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Abstract. The seismic response of buildings is crucial for structural performance analysis. For 
structures with complete design data, the seismic response can be predicted using finite element 
analysis. However, for structures lacking necessary information, building finite element models 
and predicting their seismic response can be challenging. Compared to finite element analysis, 
convolutional neural networks (CNNs) can establish a neural network mapping relationship 
between the structure and the seismic response to predict the structural response without design 
data. In this paper, a structural response prediction model based on CNNs is established, aiming 
to analyze the effect of natural frequency reduction on the structural response after the Tohoku 
earthquake. The successful prediction of the structural acceleration and displacement response 
provides a new analytical method for predicting the seismic response of buildings lacking design 
data. 
Keywords: seismic response prediction, convolutional neural networks, deep learning, the 
Tohoku earthquake. 

1. Introduction 

The structural response to earthquakes is a crucial factor seismic performance analysis. After 
the Tohoku earthquake, the natural frequency of buildings decreased significantly due to soil 
nonlinearity [1]. Although numerical simulation can be used for structural seismic response 
analysis, it requires building complex finite element models based on relevant design drawings. 
Besides, the analysis process demands strict theoretical support and involves solving problems 
such as boundary condition processing and selection of seismic input. Consequently, predicting 
the seismic response of some structures lacking necessary design data can be challenging. In recent 
years, artificial intelligence and deep learning have developed rapidly, with convolutional neural 
networks (CNNs) being one of the most popular deep learning algorithms used in image 
classification, object detection, and text recognition [2]. The academic and engineering 
communities are increasingly applying CNNs to the field of civil engineering, such as structural 
modal identification, structural health monitoring, and seismic response prediction [3]-[5]. 
Compared to finite element analysis, CNNs can establish a neural network mapping relationship 
between the structure and the seismic response to predict the structural response without design 
data. This approach provides a promising solution for predicting the seismic response of structures 
without necessary design data. In this paper, CNNs will be used to establish a structural response 
prediction model, analyze the structural response, and study the impact of the decrease in natural 
frequency on the structural response after Tohoku earthquake on March 11, 2011. The acceleration 
and displacement responses of the structure before and after the earthquake was successfully 
predicted and compared by using the model, and the predicted results meet expectations, providing 
a new method for predicting the structural response of buildings lacking of design data 
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information. 

2. Construction and training of CNN 

The construction of CNN models mainly includes two parts: hyper-parameters and grid 
structure. The hyper-parameters of CNN mainly include the depth of the network, the 
characteristics of convolutional and pooling layers, as well as the number of neurons and 
activation functions in fully connected layers. The method of changing the network depth is to 
change the hierarchy firstly, and then increase the number of convolutional layers in each 
hierarchy under the same hierarchical structure to further change the network depth [6]. 

 
Fig. 1. Flowchart of the method 

 
Fig. 2. Diagram of target building 

The TKD building was selected as the target building, which is located at Tsukuda, Chuo-ku, 
Tokyo. It is constructed as a reinforced concrete building founded on relatively soft top soil layers, 
and the accelerometers are located on the 1st, 18th, and 37th floors (shown in Fig. 2). The north-
south component of recorded data from the accelerometers located on the 1st floor is used as 
neural network input and the same component of recorded data from the accelerometers on the 
37th floor is used as the output of the neural network. A two-stage method is used to predict the 
acceleration response of the structure. Firstly, in this paper, the structural response prediction 
model with single input and single output is developed using the Autoregressive Moving Average 
with Exogenous Inputs (ARMAX [7]) model with the corresponding strong earthquake records as 
inputs and the acceleration response of the structure's roof as outputs. ARMAX is an 
autoregressive moving average model with additional inputs and its model structure is shown 
below: 𝑦ሺ𝑘ሻ = ෍ 𝑎௜𝑦ሺ𝑘 − 𝑖ሻ௣௜ୀଵ + ෍ 𝑏௜𝑥ሺ𝑘 − 𝑖ሻ௤௜ୀଵ + 𝑥ሺ𝑘ሻ + 𝑒ሺ𝑘ሻ, (1)

where 𝑦(𝑘) and 𝑥(𝑘) denote the output and input of the system at that moment in time, 
respectively, 𝑎௜ is called the autoregressive coefficient, 𝑏௜ is called the sliding average coefficient, 
and 𝑒(𝑘) is the measurement noise. The 𝑎௜ and 𝑏௜ are estimated using the Least Square Method. 

After building the model using ARMAX, a convolutional neural network is then used to predict 
the response of the structure. First, based on the numerical integration of the predicted acceleration 𝑦௔(𝑘) using the ARMAX model, the predicted velocity 𝑦௩(𝑘) and displacement 𝑦ௗ(𝑘) are 
obtained. Then, the 𝑥(𝑘), 𝑦௔(𝑘), 𝑦௩(𝑘), 𝑦ௗ(𝑘) and their n delayed values, i.e., their values of 
previous 𝑛 time points are combined to build the input of the CNN model (Fig. 1). In this paper, 
the delay number 𝑛 is set to range from 50 to 300. 

The north-south acceleration component of the 1st floor recorded before the March 11, 2011 
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Tohoku earthquake is used as the input of the test set, and the same acceleration component of the 
37th floor is used as the output of the test set. One of the input and output of the training set is 
shown in Fig. 3. The training is carried out by iterative solving, and the change of the root mean 
square error (RMSE) during the training process is shown in Fig. 3. A total of 𝑚 rounds of 
iterations is set, and as the number of iterations increases, the RMSE of the predicted value and 
the actual value as well as the loss function all show a decreasing trend in general, but when n is 
increased to a certain number, it will reach saturation, and at this time, the loss function reduction 
is not obvious when the number of iterations is increased. Here, the RMSE is used to measure the 
fit between the predicted values and the actual values, and the smaller the RMSE, the higher the 
accuracy of the measurement: 

𝑅𝑀𝑆𝐸 = ට෍(𝑦௠ − 𝑦௘)ଶ/𝑁, (2)

where 𝑁 is the number of samples in the data set, and 𝑦௠ and 𝑦௘ are the actual and predicted 
values, respectively. 

 
a) Time history curves of input and output 

 
b) Training RMSE 

Fig. 3. Input and output of CNN model training set (before the “3·11” Tohoku Earthquake) 

Table 1. Parameters of convolutional neural network model of structural response 

Layer name Parameterization 
Kernel size Number 

Input Layer 100×2 
Convolutional Layer 1 6×2 16 
Convolutional Layer 2 6×2 16 
Convolutional Layer 3 6×2 16 
Convolutional Layer 4 6×2 16 
Convolutional Layer 5 6×2 32 
Convolutional Layer 6 6×2 32 
Convolutional Layer 7 6×2 32 

FC Layer 1 256 
FC Layer 2 64 
FC Layer 3 1 

The optimal parameters of the convolutional layer, pooling layer, convolutional kernel, and 
fully connected layer neurons are mainly obtained based on a large number of experimental 
calculations of the control variable method, so that the fit between the predicted value and the 
actual value is maximized. The hyperparameters of the CNN prediction model of the structural 
response in this paper are shown in Table 1, where the third column indicates the number of 
neurons in the convolutional kernel or the fully connected layer, and FC represents the fully 
connected layer. Then the acceleration predicted by the CNN model is compared with the strong 
earthquake record from the accelerometer on the structure vertex. By inputting a seismic record 
(from the accelerometer located on 1st floor) into the CNN model to obtain the predicted values, 
it can be seen that the predicted values are basically consistent with the actual strong earthquake 
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records (shown in Fig. 4). The RMSE and standard deviation (Std) are both around 0.02, indicating 
there is only a slight difference between the actual and predicted values. 

 
a) Time history of actual and predicted response 

 
b) Cumulative energy of actual and predicted response 

 
c) Time history of actual and predicted response ([10, 20] time interval) 

 
d) Fourier spectrum (input) 

 
e) Fourier spectrum (response) 

 
f) Frequency response function 

Fig. 4. Comparison of CNN model training results with actual records (before the Tohoku Earthquake) 

The sum of squares of acceleration is generally defined as cumulative energy, which is an 
important physical quantity to characterize the non-stationary nature of the structural response, so 
the cumulative energy of acceleration is used to assess the agreement between the actual and 
predicted accelerations in this paper. The Fourier spectrums of the input, actual response and 
predicted response are calculated, then the frequency response function can be obtained and the 
peak frequencies corresponding to natural frequencies of the structure can be clearly identified, 
which can make the mechanical properties of the building evaluated (shown in Fig. 4(d-f)).  

 
Fig. 5. Time history of actual and predicted response 

Recorded data from the accelerometer located on 1st floor during another earthquake event is 
selected as input and the corresponding predicted results are shown in Fig. 5. Besides the 
comparison between the predicted and actual acceleration curves, the probability distributions and 
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normalized cumulative energy curves are also compared, which are basically the same in terms of 
trend and values (shown in Fig. 6(a-b)). Similarly, the Fourier spectrums and frequency response 
function are calculated, which indicates that the robustness of the proposed the CNN model is 
satisfactory (Fig. 6(c-e)). Most of the acceleration values are concentrated in the [-2, 2] interval, 
and the acceleration energy graphs are normalized for easy comparison. It can be seen that the 
values and trends of the acceleration energy graphs of the predicted and actual values are basically 
the same, and 80 % of the energy is concentrated in the first 100 s interval.  

A CNN prediction model was also built for strong earthquake data after the Tohoku 
Earthquake (still using the TKD building as target structure), but in order to make the article more 
compact, only the results of the data before the earthquake are shown in this paper. The above 
results show that the prediction model based on CNN has high prediction accuracy for structural 
seismic response and indicate that the method is feasible. 

 
a) Probability distributions 

 
b) Normalized cumulative energy curves 

 
c) Fourier spectrum (input) 

 
d) Fourier spectrum (response) 

 
e) Frequency response function 

Fig. 6. Comparison of CNN model training results with actual records (before the Tohoku Earthquake) 

3. Comparison of structural seismic response prediction results before and after the Tohoku 
earthquake 

After the validity and accuracy of the aforementioned CNN has been verified, the next step 
will be to input the ground vibration and obtain the acceleration response and displacement 
response of the structure through the model. By using CNN prediction models based on the data 
before and after the Tohoku earthquake on March 11, 2011, respectively, the top acceleration 
response and displacement response induced by the same acceleration input to the target structure 
(TKD building) can be obtained.  

The seismic response before and after the earthquake is calculated. 9 seismic waves are 
inputted for the calculation based on the established CNN prediction model, and finally the 
average of the maximum response before and after the earthquake is counted. Besides, the ratios 
of PGA after the earthquake to before the earthquake and ratios of Max. displacement after the 
earthquake to before the earthquake are calculated (shown in Fig. 7-8). The acceleration of the 
structure after the earthquake is generally seen to decrease, but the peak acceleration at the apex 
of the structure basically does not change much, on the contrary the relative displacement of the 
apex is increased. The results show that the acceleration response at the apex of the structure after 
the earthquake has slightly decreased to about 95 % of what it was before the earthquake. In 
contrast to the acceleration response, the average value of the maximum structural displacement 

-4 -2 0 2 4
Acceleration(cm/s2)

0

5

10

15

20
Actual Predicted



STRUCTURAL SEISMIC RESPONSE PREDICTION BASED ON CONVOLUTIONAL NEURAL NETWORKS.  
FEIYU GUO, YINFENG DONG, HUI TIAN, XINGYU ZHANG, QINGSHUANG SU 

 VIBROENGINEERING PROCEDIA. OCTOBER 2023, VOLUME 51 61 

is increased, by approximately 28 % of the value before the Tohoku Earthquake. 

4. Conclusions 

In this paper, a structural response prediction model has been developed based on CNN, which 
in turn analyzes the structural response and investigates the effect of the reduction in natural 
frequency on the structural response after the Tohoku Earthquake. Based on the training results 
and predicted values from this neural network model, the following conclusions are drawn. 

1) This CNN prediction model can effectively predict the seismic response of structures. 
2) The decrease in the natural frequency of the site after the Tohoku Earthquake resulted in a 

slight decrease in the acceleration response of the structure under seismic action and a significant 
increase in the displacement response. 

3) The seismic response prediction method based on CNN provides a new analysis method for 
predicting the structural response of buildings that lack design data information. 

 
Fig. 7. Predicted structural acceleration response before and after the Tohoku earthquake 

 
Fig. 8. Predicted structural displacement response before and after the Tohoku earthquake 
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