending displacement 𝑊(𝑥,𝑦) and rotational displacements 𝜑௫(𝑥,𝑦), 𝜑௬(𝑥,𝑦) of the Mindlin thick plate using the two-dimensional finite sine integral 

transform can be represented as [35]: 

𝑊ഥ (𝑚,𝑛) = න න 𝑊(𝑥,𝑦) sin(𝑘௠𝑥) sin(𝑘௡𝑦)𝑑𝑥𝑑𝑦௕
଴

௔
଴ , (16)𝜑௫തതതത(𝑚,𝑛) = න න 𝜑௫(𝑥,𝑦)cos(𝑘௠𝑥)sin (𝑘௡𝑦)𝑑𝑥𝑑𝑦௕

଴
௔
଴ , (17)𝜑௬തതതത(𝑚,𝑛) = න න 𝜑௬(𝑥,𝑦)sin(𝑘௠𝑥)cos (𝑘௡𝑦)𝑑𝑥𝑑𝑦௕

଴
௔
଴ . (18)

Their inverse transforms are: 

𝑊(𝑥,𝑦) = 1𝑎𝑏 ෍ ෍𝜀௠𝜀௡𝑊ഥ (𝑚,𝑛)ஶ
௡ୀଵ

ஶ
௠ୀଵ sin(𝑘௠𝑥) sin(𝑘௡𝑦), (19)

𝜑௫(𝑥,𝑦) = 1𝑎𝑏 ෍ ෍𝜀௠𝜀௡𝜑௫തതതത(𝑚,𝑛)ஶ
௡ୀ଴

ஶ
௠ୀ଴ cos(𝑘௠𝑥) sin(𝑘௡𝑦), (20)

𝜑௬(𝑥,𝑦) = 1𝑎𝑏 ෍ ෍𝜀௠𝜀௡𝜑௬തതതത(𝑚,𝑛)ஶ
௡ୀ଴

ஶ
௠ୀ଴ sin(𝑘௠𝑥) cos(𝑘௡𝑦). (21)

The governing equations for the flexural displacement 𝑈, rotation angle 𝜓 and torsional 
displacement 𝜃 of the thick beam write [40]: 

ቆ𝜕𝜓𝜕𝑦 − ∂ଶ𝑈𝜕𝑦ଶቇ − 𝜌௕𝜔ଶ𝜅𝐺௕ 𝑈 = 𝑄𝜅𝐺௕𝐴௕, (22)𝜕ଶ𝜓𝜕𝑦ଶ + 𝜅𝐺௕𝐴௕𝐸௕𝐼௕ ൬𝜕𝑈𝜕𝑦 − 𝜓൰ + 𝜌௕𝜔ଶ𝐸௕ 𝜓 = 0, (23)∂ଶ𝜃𝜕𝑦ଶ + 𝑘௧ଶ𝜃 = 𝑀𝑇 , (24)

where 𝜌௕ is the mass density of beam, 𝐴௕ is the cross-sectional area of beam, and 𝐼௕ is the area 
moment of inertia of beam. 𝐸௕ and 𝐺௕ are Young’s modulus and shear modulus, and 𝜅 is the shear 
coefficient. 

The normal transform for the transverse displacement 𝑈(𝑦), the rotation angle 𝜑(𝑦) and the 
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torsional displacement 𝜃(𝑦) of the Timoshenko thick beam using the one-dimensional finite sine 
integral transform can be written as [35]: 

𝑈ഥ(𝑛) = න 𝑈(𝑦) sin(𝑘௡𝑦)௕
଴ 𝑑𝑦, (25)𝜑ത(𝑛) = න 𝜑(𝑦)௕
଴ cos(𝑘௡𝑦)𝑑𝑦, (26)𝜃̅(𝑛) = න 𝜃(𝑦) sin(𝑘௡𝑦)𝑑𝑦௕
଴ . (27)

Their inverse transforms are: 

𝑈(𝑦) = 1𝑏෍𝜀௡𝑈ഥ(𝑛) sin(𝑘௡𝑦)ஶ
௡ୀ଴ , (28)

𝜑(𝑦) = 1𝑏෍𝜀௡𝜑ത(𝑛) cos(𝑘௡𝑦)ஶ
௡ୀ଴ , (29)

𝜃(𝑦) = 1𝑏෍𝜀௡𝜃̅(𝑛) sin(𝑘௡𝑦)ஶ
௡ୀ଴ . (30)

Each term of the governing equations (Eqs. (13-15)) of the Mindlin plate is transformed by the 
corresponding two-dimensional finite integral transform shown in Eqs. (16-18), and then 
substituting their boundary conditions [40], the vibration response solution of the stiffened 
rectangular thick plate with fully clamped boundary under the excitation force is derived as: 𝑊(𝑥,𝑦)= 4𝑎𝑏 ෍ ෍ቆ𝑃ଵଵ 𝐹଴𝐶 sin(𝑘௠𝑥଴) sin(𝑘௡𝑦଴) − 𝑃ଵଵ sin(𝑘௠𝑥௔)𝐶 𝑄௡ஶ

௡ୀଵ
ஶ

௠ୀଵ− 𝑃ଵଵ 𝑘௠𝑐𝑜𝑠(𝑘௠𝑥௔)𝐶 𝑀௡ − 𝑃ଵଶ(−1)௠𝐶௡ + 𝑃ଵଶ𝐷௡ − 𝑃ଵଷ(−1)௡𝐴௠+ 𝑃ଵଷ𝐵௠ቇ sin(𝑘௠𝑥) sin(𝑘௡𝑦), 
(31)

𝜑௫(𝑥,𝑦)= 4𝑎𝑏 ෍ ෍ቆ𝑃ଵଶଵ 𝐹଴𝐶 sin(𝑘௠𝑥଴) sin(𝑘௡𝑦଴) − 𝑃ଶଵ sin(𝑘௠𝑥௔)𝐶 𝑄௡ஶ
௡ୀଵ

ஶ
௠ୀଵ− 𝑃ଶଵ 𝑘௠cos(𝑘௠𝑥௔)𝐶 𝑀௡ − 𝑃ଶଶ(−1)௠𝐶௡ + 𝑃ଶଶ𝐷௡ − 𝑃ଶଷ(−1)௡𝐴௠+ 𝑃ଶଷ𝐵௠ቇ cos(𝑘௠𝑥) sin(𝑘௡𝑦), 

(32)

𝜑௬(𝑥,𝑦)= 4𝑎𝑏 ෍ ෍ቆ𝑃ଷଵ 𝐹଴𝐶 sin(𝑘௠𝑥଴) sin(𝑘௡𝑦଴) − 𝑃ଷଵ sin(𝑘௠𝑥௔)𝐶 𝑄௡ஶ
௡ୀଵ

ஶ
௠ୀଵ− 𝑃ଷଵ 𝑘௠cos(𝑘௠𝑥௔)𝐶 𝑀௡ − 𝑃ଷଶ(−1)௠𝐶௡ + 𝑃ଷଶ𝐷௡ − 𝑃ଷଷ(−1)௡𝐴௠+ 𝑃ଷଷ𝐵௠ቇ sin(𝑘௠𝑥) cos(𝑘௡𝑦), 

(33)
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where: 

𝐴௠ = න 𝜕𝜑௬𝜕𝑦 ฬ௬ୀ௕௔
଴ sin(𝑘௠𝑥)𝑑𝑥 ,      𝐵௠ = න 𝜕𝜑௬𝜕𝑦 ฬ௬ୀ଴௔

଴ sin(𝑘௠𝑥)𝑑𝑥, 
𝐶௡ = න 𝜕𝜑௫𝜕𝑥 ฬ௫ୀ௔௕

଴ sin(𝑘௡𝑦)𝑑𝑦 ,      𝐷௡ = න 𝜕𝜑௫𝜕𝑥 ฬ௫ୀ଴௕
଴ sin(𝑘௡𝑦)𝑑𝑦, 

൥𝑃ଵଵ 𝑃ଵଶ 𝑃ଵଷ𝑃ଶଵ 𝑃ଶଶ 𝑃ଶଷ𝑃ଷଵ 𝑃ଷଶ 𝑃ଷଷ൩     
=
⎣⎢⎢
⎢⎢⎢
⎡ቆ𝑘௠ଶ + 𝑘௡ଶ − 𝜌௣ℎ𝜔ଶ𝐶 ቇ −𝑘௠ −𝑘௡𝐶𝐷 𝑘௠ 𝜌௣𝐼௣𝜔ଶ𝐷 − 𝑘௠ଶ − 1 − 𝜈2 𝑘௡ଶ − 𝐶𝐷 −1 + 𝜈2 𝑘௠𝑘௡𝐶𝐷 𝑘௡ − 1 + 𝜈2 𝑘௠𝑘௡ 𝜌௣𝐼௣𝜔ଶ𝐷 − 𝑘௡ଶ − 1 − 𝜈2 𝑘௠ଶ − 𝐶𝐷⎦⎥⎥

⎥⎥⎥
⎤ିଵ.

Meanwhile, applying the corresponding one-dimensional finite integral transform as shown in 
Eqs. (25)-(27) to each term of Eqs. (22)-(24), and substituting their boundary conditions [40], the 
vibration response solution of the thick beam on the plate is: 

𝑈(𝑦) = 2𝑏෍൭𝐻ଵଵ 𝑄௡𝜅𝐺௕𝐴௕ − 𝐻ଵଶ((−1)௡𝐿଴௕ − 𝐿଴଴)൱ sin(𝑘௡𝑦)ஶ
௡ୀଵ , (34)

𝜓(𝑦) = 2𝑏෍൭𝐻ଶଵ 𝑄௡𝜅𝐺௕𝐴௕ − 𝐻ଶଶ((−1)௡𝐿଴௕ − 𝐿଴଴)൱ cos(𝑘௡𝑦)ஶ
௡ୀଵ , (35)

𝜃(𝑦) = 2𝑏෍𝐽௡ 𝑀௡𝑇 sin(𝑘௡𝑦)ஶ
௡ୀଵ , (36)

where ൤𝐻ଵଵ 𝐻ଵଶ𝐻ଶଵ 𝐻ଶଶ൨ = ቎𝑘௡ଶ − ఘ್ఠమ఑ீ್ −𝑘௡఑ீ್஺್௞೙ா್ூ್ ఘ್ఠమா್ − 𝑘௡ଶ − ఑ீ್஺್ா್ூ್ ቏
ିଵ

. 𝐿଴௕ = பటడ௬ቚ௬ୀ௕ and 𝐿଴଴ = பటడ௬ቚ௬ୀ଴ can 

be solved by the boundary conditions of the clamped thick beam [40]. 

3. Numerical evaluation 

This section is to verify the accuracy of the analytical models presented in the previous section 
for stiffened thin and thick plate with fully clamped boundary. The material properties and 
structural parameters of the plate and beam structure of a stiffened rectangular plate in the 
numerical study are shown in Table 1. It is assumed that the beam is inserted into the rectangular 
plate at position 𝑥௔ = 1 m, and the unit normal point excitation force is applied at position (𝑥଴,𝑦଴) = (0.6 m,0.3 m). In the simulation calculation of frequency response, the frequency 
resolution is 0.1 Hz. 

Table 1. Structural parameters and material properties of the plate and beam 
Length and 

width of 
plate 

Thickness 
of plate 

Cross-sectional 
area of beam Density Young’s 

modulus 
Poisson’s 

ratio 
Loss 

factor 𝜂 𝑎 = 3.6 m 𝑏 = 1 m ℎ = 0.02 m 𝐴௕ = 0.08×0.02 
m2 

𝜌௣ = 𝜌௕ = 2660 kg/m3  
𝐸௣ = 𝐸௕ = 7.1e10 Pa  𝜈 = 0.3 𝜂 = 0.001 
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3.1. Natural frequencies  

First of all, the first 20 natural frequencies of the stiffened thin plate with the fully clamped 
edges calculated using integral transform technique are compared to those calculated using finite 
element analysis (FEA) and propagation wave approach (PWA) based on Kirchhoff thin plate 
theory, which are listed in Table 2. In the finite element simulation, the base plate is meshed by 
180×50 shell elements so that there are more than eight elements per bending wavelength at the 
highest frequency of concern. The ribs are meshed accordingly to match up with the plate mesh. 
Each node of the plate and beam elements has 6 degrees of freedom, including 3 degrees of 
freedom for displacements and 3 degrees of freedom for angles in 𝑥, 𝑦, and 𝑧 respectively. The 
plate and beam are connected by sharing nodes in FEA. It is shown that the relative difference of 
the modal frequencies calculated using the different approaches is within 2 % for all 20 modes 
under investigation, where the error is calculated using the results of the current method for the 
stiffened thin plate as a benchmark. The modal frequencies calculated using the current method 
are slightly higher than those of the corresponding modes using the propagation wave approach, 
indicating that the analytical model developed in this study is slightly stiffer in general than that 
using the propagation wave approach.  

Table 2. Natural frequencies of the first 20 modes of the stiffened plate structures 
Mode No 1 2 3 4 5 6 7 8 9 10 

Thin beam 
/thin plate 117.2970 133.6152 157.4177 163.1629 205.0329 250.6276 288.3759 315.4649 333.8181 344.8050 

FEA 116.0585 132.2859 155.1353 162.0501 202.5277 245.8025 285.2849 310.9836 329.1488 341.2128 
Error ( %) 1.06 % 0.99 % 1.45 % 0.68 % 1.22 % 1.93 % 1.07 % 1.42 % 1.40 % 1.04 % 
PWA [34] 116.3483 132.6946 156.2238 162.5179 204.2924 249.0644 287.9310 313.9991 331.4020 344.8195 
Error (%) 0.81 % 0.69 % 0.76 % 0.40 % 0.36 % 0.62 % 0.15 % 0.46 % 0.72 % 0.00 % 

Thick beam 
/thin plate 117.2673 133.5897 157.1762 163.1187 205.0051 250.5731 288.2267 315.1864 333.5372 344.3693 

Error (%) 0.03 % 0.02 % 0.15 % 0.03 % 0.01 % 0.02 % 0.05 % 0.09 % 0.08 % 0.13 % 
Thin beam 
/thick plate 116.9693 133.0809 156.7931 162.5141 203.6388 248.3967 286.5865 313.3714 331.4918 342.4816 

Error (%) 0.28 % 0.40 % 0.40 % 0.40 % 0.68 % 0.89 % 0.62 % 0.66 % 0.70 % 0.67 % 
Thick beam 
/thick plate 116.9023 133.0416 155.9205 162.3656 203.4258 247.8000 286.2973 313.1879 331.2329 342.3908 

Error (%) 0.34 % 0.43 % 0.95 % 0.49 % 0.78 % 1.13 % 0.72 % 0.72 % 0.77 % 0.70 % 
Mode No 11 12 13 14 15 16 17 18 19 20 

Thin beam 
/thin plate 357.5669 366.0314 410.9364 412.3221 470.4234 484.4397 501.7932 543.8724 568.1331 613.0749 

FEA 353.3012 360.2278 404.6380 405.3317 462.2912 476.4591 491.7497 534.6097 559.6128 601.5438 
Error (%) 1.19 % 1.59 % 1.53 % 1.70 % 1.73 % 1.65 % 2.00 % 1.70 % 1.50 % 1.88 % 
PWA [34] 355.1865 363.5154 408.8164 410.7373 468.6566 483.0754 498.6525 542.5303 567.9249 612.0169 
Error (%) 0.67 % 0.69 % 0.52 % 0.38 % 0.38 % 0.28 % 0.63 % 0.25 % 0.04 % 0.17 % 

Thick beam 
/thin plate 357.2534 365.9982 410.5394 412.1816 469.9265 484.1766 501.5539 543.1513 568.0211 612.7629 

Error (%) 0.09 % 0.01 % 0.10 % 0.03 % 0.11 % 0.05 % 0.05 % 0.13 % 0.02 % 0.05 % 
Thin beam 
/thick plate 354.7001 363.1441 409.3298 408.7895 465.5134 480.3375 496.8309 538.1847 562.5051 605.7633 

Error (%) 0.80 % 0.79 % 0.39 % 0.86 % 1.04 % 0.85 % 0.99 % 1.05 % 0.99 % 1.19 % 
Thick beam 
/thick plate 354.2919 362.6283 406.7519 408.5519 464.7690 479.8248 492.7883 536.4725 562.4874 605.4453 

Error (%) 0.92 % 0.93 % 1.02 % 0.91 % 1.20 % 0.95 % 1.79 % 1.36 % 0.99 % 1.24 % 

Subsequently, based on the analytical model of the stiffened Kirchhoff or Mindlin plate with 
fully clamped boundary, the first 20 natural frequencies of the thick beam stiffened thin plate, thin 
beam stiffened thick plate and the thick beam stiffened thick plate, and their deviations from the 
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first 20 natural frequencies of the thin beam stiffened thin plate are also calculated. It can be found 
that the deviation between them shows an increasing trend as the frequency increases, which is as 
expected that the stiffened thin plate model is only good for low frequency vibration 
prediction [38]. 

3.2. Input mobilities  

The input mobilities of the stiffened thin plate due to a unit point force excitation using finite 
integral transform technique and propagation wave technique are compared in Fig. 2. It is shown 
that the frequency responses of the stiffened thin plate using the two different techniques agree 
well with each other. There is some deviation between them at the higher peak frequencies. 

 
Fig. 2. Input mobility of the stiffened thin plate under the point force excitation 

 using two different techniques 

A convergent test is performed below to examine the effect of modal truncation on the 
accuracy of the results using the current method. In this test, the resonant frequency of the highest 
order mode in the 1000 Hz range is calculated using the 400×400 terms of modal truncation  
(𝑚 = 400, 𝑛 = 400) as the benchmark [9]. The modal frequency of the same mode is calculated 
for the modal truncation number from 50×50 terms to 400×400 terms with an increment of 10×10 
terms, and the errors of each calculated result from the benchmark are shown in Fig. 3. It is shown 
that the result converges gradually as more modal truncation terms are included in the calculation. 
The error induced is less than 1 % when the modal truncation number exceed 100×100 terms, 
while the series converges quite well when the included terms in the calculation are over 350×350. 

 
Fig. 3. A convergence test of the modal truncation for the clamped stiffened plate 
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3.3. Characteristics of the energy flow across the beam 

The energy flow on the beam/plate interface comprises two components, one governed by the 
shear force coupling: 

〈𝑃ொ〉 = 12 Reන 𝑄𝑈ሶ ∗௕
଴ 𝑑𝑦, (37)

and the other controlled by the moment coupling: 

〈𝑃ெ〉 = 12 Reන 𝑀𝜃ሶ ∗௕
଴ 𝑑𝑦. (38)

The energy flow components based on the thin beam/thin plate model across the beam due to 
the point force excitation applied on the plate are calculated and shown in Fig. 4. It is found that 
the energy flow characteristics of the beam/plate coupling interface depend on the plate vibration 
modes and can generally be classified into three categories: (a) modal energy flow is dominated 
by the shear force component where the moment component has a negligible contribution (e.g., 
category (a) in Fig. 4); (b) modal energy flow at the beam/plate interface is roughly carried by 
equal contribution from the shear force and moment couplings (e.g., category (b) in Fig. 4); and 
(c) modal energy flow across the beam is borne predominately by the shear force coupling, along 
with a noticeable contribution from the moment component (e.g., category (c) in Fig. 4). Further, 
it is discussed in detail how to determine the energy flow characteristics of the vibration modes of 
the stiffened plate at the beam/plate coupling interface. 

 
Fig. 4. The energy flow across the beam due to the point force excitation applied on the plate 

Mode group (a): 
It is found that if a stiffener is inserted near or at antinode line of the modal shapes of the 

stiffened plate, the stiffener is subjected to larger bending deformation in the modal vibration. In 
this case, the shear force component dominates the energy flow across the beam. Examples of the 
beam position for this mode group are shown in Fig. 5. 

Mode group (b):  
For this group of modes, the beam is located at or close to the nodal line of the modes where 

the beam undergoes a very small deformation in the modal vibration. Thus, both the shear force 
and moment couplings contribute equally to the energy flow across the beam. Examples of the 
beam position for this mode group are shown in Fig. 6. 
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a) 

 
b) 

Fig. 5. a) Mode shape distribution at 246 Hz, b) mode shape distribution at 921 Hz 

 
a) 

 
b) 

Fig. 6. a) Mode shape distribution at 357 Hz, b) mode shape distribution at 567 Hz 

Mode group (c): 
This group of modes can be considered as the general case of modal vibration of the stiffened 

plate where the beam is neither located at/near the antinode line of modes nor the nodal line of 
modes. For this group of modes, the beam undergoes a certain degree of bending deformation in 
the modal vibration, and thus the energy flow across the beam is carried predominately by the 
shear force coupling, while the moment coupling also provide a significant contribution. The 
contribution of these two coupling components to the total energy flow depends on the relative 
distance between the beam and the nodal line of modes. The closer the relative position of the 
beam to the nodal line of a mode, the greater the contribution of the moment component to the 
energy flow, and vice versa. Examples of the beam position for this mode group are shown in 
Fig. 7. 

 
a) 

 
b) 

Fig. 7. a) Mode shape distribution at 205 Hz, b) mode shape distribution at 683 Hz 

3.4. Effects of shear deformation and rotatory inertia on the energy flow 

Based on the dynamic model of the clamped stiffened Mindlin plate presented in this paper, 
the effects of shear deformation and rotatory inertia of the beam and plate on the energy flow 
across the beam are investigated by setting whether the shear deformation and rotatory inertia of 
the beam and plate are considered in the simulation calculation. Fig. 8 compares the effect of 
rotatory inertia of the beam and plate on the energy flow component 〈𝑃ெ〉 controlled by the 
moment coupling. The results indicate that the peak response frequency is hardly affected by the 
rotatory inertia, which is consistent with the conclusion drawn from the study of ribbed thick plates 
with simply supported boundary conditions [38]. It is shown that the inclusion of rotatory inertia 
increases the amplitude of this energy component though the peak response frequencies are almost 
not affected.  

Fig. 9 compares the effect of shear deformation of the beam and plate on the energy flow 
component 〈𝑃ெ〉. It is shown that the inclusion of shear deformation for the beam or plate produces 
a large attenuation of the amplitude of the energy flow borne by 〈𝑃ெ〉 in Mode group (c), but little 
effect on the other groups of modes. Simultaneously, compared with the energy flow without 
considering the shear deformation of the beam and plate, the peak frequencies of the energy flow 
after the plate including shear deformation are biased small and the deviation gradually increases 
with the increase of the studied frequency, while the shear deformation of the beam does not play 
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a significant role in this. 
Fig. 10 compares the effect of rotatory inertia of the beam and plate on the energy flow 

component 〈𝑃ொ〉. As expected, it is shown that the inclusion of rotatory inertia of the beam and 
plate have little effect on the energy flow component 〈𝑃ொ〉 controlled by the shear force coupling, 
and they only affect the energy flow component 〈𝑃ெ〉 controlled by the moment coupling. 

 
a) 

 
b) 

Fig. 8. a) Effect of rotatory inertia of the beam on 〈𝑃ெ〉, b) effect of rotatory inertia of the plate on 〈𝑃ெ〉 

 
a) 

 
b) 

Fig. 9. a) Effect of shear deformation of the beam on 〈𝑃ெ〉,  
b) effect of shear deformation of the plate on 〈𝑃ெ〉 

 
a) 

 
b) 

Fig. 10. a) Effect of rotatory inertia of the beam on 〈𝑃ொ〉, b) effect of rotatory inertia of the plate on 〈𝑃ொ〉 
It is shown in Fig. 11 that the inclusion of shear deformation in the beam or plate causes a 

decreased amplitude of 〈𝑃ொ〉 for modes in Mode group (c). The effect of shear deformation of the 
beam on the modes in other groups is less significant, as shown in Fig. 11(a). However, it is shown 
in Fig. 11(b) that the shear deformation of the plate can lead to an increased amplitude of 〈𝑃ொ〉 for 
modes in Mode group (b) due to the increased deformation of the beam in the modal vibration. 
Further, the main research results on the effects of shear deformation and rotatory inertia of the 
beam and plate on the energy flow component 〈𝑃ெ〉 and 〈𝑃ொ〉 across the beam are summarized and 
listed in Table 3. 
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a) 

 
b) 

Fig. 11. a) Effect of shear deformation of the beam on 〈𝑃ொ〉,  
b) Effect of shear deformation of the plate on 〈𝑃ொ〉 

Table 3. The effects of shear deformation and rotatory inertia of the beam or plate on 〈𝑃ெ〉 and 〈𝑃ொ〉 
Factor Structure 〈𝑃ெ〉 〈𝑃ொ〉 

Rotatory inertia 
Beam Increased amplitude Little effect 
Plate Increased amplitude Little effect 

Shear deformation 
Beam Mode group (c) Mode group (c) 
Plate Mode group (c) Mode group (b), (c) 

4. Conclusions 

Analytical solutions using finite integral transform technique are presented for the analysis of 
the vibration and energy flow of stiffened thin plates and stiffened thick plates with a fully clamped 
boundary. Results predicted using the current model are compared to those predicted using the 
FEA and PWA for validation. It is found that the vibration results predicted by all three techniques 
are in satisfactory agreement. The models are then utilized to study the effects of shear 
deformation and rotatory inertia of the beam and plate on the energy flow across the beam due to 
a point force excitation. Final conclusions are as follows: 

1) The rotatory inertia of the beam and plate mainly affects the energy flow component 〈𝑃ெ〉, 
and takes very little effect on the energy flow component 〈𝑃ொ〉.  

2) The shear deformation of the beam and plate causes the 〈𝑃ெ〉 amplitude to decrease for the 
group of modes where the beam is located at neither the nodal nor antinodal lines of modes, which 
is the same as the effect of shear deformation of the beam on the 〈𝑃ொ〉.  

3) However, the shear deformation of the plate leads not only to a decrease in the 〈𝑃ொ〉 
amplitude for the group of modes where the beam is located at neither the nodal nor antinodal 
lines of modes, but also to an increased amplitude of 〈𝑃ொ〉 for the group of modes where the beam 
is located at the antinodal line of modes due to an increased deformation of the beam. 
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