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Abstract. Based on Kirchhoff thin plate and Mindlin thick plate theories, the vibration and energy
flow characteristics of clamped stiffened plate are studied by using the analytical model
constructed by finite integral transform method. The results show that the energy flow
characteristics of the stiffened plate at the beam/plate coupling interface depend on the position of
the rib in the vibration modes of the plate. The effects of shear deformation and rotatory inertia on
the energy flow across the beam/plate coupling interface of the stiffened plate are further
investigated. It is found that the inclusion of rotatory inertia of the beam and plate in the model
only affects the energy flow component controlled by the moment coupling but not that controlled
by the shear force coupling. Whilst the inclusion of the shear deformation of the beam and plate
mainly causes a decreased amplitude of the energy flow for the mode group where the beam is
located away from both the nodal and antinodal lines of modes, in addition to the shear
deformation of the plate which also leads to an increased amplitude of the energy flow component
controlled by the shear force coupling for the mode group where the beam locates at the antinodal
line of modes. The understanding of energy flow characteristics of the stiffened plate at the
beam/plate interface is essential to effectively control the noise and vibration problems of
structures such as transformer tanks and machine covers.

Keywords: vibration, energy flow, clamped stiffened plates, finite integral transform.
Nomenclature

a,b Length and width of plate, m

C,D Bending and shear stiffness of plate

Pp,Pp  Mass density of plate and beams, kg/m?

E,, E,  Young’s modulus of plate and beam, N/M?

n Structural damping coefficient of plate and beams
v Poisson’s ratio

h Plate thickness, m

K Shear coefficient

I, Area moment of inertia per unit length of plate, m?
) Dirac delta function

Xq Positions of the ribs on the plate in the y direction, m
Gy Shear modulus of beams, N/M?

Ap Cross-sectional area of beams, m?

I, Area moment of inertia of beams, m*

k¢ Torsion wavenumber of beams

ky Flexural wavenumber of beams

T Torsional stiffness of beams

B Flexural stiffness of beams
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W Circular frequency, rad/s

F, External excitation force amplitude acting on plate, N
w Transverse displacement of plate

@x, ¢y  Rotation angles of the normal line of plate

U Transverse displacements of beams

P Rotation angles of beams

0 Torsional displacements of beams

Q Shear forces per unit length at the rib/plate interfaces
M Bending moments per unit length at the rib/plate interfaces
{Pp) Energy flow governed by the shear force component
(Py) Energy flow governed by the moment component

1. Introduction

Beams, plates and their coupled forms are the fundamental structural components in marine,
aerospace, vehicle transportation engineering and other fields. The average vibration energy of
these structures is often used to describe their vibration and acoustic radiation characteristics at
middle and high frequencies. Therefore, energy-based analysis methods are generally used for the
study of the mid- to high-frequency vibroacoustic response of stiffened plate structures currently,
which mainly include statistical energy analysis (SEA) and energy flow analysis (EFA). EFA isa
propagation wave method based on an energy equation, while SEA is a modal method. For
example, Langley et al. [1] investigated the vibration energy transmission characteristics of
periodically stiffened plates using SEA and analyzed the effect of periodic spacing of stiffeners
on energy transmission. Bercin [2] investigated the effects of shear distortion and rotary inertia on
the flexural energy transmission of a stiffened plate structure using the direct-dynamic stiffness
method and SEA, and showed that energy flow decreases significantly compared with the
transmitted energy calculated using the classical thin plate theory. Lin et al. [3] applied SEA
method to study vibration energy transmission in L-shaped plates with fully simply supported
boundary and calculated the energy flow between plates under definite force and moment
excitation conditions.

Wester and Mace [4-6] developed a wave-based method for the analysis of energy flow in
deterministic models involving two- and three-dimensional subsystems as well as complex
uncertain structures, and then analyzed the energy flow in coupled structures comprising two
regularly or irregularly rectangular plates. Li et al. [7] investigated vibrational wave and energy
flow characteristics of infinite thin plate of finite width with a part-through surface crack base on
wave method, and considered modeling the crack as a linear spring whose elasticity was derived
from the relationship between strain energy and stress intensity factor in fracture mechanics. They
showed that the vibrational energy flow of cracked plate is highly related to the depth and location
of the part-through crack. In addition, Pany et al. [8-11] investigated wave propagation and free
vibration of plate and shell structures based on the wave method and finite element method. For
example, Pany et al. [8] solved the natural frequencies for a circular cylindrical shell in radial
vibration using a wave propagation method. They found that the bounding frequencies and the
corresponding modes in all the propagation bands can be determined by choosing a proper periodic
element, and all the natural frequencies of a row of curved panels with simply supported extreme
edges can be determined from the phase frequency curves. Pany and Parthan [9] investigated wave
propagation along the axis of an infinite cylindrical curved plate supported at a regular interval to
determine its natural frequency in bending vibration using two approximate methods, one of which
uses beam functions and sinusoidal modes form of bending deflection to obtain propagation
constant curves, and the other uses a high-precision trigonometric finite element in conjunction
with the wave method to determine natural frequencies. Pany [10] investigated the propagation of
free waves in a two-dimensional periodic plate using the finite element method combined with
Floquet’s theory (periodic structure concept), which can be used to solve for the natural frequency
of a finite multi-supported flat plate with internal line supports by discretizing the propagation
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band. Pany and Parthan [11] studied the free vibration of a multi-supported finite curved panel
continuous in circumferential and axial directions using high-precision triangular finite element.
Zhang et al. [12] formulated the dynamic model of periodically coupled plate structure using the
dynamic stiffness method (DSM), which is a powerful tool for vibration analysis of periodic plate
structure due to its efficient substructure coupling technique. It is found that the DSM can obtain
accurate results with much less computational time than the finite element method.

Cotoni et al. [13] extended the energy flow approach to sound transmission problems through
a finite plate. Seo et al. [14] developed a power flow analysis method to predict the vibration
response of reinforced plate structures with simply supported boundaries from moderate to high
frequencies and analyzed the power transmission and reflection coefficients at the coupled
plate/beam interface. Song et al. [15] analyzed vibrational energy and intensity distribution of the
coupled beam-plate structures by EFA in medium-to-high frequencies ranges. Han et al. [16]
developed EFA method to predict the vibration energy density of the thin plate with mean flow in
the high frequency range. Ma et al. [17] studied the medium frequency vibration of a built-up plate
structure by EFA and calculated mode count, modal density, damping and coupling loss factors
and input mobility of plate structures. Zhu and Yang [18] investigated the power flow
characteristics and energy transmission of variable stiffness laminated composite plates with
curvilinear fibres subjected to harmonic excitation using the finite element method based on the
vibration power flow analysis. They indicated that the fibre angles can be tailored to change the
vibration transmission paths according to the specific excitation. Zhou et al. [19] investigated the
vibration energy flow transmission behavior of laminated composite plate structures coupled with
a line hinge using the substructure-based power flow analysis method and analyzed the effects of
the fiber orientation, boundary conditions and the position of coupling hinge on the vibration
transmission path. Teng et al. [20] calculated the energy density of the laminated plate with free
damping layers under high-frequency excitation based on EFA and analyzed the effects of the loss
factor and the thickness of the damping layer on the energy density.

In addition, there are several other methods used to analyze the vibration energy transmission
and sound energy transmission of plates and beams. Krishnappa and McDougall [21] investigated
sound intensity distribution and energy flow in the nearfield of a clamped circular plate vibrating
at its resonant frequencies using Rayleigh's integral formula and finite difference method, and
analyzed sound energy flow of the axisymmetric modes and sound intensity distributions of non-
axisymmetric modes. CieS§lik and Bochniak [22] presented a numerical analysis method of
structural intensity distribution to analyze the vibration energy flow across a stiffened rectangular
plate with simply supported boundary conditions. Pavi¢ [23] presented a model of a beam-plate
system for studying the distribution of vibration energy and energy flow in beams and rods under
excitation sources using numerical method. They showed that axial vibration is of equal
importance to transverse vibration in terms of energy flow of beams. Bercin [24] analyzed the
effects of in-plane vibrations on the energy transmission in plate-type structures using the dynamic
stiffness technique and showed that excluding in-plane modes may lead to large errors in energy
prediction unless the structure is very simple. Han et al. [25] developed a transfer function method
and an impedance method for calculating the energy response of simply supported beams and
plates excited by discrete random forces. Weaver [26] calculated the average square response of
an infinite homogeneous plate with undamped sprung massed distributed randomly based on
diagrammatic multiple-scattering theory. They found that the radiative transfer equation governs
the energy flow on time scales larger than the frequency inverse, while the diffusion equation
governs the energy flow at times larger than the residence time of the energy in the substructure.
Kessissoglou [27] investigated active attenuation of the plate flexural wave transmission through
a reinforcing beam on a semi-infinite simply supported stiffened plate. They showed that
significant attenuation of all the resonance peaks in the flexural wave transmission can be achieved
by using a single force and a single moment collocated on the beam. Sorokin [28] studied the
vibration and energy propagation in an infinitely long fluid-loaded sandwich plates bearing
concentrated masses and supported by springs based on the sixth order theory of multilayered
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plates coupled with the standard theory of linear acoustics. It is found that inclusions responding
to transverse motions do not affect the energy propagation in sandwich plates with a soft core. Xu
et al. [29] analyzed the transmission of vibration energy flow in simply supported stiffened plates
using the structural intensity method and showed that the existence of stiffeners can change the
energy flow in plate. Wang et al. [30] investigated the power flow characteristics of a complex
plate-cylindrical shell system using the substructure method. Zhu et al. [31] investigated the
vibration transmission and power flow behaviour of harmonically excited laminated composite
plates attached with an inerter-based suppression device based on the substructure method and
analyzed the effects of fibre orientations and different lamination schemes on vibration power
flow input and transmission as well as the kinetic energy. Tang et al. [32] presented the method
of reverberation-ray matrix for the free vibration analysis of plate/shell coupled structures based
on the classical thin plate theory and the Fliigge thin shell theory, but the method is only applicable
to the plate/shell coupled structures where the plate is simply supported boundary conditions on
both opposite sides. Wang et al. [33] calculated the bending coupling loss factor of L-shaped plate
using finite element method (FEM), and analyzed the effect of the plate length, internal loss factor,
concentrated mass and boundary condition on coupling loss factor. It is found that the energy of
longitudinal and transverse waves increases sharply with the decrease of plate length, and then the
accuracy of the coupling loss factor calculated using FEM decreases.

The above analysis of energy flow of stiffened plate structures is basically focused on the
simply supported boundary. Moreover, the analytical solution for stiffened thin plates with fully
clamped boundary based on the wave method is currently available [34], but the vibration energy
flow of stiffened thick plates has not been analyzed and investigated. Therefore, based on the finite
integral transform technique [35], an analytical model is established for the analysis of the
vibration energy flow of stiffened thin and thick rectangular plates with fully clamped boundary
at medium and high frequencies. The natural frequencies and input mobilities of a stiffened
rectangular plate are calculated using the developed analytical model, and the accuracy of the
model is validated by the finite element and propagation wave method [34]. The energy flow
characteristics across the beam of the stiffened plate are classified into three categories according
to the vibration modes, and the effects of transverse shear deformation and rotatory inertia on the
energy flow at the beam/plate coupling interface are investigated.

2. Formulations of the stiffened plates

A structural model of a fully clamped stiffened rectangular plate is shown in Fig. 1. The
stiffener is a beam structure of rectangular cross-section inserted symmetrically into the plate
structure. It is assumed that the insertion position of the beam is parallel to the direction of the
y-coordinate of the plate (x = x,). The internal force components at the coupled boundary of the
plate and beam are also shown in Fig. 1, where Q is the shear force per unit length and M is the
moment per unit length. F, is the amplitude of a point excitation source applied at position

(x,y) = (x0,¥0)-

/ /
k}' a /) N‘ Z a I

clamped

Fy clamped y clamped
) ! Fy ™t
b |
D/ ctamped b o ~; /
/ " clamped I /‘M
N (x0,.10) clamped (o0 o) l ’
7y clamped
x, N Frrrrrrosr s :
a) b) ©)

Fig. 1. a) A graphic illustration of a fully clamped stiffened rectangular plate, b) the base plate and the
coupling force and moments at the interface, c) the stiffening beam
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2.1. Analytical solution of clamped stiffened Kirchhoff plate

Based on the finite integral transform method [35], the analytical solution of vibration response
of a stiffened rectangular thin plate with fully clamped boundary is given in this subsection. In
addition, Kirchhoff thin plate theory is employed for the plate structure, and Euler-Bernoulli thin
beam theory is in the beam structure. For a steady state vibration, the governing equation of the
bending displacement (W) of stiffened plate under the point force excitation can be reduced to
[36]:

D 64W+2 oW +64W hw?W
ox* 0x29y? = oy* Ppi®
= Fo6(x — x0)0(y — ¥0) — Q6 (x — xq) — M&'(x — x,),

(D

where D are the bending stiffness of the base plate, in which h is the thickness, p,, is the surface
mass, and w is the angular frequency.

For a stiffened thin plate with fully clamped edges, the analytical solution of the vibration
response is obtained using a finite sine integral transform, whose Fourier transform integral pair
is [35]:

a rb
W(m,n) = f J- W (x,y) sin(k,,x) sin(k,y) dxdy, )
4 [ee] [ee]
W(x,y) = 7 Z Z W (m, n) sin(k,,x) sin(k,,y). 3)

The governing equations for the flexural (U) and torsional (8) displacements of the thin beam
can be written as [36]:

Q
oy V=g Y
9%0 + K20 M 5)
ay2 "t T’

where k;,, and k; are the flexural and torsional wavenumbers, B and T are the flexural and
torsional stiffness.

Similarly, the Fourier transform pairs of bending and torsional displacements of a clamped
thin beam write [35]:

b
U(n) = f U() sinny) dy, ©)
0
2% _
UG) =3 ) U sintk,y), ™
g:l
G(n) = f 6(y) sin(kny) dy, ®)
0
2%
60 =7 > () sin(kyy). ©
n=1

The two-dimensional finite sine integral transform as shown in Eq. (2) is applied to each term
of the governing equation shown in Eq. (1), and then substituting its boundary conditions [36], the
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vibration response solution of the stiffened rectangular thin plate with fully clamped boundary
under the excitation force can be obtained as:

Wiy
= % Z Z H,(,f’,z(Fo sin(kp,xo) sin(k,,yo) — sin(ky,xg) Qn — kpy cos(kpxe) My, (10)
+ Dk:l(z(l—nlz)lnlm —Jm) + Dk ((=1)™K,, — L)) sin(k,,x) sin(k, ),

where:

HE) = 1/(Dkf, + 2DkZ k% + Dkft — pyhw?),

b b
Qn = j Qsin(kny)dy, M, = j M sin(kny) dy,
0 0

agW| agzyw|
Iy, =J- > sin(kp,x)dx, Jm =f > sin(k,,x)dx,
0 dy y=b 0 oy y=0
borw borw
K, =f sin(k,y)dy, L =f sin(k,y)dy.
n 0 axz ea n n 0 axz o n

Accordingly, a single finite sine integral transform as shown in Egs. (6) and (8) is performed
for each term of the governing equations shown in Egs. (4) and (5), respectively, and then
substituting its boundary conditions [36], the vibration response of the thin beam on the plate is
solved as:

2 ) (@n . .
UG) =3 ) B (F+ kn((~ DLy = Lo) |sinCkny), (an
n=1
2 M, .
00) =3 Y I sinlie,) (12)
n=1
where H? = 1/(k% — kf) and J, = 1/(k? —k2). L, = 62—12] and L, = 02—Z can be
9y*ly=p 9y*ly=g

determined by the boundary conditions of the clamped thin beam [36].
2.2. Analytical solution of clamped stiffened Mindlin plate

Cremer et al. [37] suggested that the thin plates model is applicable to the vibroacoustic
predictions of plates where the ratio of the bending wavelength of the plate to its thickness is
greater than a factor of six. However, even if the plate is very thin, vibroacoustic predictions can
be subject to large errors near the applied position of concentrated force or at the medium to high
frequencies. Therefore, Zhang and Lin [38] revised the criteria for the thin plates model by Cremer
[37], pointing out that the standard for using the thin plate model should be doubled, that is, the
bending wavelength to thickness ratio of the plate is greater than 12, in order to achieve a
prediction error of less than 5 %. Based on the finite integral transform method, the analytical
solution of vibration response of a stiffened rectangular thick plate with fully clamped boundary
is given in this subsection. In addition, Mindlin thick plate theory is employed for the plate
structure, and Timoshenko thick beam theory is in the beam structure. The thick plate theory is a
first-order shear deformation theory, which is applicable to investigate the vibration of moderately
thick plates with thickness not exceeding twenty percent of the shortest planform dimension [39].
For a steady state vibration, the governing equations of the bending displacement (W) and rotation
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angles ¢, and ¢, of the normal with regard to the x and y coordinates for stiffened plate under
point force excitation can be described as [40]:

W 0*W  d¢, d¢, +pphw2W

6x2 -;a:yz ox dy 0 C u (13)
=2 (= x0)8(y = y0) = £ 8(x —x2) = =8 — xa),

%0, 1-vad’p, 1+vd2p, C AW I,w?

ox 1-v3, 1+4v <py+_(__(px)+wzo, (14)
Ox2 2 dy? 2 0xdy D\odx D

Ty Aviey il Wy o (1)
o> "2 x> "2 axay D\ay )T D TV

where C is the shear stiffness of plate, and I, is the area moment of inertia per unit length of plate.

The normal transform for the bending displacement W (x,y) and rotational displacements
©x(x,¥), @y(x,y) of the Mindlin thick plate using the two-dimensional finite sine integral
transform can be represented as [35]:

a rb
W(m,n)=f f W (x,y) sin(k,,x) sin(k,y) dxdy, (16)
Oa 0b
Oy (m,n) = J j @5 (x, y)cos(k,x)sin (k,y)dxdy, 17)
o Jo
a rb
@, (m,n) :f f @y (x, y)sin(kpyx)cos (k,y)dxdy. (18)
0 0

Their inverse transforms are:

NgE

1< _
W(x,y) = = Z EmEnW (m, n) sin(kp,x) sin(k,y), (19)
m=1n=1
1 (o] (o] o
) = D e (m,m) cos(lx) sin(kny), (20)
m;o no__oo
1
oy (x,y) = 7 Em&nPy (M, ) sin(ky,x) cos(kyy). (1)
m=0n=0

The governing equations for the flexural displacement U, rotation angle i and torsional
displacement 6 of the thick beam write [40]:

0 02U w?

o 0V _ppo”, @ (22)

dy dy? kG, kGLA,
9% KGyA, (U 2
oV | kG b(__ ) Po® 1 — o, (23)
dy? E,I, \dy Ey,
0%6 M

20 = — 24

ayz + kt 9 T; ( )

where pj, is the mass density of beam, A4; is the cross-sectional area of beam, and I}, is the area
moment of inertia of beam. Ej, and G, are Young’s modulus and shear modulus, and k is the shear
coefficient.

The normal transform for the transverse displacement U(y), the rotation angle ¢(y) and the

JOURNAL OF VIBROENGINEERING 7



AN ANALYTICAL MODEL FOR THE ANALYSIS OF VIBRATION AND ENERGY FLOW IN A CLAMPED STIFFENED PLATE USING INTEGRAL TRANSFORM
TECHNIQUE. HUI GUO, KAI ZHANG

torsional displacement 8(y) of the Timoshenko thick beam using the one-dimensional finite sine
integral transform can be written as [35]:

b
U(n) = f U() sinkny) dy, (25)
b
$(n) = f o) cos(kny) dy, (26)
0
b
6(n) = f 6(y) sin(kyy) dy. @7)
0

Their inverse transforms are:

I~ -
UG) =3 el sin(eny) 8)
n=0
1 o
$@) =3 ) end(m) cos(kny), 29)
v -
60 =3 ) enB(m)sin(lny) (30)

Each term of the governing equations (Egs. (13-15)) of the Mindlin plate is transformed by the
corresponding two-dimensional finite integral transform shown in Egs. (16-18), and then
substituting their boundary conditions [40], the vibration response solution of the stiffened
rectangular thick plate with fully clamped boundary under the excitation force is derived as:

weey)
: sin(k x)
=— Zl z (Pu sin(k,xo) sin(k,yo) — Piy %Qn
m=1n=1
o S(kmxa) 31)

I
"U

——F My — Pp(=D™Cy + PipDy — Pz (=D"4y,

+ P13Bm) sin(kmx) sin(k,y),

er(y)
4 sin(k,xg)
= b Z z <P121 sin(kpxo) sin(k,yo) — PZl%Qn
m=1n=1
k,, (32)
— Py s( Em€0s®EnXa) yy _ p,,(~1)MC, + PraDy — Pry(~1)" Ay

+ P23Bm) cos(kmx) sin(k,y),

oy (x,y)
4 F, sin(k,,,x,)
= b Z z <P31 sin(kpxo) sin(k,yo) — P31%Qn
m=1n=1
k cos(k xg) (33)
—P3 %Mn — P3,(=1)™Cy, + P30, — P33(—1)"Ap,

+ P33Bm) sin(k,,x) cos(k,y),
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where:
a9 29
A =J ﬂ| sin(k,,x)dx, =j - sin(k,,x)dx,
o 1, o 0
bo b
Dy . Dx .
C,=| — k,y)dy, D,=| — kny)dy,
n fo x|, sin(k,y)dy, Dy fo 9% xzosm( ny)dy
P11 P12 P13
P21 PZZ P23
P31 P32 P33 1
[ hw? B
(k,%ﬁkﬁ—ppc ) —k,, —k,
_ C ppl,w? 1—v C 1+v
- Ekm pg krzn_ 2 k‘rzl_B - 2 kmkn
C 1+v pp L w? 1—-v C
Ekn - 2 kmkn p; k121 krzn - 5_

Meanwhile, applying the corresponding one-dimensional finite integral transform as shown in
Eqgs. (25)-(27) to each term of Egs. (22)-(24), and substituting their boundary conditions [40], the
vibration response solution of the thick beam on the plate is:

Qn
Uly) = b Z <H11 KGyA, — Hyp(FD"Lop — Loo)) sin(k,y), (34)
Yy) = b Z ( ——— — Hypp (=1)"Lgp — Loo)) cos(kny), (35)
2 CX)
60) = EZ S sin(k,y), (36)
n=1
pb(" —k -t
Hyy Hp _ KGp n _ap oy
where Hy, Hypl = | kepipkn  ppo? s KGpdy Lop = . o and Lyy = > e can
Eplp Ep n Eplp

be solved by the boundary conditions of the clamped thick beam [40].
3. Numerical evaluation

This section is to verify the accuracy of the analytical models presented in the previous section
for stiffened thin and thick plate with fully clamped boundary. The material properties and
structural parameters of the plate and beam structure of a stiffened rectangular plate in the
numerical study are shown in Table 1. It is assumed that the beam is inserted into the rectangular
plate at position x, = 1 m, and the unit normal point excitation force is applied at position
(x0,¥0) = (0.6 m,0.3 m). In the simulation calculation of frequency response, the frequency
resolution is 0.1 Hz.

Table 1. Structural parameters and material properties of the plate and beam

Lquth and Thickness Cross-sectional . Young’s Poisson’s Loss
width of Density .
plate of plate area of beam modulus ratio factor n
a=3.6m _ A, =0.08x0.02 | pp=pp= | Ep=Ep= _ _
b=1m h=0.02m ) 2660 ke/m’ 7 1610 Pa v=0.3 | n=0.001
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3.1. Natural frequencies

First of all, the first 20 natural frequencies of the stiffened thin plate with the fully clamped
edges calculated using integral transform technique are compared to those calculated using finite
element analysis (FEA) and propagation wave approach (PWA) based on Kirchhoff thin plate
theory, which are listed in Table 2. In the finite element simulation, the base plate is meshed by
180%50 shell elements so that there are more than eight elements per bending wavelength at the
highest frequency of concern. The ribs are meshed accordingly to match up with the plate mesh.
Each node of the plate and beam elements has 6 degrees of freedom, including 3 degrees of
freedom for displacements and 3 degrees of freedom for angles in x, y, and z respectively. The
plate and beam are connected by sharing nodes in FEA. It is shown that the relative difference of
the modal frequencies calculated using the different approaches is within 2 % for all 20 modes
under investigation, where the error is calculated using the results of the current method for the
stiffened thin plate as a benchmark. The modal frequencies calculated using the current method
are slightly higher than those of the corresponding modes using the propagation wave approach,
indicating that the analytical model developed in this study is slightly stiffer in general than that
using the propagation wave approach.

Table 2. Natural frequencies of the first 20 modes of the stiffened plate structures
Mode No | 1 2 3 4 5 6 7 8 9 10
Ttlflll?l 2?:2 117.2970(133.6152(157.4177163.1629205.0329250.6276288.3759315.4649333.8181(344.8050
FEA  |116.0585132.2859]155.1353162.0501202.5277245.8025285.2849310.9836/329.1488341.2128
Error (%) | 1.06 % | 0.99 % | 1.45% | 0.68 % | 1.22% | 1.93 % | 1.07 % | 1.42 % | 1.40 % | 1.04 %
PWA [34] |116.3483(132.6946/156.2238]162.5179204.2924249.0644287.9310313.99911331.4020344.8195
Error (%) | 0.81 % | 0.69 % | 0.76 % | 0.40 % | 0.36 % | 0.62 % | 0.15 % | 0.46 % | 0.72 % | 0.00 %
T/?ﬁfrlf;’;i? 117.2673133.5897/157.1762(163.1187205.0051250.5731288.2267315.18641333.5372344.3693
Error (%) | 0.03 % | 0.02% | 0.15 % | 0.03 % | 0.01 % | 0.02 % | 0.05 % | 0.09 % | 0.08 % | 0.13 %
/{}?ilélkbglﬁ 116.9693/133.08091156.7931/162.5141203.6388248.3967286.5865313.3714331.4918342.4816
Error (%) | 0.28 % | 0.40 % | 0.40 % | 0.40 % | 0.68 % | 0.89 % | 0.62 % | 0.66 % | 0.70 % | 0.67 %
fgﬁﬁigﬁg 116.9023(133.0416(155.9205/162.36561203.4258247.8000286.2973313.1879331.2329342.3908
Error (%) | 0.34 % | 0.43 % | 0.95% | 0.49 % | 0.78 % | 1.13% | 0.72% | 0.72% | 0.77 % | 0.70 %
Mode No | 11 12 13 14 15 16 17 18 19 20
%‘Iﬂ ZT::? 357.5669366.0314410.9364/412.3221470.4234/484.4397/501.7932/543.8724/568.1331/613.0749
FEA  353.3012360.2278404.6380405.3317462.2912476.4591491.7497534.6097/559.6128601.5438
Error (%) | 1.19% | 1.59% | 1.53% | 1.70% | 1.73 % | 1.65 % | 2.00 % | 1.70 % | 1.50 % | 1.88 %
PWA [34] 355.1865363.51541408.81641410.7373/468.6566483.0754498.6525/542.5303/567.9249/612.0169
Error (%) | 0.67 % | 0.69 % | 0.52 % | 0.38 % | 0.38 % | 0.28 % | 0.63 % | 0.25 % | 0.04 % | 0.17 %
];?ﬁicrll(sg;;n357.2534365.9982410.5394412.1816469.9265484.1766501.5539543.1513568.0211612.7629
Error (%) | 0.09 % | 0.01 % | 0.10 % | 0.03 % | 0.11 % | 0.05 % | 0.05 % | 0.13 % | 0.02% | 0.05 %
/{lll’i‘élkb;lﬁ 354.7001363.1441409.3298408.7895/465.51341480.3375496.8309/538.1847/562.5051/605.7633
Error (%) | 0.80 % | 0.79 % | 0.39 % | 0.86 % | 1.04 % | 0.85% | 0.99 % | 1.05 % | 0.99 % | 1.19 %
};l}lllizll((2?;::354.2919362.6283406.7519408.5519464.7690479.8248492.7883 536.4725(562.4874605.4453
Error (%) | 0.92 % | 0.93 % | 1.02% | 0.91 % | 1.20 % | 0.95 % | 1.79 % | 1.36 % | 0.99 % | 1.24 %

Subsequently, based on the analytical model of the stiffened Kirchhoff or Mindlin plate with
fully clamped boundary, the first 20 natural frequencies of the thick beam stiffened thin plate, thin
beam stiffened thick plate and the thick beam stiffened thick plate, and their deviations from the
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first 20 natural frequencies of the thin beam stiffened thin plate are also calculated. It can be found
that the deviation between them shows an increasing trend as the frequency increases, which is as
expected that the stiffened thin plate model is only good for low frequency vibration
prediction [38].

3.2. Input mobilities

The input mobilities of the stiffened thin plate due to a unit point force excitation using finite
integral transform technique and propagation wave technique are compared in Fig. 2. It is shown
that the frequency responses of the stiffened thin plate using the two different techniques agree
well with each other. There is some deviation between them at the higher peak frequencies.

107 T T T T T T

Propag: wave |
I Integral transform method|
102f 1
w
£ 107} E
g :
2
S 107F 1
]
= i
- &
a10°F
= 3
10 E
107 L 1 L L 1 L 1 L L
0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)
Fig. 2. Input mobility of the stiffened thin plate under the point force excitation
using two different techniques

A convergent test is performed below to examine the effect of modal truncation on the
accuracy of the results using the current method. In this test, the resonant frequency of the highest
order mode in the 1000 Hz range is calculated using the 400x400 terms of modal truncation
(m =400, n =400) as the benchmark [9]. The modal frequency of the same mode is calculated
for the modal truncation number from 50x50 terms to 400x400 terms with an increment of 10x10
terms, and the errors of each calculated result from the benchmark are shown in Fig. 3. It is shown
that the result converges gradually as more modal truncation terms are included in the calculation.
The error induced is less than 1 % when the modal truncation number exceed 100x100 terms,
while the series converges quite well when the included terms in the calculation are over 350%350.

1 1 1 1 1 o LT
100 150 200 250 300 350 400
Number of series

Fig. 3. A convergence test of the modal truncation for the clamped stiffened plate
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3.3. Characteristics of the energy flow across the beam

The energy flow on the beam/plate interface comprises two components, one governed by the
shear force coupling:

1
<PQ)=ERef0 QU™ dy, (37)

and the other controlled by the moment coupling:
1 b
(Pu) =5 Re j Mé* dy. (38)
0

The energy flow components based on the thin beam/thin plate model across the beam due to
the point force excitation applied on the plate are calculated and shown in Fig. 4. It is found that
the energy flow characteristics of the beam/plate coupling interface depend on the plate vibration
modes and can generally be classified into three categories: (a) modal energy flow is dominated
by the shear force component where the moment component has a negligible contribution (e.g.,
category (a) in Fig. 4); (b) modal energy flow at the beam/plate interface is roughly carried by
equal contribution from the shear force and moment couplings (e.g., category (b) in Fig. 4); and
(c) modal energy flow across the beam is borne predominately by the shear force coupling, along
with a noticeable contribution from the moment component (e.g., category (c) in Fig. 4). Further,
it is discussed in detail how to determine the energy flow characteristics of the vibration modes of
the stiffened plate at the beam/plate coupling interface.

T T
(© —<P_>

Energy Flow (Nm/s)

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Fig. 4. The energy flow across the beam due to the point force excitation applied on the plate

Mode group (a):

It is found that if a stiffener is inserted near or at antinode line of the modal shapes of the
stiffened plate, the stiffener is subjected to larger bending deformation in the modal vibration. In
this case, the shear force component dominates the energy flow across the beam. Examples of the
beam position for this mode group are shown in Fig. 5.

Mode group (b):

For this group of modes, the beam is located at or close to the nodal line of the modes where
the beam undergoes a very small deformation in the modal vibration. Thus, both the shear force
and moment couplings contribute equally to the energy flow across the beam. Examples of the
beam position for this mode group are shown in Fig. 6.
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a)
Fig. 6. a) Mode shape distribution at 357 Hz, b) mode shape distribution at 567 Hz

Mode group (c):

This group of modes can be considered as the general case of modal vibration of the stiffened
plate where the beam is neither located at/near the antinode line of modes nor the nodal line of
modes. For this group of modes, the beam undergoes a certain degree of bending deformation in
the modal vibration, and thus the energy flow across the beam is carried predominately by the
shear force coupling, while the moment coupling also provide a significant contribution. The
contribution of these two coupling components to the total energy flow depends on the relative
distance between the beam and the nodal line of modes. The closer the relative position of the
beam to the nodal line of a mode, the greater the contribution of the moment component to the
energy flow, and vice versa. Examples of the beam position for this mode group are shown in
Fig. 7.

Fig. 7. a) Mode shape distribution at 205 Hz, b) mode shape distribution at 683 Hz

3.4. Effects of shear deformation and rotatory inertia on the energy flow

Based on the dynamic model of the clamped stiffened Mindlin plate presented in this paper,
the effects of shear deformation and rotatory inertia of the beam and plate on the energy flow
across the beam are investigated by setting whether the shear deformation and rotatory inertia of
the beam and plate are considered in the simulation calculation. Fig. 8 compares the effect of
rotatory inertia of the beam and plate on the energy flow component (P,) controlled by the
moment coupling. The results indicate that the peak response frequency is hardly affected by the
rotatory inertia, which is consistent with the conclusion drawn from the study of ribbed thick plates
with simply supported boundary conditions [38]. It is shown that the inclusion of rotatory inertia
increases the amplitude of this energy component though the peak response frequencies are almost
not affected.

Fig. 9 compares the effect of shear deformation of the beam and plate on the energy flow
component {Py;). It is shown that the inclusion of shear deformation for the beam or plate produces
a large attenuation of the amplitude of the energy flow borne by (P,;) in Mode group (c), but little
effect on the other groups of modes. Simultancously, compared with the energy flow without
considering the shear deformation of the beam and plate, the peak frequencies of the energy flow
after the plate including shear deformation are biased small and the deviation gradually increases
with the increase of the studied frequency, while the shear deformation of the beam does not play
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a significant role in this.

Fig. 10 compares the effect of rotatory inertia of the beam and plate on the energy flow
component (PQ). As expected, it is shown that the inclusion of rotatory inertia of the beam and
plate have little effect on the energy flow component (Py) controlled by the shear force coupling,
and they only affect the energy flow component (P,) controlled by the moment coupling.

T T T T T T T T 10°
<Py

02

Energy Flow (Nm/s)
Energy Flow (Nmis)

o
—Without shear deformation and rotatory inertia 10

[—Without shear deformation and rotatory inertia
|=_Beam with rotatory inertia and without shear deformation

I I I N -+ Plate with rotatory inertia and without shear deformation
0 100 200 300 400 500 600 700 800 900 1000 ] 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Frequency (Hz)

a) b)
Fig. 8. a) Effect of rotatory inertia of the beam on (P,;), b) effect of rotatory inertia of the plate on (Py,)

10° 10
<Py <Py
i
102 i 102
0 V@ ; 7
H k] E
< i) Z
k i 10*
2 i1 il g
[ ! b i
> i ", Y
2 i 2100
w E i
]
]
h 108 £
Beam with rotatory inertia and without shear deformation| [~ "Plate with rotatory inertia and without shear deformation|
X N N -+ Beam with rotatory inertia and shear deformation . |-+ Plate with rotatory inertia and shear i
0 100 200 300 400 500 600 700 800 900 1000 4 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz) Frequency (Hz)
a) b)

Fig. 9. a) Effect of shear deformation of the beam on (Py,),
b) effect of shear deformation of the plate on (Py)

Energy Flow (Nm/s)
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Fig. 10. a) Effect of rotatory inertia of the beam on (Py), b) effect of rotatory inertia of the plate on (Py)

It is shown in Fig. 11 that the inclusion of shear deformation in the beam or plate causes a
decreased amplitude of (Py) for modes in Mode group (c). The effect of shear deformation of the
beam on the modes in other groups is less significant, as shown in Fig. 11(a). However, it is shown
in Fig. 11(b) that the shear deformation of the plate can lead to an increased amplitude of (Py) for
modes in Mode group (b) due to the increased deformation of the beam in the modal vibration.
Further, the main research results on the effects of shear deformation and rotatory inertia of the
beam and plate on the energy flow component (Py,) and (P,) across the beam are summarized and
listed in Table 3.

14 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460



AN ANALYTICAL MODEL FOR THE ANALYSIS OF VIBRATION AND ENERGY FLOW IN A CLAMPED STIFFENED PLATE USING INTEGRAL TRANSFORM
TECHNIQUE. HUI GUO, KAI ZHANG

100

Energy Flow (Nm/s)
Energy Flow (Nm/s)

|~ Beam with rotatory inertia and without shear deformation| [—Without shear deformation and rotatory inertia
= Beam with rotatory inertia and shear deformation -~ Plate with shear deformation and without rotatory inertial

0 100 200 300 400 500 600 700 80O 900 1000 0 100 200 300 400 500 600 700 300 900 1000
Frequency (Hz) Frequency (Hz)
a) b)

Fig. 11. a) Effect of shear deformation of the beam on (Py),
b) Effect of shear deformation of the plate on (Py)

Table 3. The effects of shear deformation and rotatory inertia of the beam or plate on (Py) and (Py)

Factor Structure (Py) (Pg)
o Beam Increased amplitude Little effect
Rotatory inertia Plate Increased amplitude Little effect
Beam Mode group (c) Mode group (c)
Shear deformation Plate Mode group (c) Mode group (b), (c)

4. Conclusions

Analytical solutions using finite integral transform technique are presented for the analysis of
the vibration and energy flow of stiffened thin plates and stiffened thick plates with a fully clamped
boundary. Results predicted using the current model are compared to those predicted using the
FEA and PWA for validation. It is found that the vibration results predicted by all three techniques
are in satisfactory agreement. The models are then utilized to study the effects of shear
deformation and rotatory inertia of the beam and plate on the energy flow across the beam due to
a point force excitation. Final conclusions are as follows:

1) The rotatory inertia of the beam and plate mainly affects the energy flow component (Py,),
and takes very little effect on the energy flow component (Py).

2) The shear deformation of the beam and plate causes the (P,,) amplitude to decrease for the
group of modes where the beam is located at neither the nodal nor antinodal lines of modes, which
is the same as the effect of shear deformation of the beam on the (Py).

3) However, the shear deformation of the plate leads not only to a decrease in the (Py)
amplitude for the group of modes where the beam is located at neither the nodal nor antinodal
lines of modes, but also to an increased amplitude of (Py) for the group of modes where the beam
is located at the antinodal line of modes due to an increased deformation of the beam.
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