Assessment of CO₂ leakage using mechanistic modelling approach for CO₂ injection in deep saline aquifer of Lithuanian basin in presence of fault and fractures

Shankar Lal Dangi¹, Shruti Malik², Pijus Makauskas³, Vilte Karliute⁴, Ravi Sharma⁵, Mayur Pal⁶

¹, ³ Indian Institute of Technology, Department of Earth Science, IIT Roorkee, India
², ³, ⁴, ⁶ Kaunas University of Technology, Department of Mathematical Modelling, Kaunas, Lithuania

¹Corresponding author
E-mail: ¹psmk9904@gmail.com, ²shruti.malik@ktu.lt, ³pijus.makauskas@ktu.lt, ⁴vilte.karaliute@ktu.edu, ⁵ravi.sharma@es.iitr.ac.in, ⁶mayur.pal@ktu.lt

Received 7 September 2023; accepted 11 September 2023; published online 13 October 2023
DOI https://doi.org/10.21595/bcf.2023.23619

Baltic Carbon Forum 2023 in Riga, Latvia, October 12-13, 2023
Copyright © 2023 Shankar Lal Dangi, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Injecting CO₂ into deep saline aquifers is a prominent strategy for carbon capture and storage (CCS) to mitigate greenhouse gas emissions. However, ensuring the long-term integrity of CO₂ storage is crucial to prevent leakage and potential environmental hazards. This paper investigates the impact of fracture permeability on CO₂ leakage volumes in the context of CO₂ injection into Syderiai deep saline aquifer for carbon capture and storage (CCS) applications. It explores the relationship between fracture permeability and the potential for CO₂ leakage, as well as the volume of CO₂ dissolved in water above and below the cap rock. Furthermore, the study examines how the leakage volume may evolve over time in Syderiai deep saline aquifer. A mechanistic model of Syderiai deep saline aquifer, of Lithuanian basin, was developed based on average permeability, porosity, NTG and thickness (Fig. 1) and is used in this analysis.

Keywords: carbon capture and storage, CO₂ leakage, leakage risk, faults and fractures, modeling, Lithuania.

Fig. 1. Permeability distribution Grid block for 1000 md Fracture and Soluble CO₂ in water for 1000 md Fracture after 100 year

References


