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Abstract. Since bearing fault signal in complex running status is usually characterized as 
nonlinear and non-stationary, it is difficult to extract accurate affluent features and achieve 
effective fault identification via conventional signal processing tools. In this article, a rolling 
bearing fault diagnosis technique based on variational mode decomposition and weighted 
multidimensional feature entropy fusion is proposed to address this issue, which is mainly 
composed of three procedures. First, the original signal undergoes the variational model 
decomposition. Next, the signal features are extracted by weighted multidimensional feature 
entropy as the input of the diagnosis model. Finally, the classification is performed by a 
convolutional neural network. The method is applied in simulation and experimental analysis. The 
experimental results show that the proposed method, which demonstrates strong immunity to noise 
and robustness, can more effectively and adaptively extract the fault features of rolling bearings 
and achieve the goal of identifying the rolling bearing fault category and damage degree under 
variable operating conditions. Meanwhile, this approach exhibits superior accuracy and 
identification performance to some similar entropy-based hybrid approaches referred to in this 
article, with a promising prospect in industrial application.  
Keywords: variational mode decomposition, weighted multidimensional feature entropy, 
convolutional neural network, rolling bearing, fault diagnosis. 

1. Introduction 

Rotating machinery, as a power equipment, has been widely used in a variety of production 
and processing industries. Rolling bearings are the key components of rotating machinery for 
power transmission, and their operating conditions directly concern the performance state of 
mechanical equipment [1]. Due to the harsh working environment and frequent full load operation, 
rolling bearings are quite easy to wear out until some fault comes about. Such a fault, once 
occurring, is likely to cause a series of consequences to the enterprise such as production 
equipment shutdown, economic loss, and personnel casualties. Therefore, monitoring the 
condition of rolling bearings and performing regular detection and troubleshooting are of vital 
significance to maintaining safe operation of the equipment. The rolling bearing fault vibration 
signal has a distinctive nonlinear non-stationary characteristics and contains rich and complex 
noise components, which makes it even difficult to extract its fault features [2]. 

At present, rolling bearing signal analysis methods mainly include time domain analysis, 
frequency domain analysis, time-frequency analysis, nonlinear analysis, graph theory, and so on. 
Among them, the time-frequency analysis method and the nonlinear analysis method are most 
commonly used. The traditional Fourier Transform (FT), a full-fledged mathematical theory with 
clear physical significance, has become an important tool for signal processing [3]. However, 
when analyzing a non-stationary signal, it is impossible to capture the time from the signal’s time 
series that corresponds to a particular frequency. The Short Time Fourier Transform (STFT) 
achieves localized analysis in the time and frequency domains by dividing the non-stationary 
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signal into a finite number of stationary time segments via the idea of sliding windowing [4]. 
However, the time and frequency resolutions of the STFT method are subject to the uncertainty 
principle and cannot be optimized simultaneously. In addition, due to its segmentation and 
windowing operation, this method also has a disadvantage that the window type and size are 
difficult to determine. The Wavelet Transform (WT) overcomes the shortcomings of STFT owing 
to its fixed time-frequency resolution and is therefore widely used in rolling bearing fault diagnosis 
[5]. However, WT has the problems of wavelet base, fixed basis function, constant 
multi-resolution, and so on, which are difficult to approach. Empirical Mode Decomposition 
(EMD) [6] does not require setting the basis function in advance, and the signal is recursively 
decomposed into a series of Intrinsic Mode Function (IMF) according to the time scale. However, 
its theory is incomplete, lacking in essential support of a rigorous mathematical basis; there are 
also shortcomings due to the existence of EMD mode mixing, over-envelope, under-envelope, and 
so on. Therefore, Ensemble Empirical Mode Decomposition (EEMD), an improved method based 
on EMD is proposed to suppress the mode mixing phenomenon by introducing Gaussian white 
noise, and by this method the literature [7] has successfully separated the signals with distinct 
modes corresponding to load variations and fault effects. However, EEMD is compute-intensive, 
and the residual noise may cause signal reconstruction error, thereby affecting the effectiveness 
of feature extraction. In 2005, a new adaptive decomposition algorithm called Local Mean 
Decomposition (LMD) was proposed by Smith to decompose the signal into multiple PF 
components based on pure FM and envelope signals according to the signal’s self-characteristics 
without losing signal contents [8]. However, LMD still has many shortcomings, such as the defect 
of end effect, and the problems of riding wave processing and noise sensitivity. In 2014, 
Dragomiretskiy [9] proposed Variational Mode Decomposition (VMD), a new time-frequency 
signal analysis method based on a completely non-recursive idea, to decompose a complex signal 
into a series of Amplitude-Modulated-Frequency-Modulated (AM-FM) signals without high 
computation complexity. The adaptive decomposition of the original signal is implemented by 
using a non-recursive variational mode decomposition model, which is built on a solid 
mathematical foundation and free of the defects of EMD and LMD such as mode mixing and end 
effect. A novel approach has been put forward that combines particle swarm optimization kernel 
fuzzy C‐means (PSO‐KFCM) and VMD [10]. The conclusions drawn from the experiment show 
that the method can achieve good results in bearing fault diagnosis. When the rolling bearing is 
abnormal, the energy structure of its vibration signal will vary by the type and degree of bearing 
fault, so will the position of the main frequency components of the vibration signal in the 
frequency domain. The VMD method is used to decompose the vibration signal orthogonally in a 
non-redundant way, and the decomposed signal can reflect the distribution characteristics of the 
original signal in different frequency bands. The signal decomposed by VMD can reflect the 
distribution characteristics of the original signal in different frequency bands, which is essentially 
an enhanced representation for the original signal. 

Major nonlinear analysis methods include the high-rank matrix, correlation dimension, 
probability density function parameters, and various types of entropy, and so on. Pincus [11] 
proposed Approximate Entropy (ApEn) by comparing the different findings before and after 
adding a white noise to a single sinusoidal signal. ApEn is an indicator of the complexity of time 
series with a non-negative number, and the larger the ApEn, the less regular the time series. 
However, due to the self-similarity drawback, the concept of ApEn is rarely applied in the machine 
fault diagnosis. In view of the self-similarity drawback of ApEn, Richman and Moorman [12] 
introduced the concept of sample entropy (SampEn) in 2000. However, what either SampEn or 
ApEn measured were the irregularity and self-similarity of time series on a single scale. In 2002, 
Costa et al. [13] introduced the enhanced concept of multi-scale entropy (MSE) to estimate the 
irregularity and self-similarity of time series on distinct scales and successfully characterized 
biological and physiological signals. Zhang et al. [14] first introduced MSE into bearing fault 
diagnosis and demonstrated that MSE can characterize the nonlinearity and complexity of bearing 
vibration signals, as well as the interaction and coupling effects between machine components, 
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more effectively than the traditional single-scale entropy. Composite Multi-scale Entropy (CMSE) 
was proposed on the basis of MSE, and it can solve the problems of inaccurate and larger 
fluctuations of entropy values existing in MSE, but not the problem of undefined entropy induced 
by too short sample time series [15], Refined Composite Multi-scale Entropy (RCMSE) proposed 
by Wu et al. is a new algorithm [16] to improve the accuracy of entropy estimation and reduce the 
probability of inducing undefined entropy. CHEN et al. [17] proposed Fuzzy Entropy (FE) on the 
basis of sample entropy, using an exponential function instead of the step function such that the 
entropy value has better continuity. However, the affiliation function used by Chen et al. in FE 
lacks physical significance and statistical significance; Combining the concept of FE, Zheng Jinde 
et al. [18] proposed Multi-scale Fuzzy Entropy (MFE) and applied it to the fault diagnosis of 
rolling bearings, showing that MFE is an effective method to measure the complexity of time 
series. Compared with single-scale entropy, it can reflect the holistic dynamics and reveal its 
evolutionary characteristics in detail. However, its multi-scale coarse-grained process may lead to 
fluctuations in entropy on larger scales and to the phenomenon of end “flying wing”. This is why 
Zheng et al. [19] proposed Composite Multi-scale Fuzzy Entropy (CMFE) to improve the stability 
and continuity of the entropy curve, though there remains the problem of undefined local entropy. 
The literature [20] applied Refined Composite Multi-scale Fuzzy Entropy (RCMFE) to the field 
of fault diagnosis and verified that RCMFE can accurately extract the information of vibration 
signal fault characteristics with excellent entropy stability. Permutation Entropy (PE) [21] is 
another method that can reflect the nonlinear dynamic characteristics of the vibration signal, and 
which is applied in the field of rolling bearing fault diagnosis with good diagnostic results. Zheng 
Jinde et al. [22] extracted the PE of the components by decomposing the vibration signal for rolling 
bearing fault diagnosis. Multi-scale Permutation Entropy (MPE) is defined as the PE with multi-
scale factors, which enables effective access to the vibration information of vibration signals with 
multi-scale factors and effective characterization of random mutative behaviors of the time series, 
as compared with single-scale permutation entropy [23]. However, in the MPE algorithm, as the 
scale factor increases, the coarse-grained process tends to shorten the time series, inevitably 
leading to a lack of characteristic information of the vibration signal on larger scales. For this 
reason, Refined Composite Multi-scale Permutation Entropy (RCMPE) was also proposed in the 
literature [24], and it is much less dependent than MPE on signal length. In this sense, RCMPE is 
more reliable than MPE. Despite the wide application of ApEn, SampEn, and PE, they each have 
shortcomings: ApEn cannot make a clear distinction between signals with low complexity; 
SampEn is not fast enough for long signals and is susceptible to mutated signals; PE fails to allow 
for the difference between amplitude averages and amplitude values. Rostaghi et al. [25] proposed 
a new irregular indicator of Dispersion Entropy (DE), which has overcome the limitations of PE 
and SE mentioned above while allowing for the relationship between amplitudes, with lower 
susceptibility to mutated signals and higher stability, and faster computation speed. In order to 
comprehensively and systematically reflect the uncertainty and complexity of time series, Azami 
et al. extended the DE at multi-scale into Multi-scale Dispersion Entropy (MDE), which reflects 
the complexity of time series at multiple time scales. MDE has not only addressed the problem of 
low stability of multi-scale coarse granulation, but also achieved a great improvement in accuracy. 
On the basis of DE, this paper proposes Composite Multi-scale Dispersion Entropy (CMDE), 
which demonstrates higher stability than traditional coarse-grained multi-scale procedures, to 
solve the problem of incomplete extraction of signal complexity features by single-scale DE. This 
technique also has some other advantages in computational error and feature extraction. The 
literature [26] also proposed Refined Composite Multi-scale Dispersion Entropy (RCMDE), 
which is applied in feature extraction from biological signals, and the entropy outperform several 
other types of multi-scale entropies in terms of computational error and feature extraction. Over 
the past few years, a few researchers have illustrated the advantages of RCMDE, RCMFE and 
RCMPE over the conventional methods. A detailed comparison between most of the 
above-mentioned entropy [27]. Minhas et al. proposed a new method for bearing fault diagnosis 
and identification based on Complementary Ensemble Empirical Mode Decomposition (CEEMD) 
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and weighted multi-scale entropy method [28]. The information represented by the quantitative 
single entropy index is limited, only capable to reflect the single characteristic information of time 
series; the analytic effect has certain limitations, such as not being capable to fully reflect the fault 
information of rolling bearing signal, and the inferior adaptability when a single entropy is used 
to represent the signal characteristic information. Therefore, it is necessary to take advantage of 
the complementary nature of the differences between different entropies to build a more 
comprehensive representation for the signal information of the high-dimensional feature set. To 
integrate the RCMDE, RCMFE and RCMPE methods with more effectiveness to reflect the 
characteristics of vibration signals more comprehensively, it is imperative to develop a robust 
technique which comprises critical and influential weighted parameters. The objective of 
including such parameters is to offset the entropy output values appropriately without actually 
interfering in the intrinsic characteristics of any particular entropy method. To make objective 
evaluation of the contribution of each entropy to signal feature extraction, this paper proposes a 
Weighted Multidimensional Feature Entropy (WMFE) method based on linear weighted single 
entropy, in which the weight of each entropy is calculated using the Standard Deviation Method 
(SDM) [29]. WMFE takes advantage of the complementary nature of the differences between 
different feature entropies to construct a more comprehensive high-dimensional feature vector set 
to represent fault type information and reflect the characteristics of the signal more 
comprehensively. 

Convolutional Neural Network (CNN) is a supervised deep learning algorithm developed in 
recent years [30], which has been applied in the field of fault diagnosis by scholars for its powerful 
capability in automatic feature extraction. In the literature [31] CNN was used to achieve bearing 
fault diagnosis and lubrication performance degradation in rotating machinery. Zhang et al. [32] 
proposed a CNN model based on the adaptive batch normalization (AdaBN) algorithm, which 
enabled adaptive feature extraction for bearing fault diagnosis under variable working conditions. 
CNN is capable of self-adaptively extracting multidimensional data abstract features; after being 
fused with a fully-connected network, it can achieve the result of automatic feature extraction 
oriented to the diagnostic target, namely the feature extraction from the effect to the cause, and 
avoid the uncertainty of manual feature screening. 

Synthesize the advantages of the above methods, a rolling bearing fault diagnosis method 
based on VMD and WMFE fusion is proposed in this paper. The procedure starts with 
decomposing the vibration signals of different fault categories of rolling bearings under variable 
working conditions by VMD; next, WMFE is extracted from the decomposed IMF components, 
which are then integrated into a high-dimensional data grid in matrix form and input into CNN for 
a judgment on the fault categories of rolling bearings. This way, accurate diagnosis of fault 
categories and damage severity of rolling bearings are achieved under variable working 
conditions. 

2. Algorithm introduction 

2.1. VMD 

The VMD algorithm is a non-recursive adaptive signal decomposition method, with its 
decomposition process shown in 0. The signal is decomposed into a number of AM-FM IMFs, 
and the process can be expressed as: 𝑢௞ሺ𝑡ሻ = 𝐴௞ሺ𝑡ሻcosሾ𝜑௞ሺ𝑡ሻሿ,     𝑘 = 1,2,⋯ ,𝐾, (1)

where 𝑡 is the current time; the phase 𝜑௞(𝑡) is a non-decreasing function of 𝑡; 𝑢௞(𝑡) is the 𝑘th 
decomopsed IMF component; 𝐴௞(𝑡) is the instantaneous amplitude and is a non-negative 
envelope function; 𝐾 is the number of decomposition. 

The process of constructing the variational mode is as follows:  
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(1) The analytic signal of IMF is obtained by Hilbert Transform, and thus the one-sided 
spectrum of the signal is obtained. 

(2) The exponential term is used to adjust the center frequency of each IMF and transform 
each IMF frequency to the fundamental frequency band. 

(3) The bandwidth of each IMF component is calculated using the Gaussian smoothing 
demodulated signal. The constructed variational mode is: 

⎩⎪⎨
⎪⎧ minሼ௨ೖ,ఠೖሽ ൞෍ቯ𝜕 ቂቀ𝛿(𝑡) + 𝑗𝜋𝑡ቁ ∗ 𝑢௞(𝑡)ቃ 𝑒ି௝ఠೖ௧𝜕𝑡 ቯ௞

௞ୀଵ ଶ
ଶൢ ,

 s. t.෍ 𝑢௞௄௞ୀଵ (𝑡) = 𝑓(𝑡),  (2)

where: 𝑓(𝑡) is the input signal; 𝛿(𝑡) is the unit impulse function; 𝜔௞ is the center frequency; ∗ is 
the convolution operation. 

An extended Lagrangian function given by the following expression is introduced to solve the 
optimal solution of the variational mode: 

𝐿(ሼ𝑢௞ሽ, ሼ𝜔௞ሽ, 𝜆) = ฯ𝑓(𝑡) −෍ 𝑢௞௄௞ୀଵ (𝑡)ฯଶଶ      +𝛼෍ቯ𝜕 ቄቂቀ𝛿(𝑡) + 𝑗𝜋𝑡ቁ ∗ 𝑢௞(𝑡)ቃ × eି୨ఠೖ௧ሽ𝜕𝑡 ቯଶ
ଶ௄

௞ୀଵ      + ർ𝜆(𝑡), 𝑓(𝑡) −෍ 𝑢௞௄௞ୀଵ (𝑡)඀ ,
 (3)

where: 𝛼 is the penalty factor; 𝜆(𝑡) is the Lagrange multiplier. 
The Alternate Direction Method of Multipliers (ADMM) is used to update 𝑢௞,௡ାଵ, 𝜔௞,௡ାଵ and 𝜆௡ାଵ to obtain the saddle point of the Lagrangian function, hence the optimal solution of Eq. (3). 

The Fourier Transform is used to update Eq. (3) from the time domain to the frequency domain: 

𝑢ො௞,௡ାଵ(𝜔) = 𝑓መ(𝜔) − ∑ 𝑢ො௜,௡ାଵ௞ିଵ௜ୀଵ (𝜔) − ∑ 𝑢ො௜,௡௄௜ୀ௞ାଵ (𝜔) + 𝜆መ௜(𝜔)21 + 2𝛼൫𝜔 − 𝜔௞,௡൯ଶ , (4)

𝜔ෝ௞,௡ାଵ = ׬ 𝜔ஶ଴ ห𝑢ො௞,௡ାଵ(𝜔)หଶ𝑑𝜔׬ ห𝑢ො௞,௡ାଵ(𝜔)หଶ𝑑𝜔ஶ଴ , (5)

𝜆መ௡ାଵ(𝜔) = 𝜆መ௡(𝜔) + 𝜏 ൥𝑓መ(𝜔) −෍𝑢ො௞,௡ାଵ௄
௞ୀଵ (𝜔)൩, (6)

where: is the fidelity factor; 𝑛 is the number of iterations; 𝜔 is the frequency; ∧ denotes the 
Fourier Transform. 

Repeat Eq. (4) through Eq. (6) until satisfying the following iteration stopping condition where 
the update can come to a stop: 

෍ฮ𝑢ො௞,௡ାଵ(𝜔) − 𝑢ො௞,௡(𝜔)ฮଶଶฮ𝑢ො௞,௡(𝜔)ฮଶଶ
௄
௞ୀଵ < 𝜀, (7)
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where: 𝜀 is the discriminatory accuracy which takes 10-6. 
By the time the iteration stops, the frequency-domain characteristics of the signal have been 

decomposed adaptively, and the modulated signal 𝑢ො௞(𝜔) has been transformed into the 
time-domain IMF component using the inverse Fourier Transform. 

 
Fig. 1. Flowchart of VMD algorithm 

2.2. WMFE 

Based on the RCMSE, three entropy methods, RCMDE, RCMFE and RCMPE, have been 
established in the fields of biomedical engineering and mechanical fault diagnosis. All these 
methods have the same coarse-grained process with a scale factor of 3, as shown in 0, Suppose a 
time series {𝑥௜ , 𝑖 = 1,2, . . .𝑁}, where 𝑁 is the total length of the signal. Given a scale factor𝑘, (𝑘 = 1,2, . . . , 𝜏), the 𝑘th coarse-grained sequence 𝑦௞(ఛ) = {𝑦௞,ଵఛ ,𝑦௞,ଶఛ , . . . ,𝑦௞,(௜ାଵ)/ଶఛ } of 𝑥௜ is given 
by: 

𝑦௞,௝(ఛ) = 1𝜏 ෍ 𝑥௜௝ఛା௞ିଵ
௜ୀఛ(௝ିଵ)ା௞ ,       1 ≤ 𝑗 ≤ 𝑁𝜏 ,        1 ≤ 𝑘 ≤ 𝜏. (8)

The steps to calculate the RCMDE are described as follows. 
(1) Let 𝑘 = 1. The DE of the time series 𝑦ଵ(ఛ) is calculated as follows. 
a) Map the coarse-grained time series 𝑦ଵ(ఛ) into the class 𝑐 (𝑐 is a positive integer). This process 
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needs to be implemented in two substeps: First, map the coarse-grained series 𝑦ଵ(ఛ) onto the 
interval (0, 1) by Eq. (9) for the normal cumulative distribution function (NCDF): 

𝑏௝ = 1𝜎√2𝜋  න eି(௧ିఓ)మଶఙమ௬భ(ഓ)
ିஶ 𝑑𝑡, (9)

where: 𝜇 and 𝜎 denote the mean and standard deviation of 𝑦ଵ(ఛ), respectively. 
Next, map 𝑏௝ to class 𝑐 in the form of 𝑠௝௖ = 𝑅൫𝑐 ⋅ 𝑏௝ + 0.5൯ by linear transformation, where 𝑅(∗) is the rounding operation.  
b) Given the embedding dimension 𝑚 and the time delay 𝑑 reconstruct the time series  𝑠௜௠,௖ = ൛𝑠௜௖ , 𝑠௜ାௗ௖ ,⋯ , 𝑠௜ା(௠ିଵ)ௗ௖ ൟ, where 𝑖 = 1,2, . . . ,𝑁 − (𝑚 − 1)𝑑. 
c) Assuming that each time series 𝑠௜௠,௖ corresponds to a dispersion pattern, let 𝑠௜௖ = 𝑣଴,  𝑠௜ାௗ௖ = 𝑣ଵ, …, 𝑠௜ା(௠ିଵ)ௗ௖ = 𝑣௠ିଵ, then 𝑠௜௠,௖ corresponds to a dispersion pattern 𝜋௩బఔభ⋯௩೘షభ, 

where the largest dispersion pattern does not exceed 𝑐௠. 
d) The probability of each dispersion pattern is calculated as follows: 

𝑝൫𝜋௩బఔభ⋯௩೘షభ൯ = 𝑛𝑢𝑚𝑏𝑒𝑟൫𝜋௩బ௩భ⋯௩೘షభ൯𝑁 − (𝑚 − 1)𝑑 , (10)

where the term 𝑛𝑢𝑚𝑏𝑒𝑟൫𝜋௩బ௩భ⋯௩೘షభ൯ indicates the number of 𝑠௜௠,௖ corresponding to the 
dispersion pattern. 

e) Therefore, DE can be calculated as: 

DE൫𝑦ଵ(ఛ),𝑚, 𝑐,𝑑൯ = −෍𝑝௖೘
గୀଵ (𝜋௩ೡ,⋯ആషభ)ln(𝑝 ቀ𝜋௩ೡ,⋯ആషభቁ. (11)

(2) Repeat step (1) for 𝑘 = 2,3, . . . , 𝜏 to obtain DE at multi-scale. Thus, the RCMDE 
expression is given by: 

RCMDE(𝑥,𝑚, 𝑐,𝑑, 𝜏) = −෍ 𝑝̅௖೘
గୀଵ ൫𝜋௩బ,⋯భ,⋯೘షభ൯ln𝑝̅ ቀ𝜋௩ೡ,⋯ആషభቁ, (12)

where 𝑝̅൫𝜋௩బ௩భ⋯௩೘షభ൯ = ଵఛ ∑ 𝑝௞ఛఛ௞ . 
The steps to calculate the RCMFE are described as follows. 
(1) Let 𝑘 = 1. The FE calculation substeps for the time series 𝑦ଵ(ఛ) are as follows. 
a) Given the embedding dimension 𝑚 and time delay 𝑑, reconstruct the coarse-grained time 

series 𝑦ଵ(ఛ) into the following time series 𝑥௜௠ = ൛𝑥௜ , 𝑥௜ାௗ ,⋯ , 𝑥௜ା(௠ିଵ)ௗ ൟ − 𝑥଴(𝑖), where  𝑖 = 1,2, … ,𝑁 − (𝑚− 1)𝑑, 𝑥଴(𝑖) = ଵ௠∑ 𝑥(𝑖 + 𝑡𝑑)௠ିଵ௧ୀ଴ . 
b) The maximum absolute distance between 𝑥௜௠ and 𝑥௝௠ is calculated using  𝑑௜௝௠ = 𝑑ൣ𝑥௜௠, 𝑥௝௠൧ = max௩∈(଴,௠ିଵ)|ሾ(𝑥(𝑖 + 𝑣) − 𝑥଴(𝑖)) − (𝑥(𝑗 + 𝑣) − 𝑥଴(𝑗))ሿ| where,  𝑖, 𝑗 = 1,2, … , (𝑁 − 𝑘 + 1) −𝑚 , 𝑖 ≠ 𝑗.  
c) Defining the fuzzy weight as 𝑛 and the similarity tolerance as 𝑟, the similarity 𝑅௜௝௠ between 𝑥௜௠ and 𝑥௝௠ is calculated by the fuzzy relationship function 𝜇൫𝑑௜௝ ,𝑛, 𝑟൯ = exp ൬−൬𝑑೔ೕೝ ൰௡൰. 

d) Where by: 
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𝜙௠(𝑛, 𝑟) = 1𝑁 −𝑚 × ෍ ቌ 1𝑁 −𝑚 − 1 ෍ 𝑅௜௝௠ேି௠
௝ୀଵ,௝ஷ௜ ቍேି௠

௜ୀଵ ,
𝜙௠ାଵ(𝑛, 𝑟) = 1𝑁 −𝑚 − 1 × ෍ ቌ 1𝑁 −𝑚 − 2 ෍ 𝑅௜௝௠ାଵேି௠ିଵ

௝ୀଵ,௝ஷ௜ ቍேି௠ିଵ
௜ୀଵ . (13)

e) FE is obtained by the natural logarithm ratio of the continuous function in substep d): 

FE൫𝑦ଵ(ఛ),𝑚,𝑛, 𝑟൯ = −lnቆ𝜙௠ାଵ(𝑛, 𝑟)𝜙௠(𝑛, 𝑟) ቇ. (14)

(2) Repeat step (1) for 𝑘 = 2,3, . . . , 𝜏 at multi-scale to obtain FE. Thus, the RCMFE expression 
is given by: 

RCMFE(𝑥,𝑚, 𝑟,𝑛,𝑑, 𝜏) = −lnቆ𝜙ത௠ାଵ(𝑛, 𝑟)𝜙ത௠(𝑛, 𝑟) ቇ. (15)

where 𝜙ത௠ାଵ(𝑛, 𝑟) = ଵఛ ∑ 𝜙௠ାଵ(𝑛, 𝑟)ఛ௞ , 𝜙ത௠(𝑛, 𝑟) = ଵఛ ∑ 𝜙௠(𝑛, 𝑟)ఛ௞ . 

 
Fig. 2. Coarse-grained process of time series 

The steps to calculate the RCMPE are described as follows. 
(1) Let 𝑘 = 1. The PE of the time series 𝑦ଵ(ఛ) is calculated as follows. 
a) Given the embedding dimension 𝑚 and the time delay 𝑑, reconstruct the coarse-grained 

time series 𝑦ଵ(ఛ) into the time series 𝑥௜௠ = ൛𝑥௜ , 𝑥௜ାௗ ,⋯ , 𝑥௜ା(௠ିଵ)ௗ ൟ, which is arranged in ascending 
order according to the numerical value of the elements. There are 𝑚! possible permutations for 
the patterns, and for each permutation of pattern –𝜋, the relative frequency is obtained as follows: 
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𝑝 =  number {𝑖 ∣ 𝑖 ≤ 𝑁 − (𝑚 − 1)𝑑, 𝑥௜௠ has type 𝜋}𝑁 − (𝑚 − 1)𝑑 . (16)

b) PE is calculated as follows: 

PE൫𝑦ଵ(ఛ),𝑚,𝑑൯ = − ෍ 𝑝గୀ௠!
గୀଵ (𝜋)ln𝑝(𝜋). (17)

 
Fig. 3. Flowchart of WMFE algorithm 

(2) Repeat step (1) for 𝑘 = 2,3, . . . , 𝜏 to obtain PE at multi-scale. Thus, the RCMPE expression 
is given by: 
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RCMPE(𝑥,𝑚,𝑑, 𝜏) = − ෍ 𝑝̅గୀ௠!
గୀଵ (𝜋)ln𝑝̅(𝜋), (18)

where 𝑝̅(𝜋) = ଵఛ ∑ 𝑝௞ఛఛ௞ . 
The steps to calculate the WMFE are described as follows, with the flowchart of the algorithm 

shown in 0. 
(1) The formula for calculating the weights using the standard deviation method is given by: 𝑊௜ = 𝜎௜∑𝜎௜ , (19)

where, 𝑖 is RCMDE, RCMFE or RCMPE; 𝜎௜ is the variance of the 𝑖th entropy. 
(2) The variance formula for calculating entropy is given by: 

𝜎௜ = ඨ∑ ൫𝐸௜ − 𝐸௜൯ଶఛ௜ୀଵ 𝜏 , (20)

where, 𝐸௜ is the entropy at the 𝑖th scale; 𝐸௜ is the mean value of entropies. 
Therefore, the WMFE expression is given by: 𝑊𝑀𝐹𝐸 = ሾ𝑊ோ஼ெ஽ா;𝑊ோ஼ெிா;𝑊ோ஼ெ௉ாሿ ∗ ሾ𝑅𝐶𝑀𝐷𝐸;𝑅𝐶𝑀𝐹𝐸;𝑅𝐶𝑀𝑃𝐸ሿ. (21)

2.3. Algorithm parameter setting  

2.3.1. Setting of parameter 𝑲 of VMD 

In the process of VMD decomposition of vibration signal samples, the choice of the preset 
modal number 𝐾 and penalty factor 𝛼 is decisive to whether the VMD can accurately decompose 
the vibration signal; too small a value of 𝐾 may cause mode aliasing or mode loss, while too great 
a value of 𝐾 may lead to over-decomposition. In this paper, we determine whether over-
decomposition occurs – and then the value of the preset mode number 𝐾 – by observing the change 
of the center frequency of each mode component after VMD decomposition [33]. Taking the inner 
race fault with a fault size of 0.021 inches as an example, the penalty factor is set to 2000. 0 shows 
the center frequency curves when 𝐾 is equal to 3, 4, 5, and 6, respectively, in the VMD iteration 
process. From 0, the two curves move closer when 𝐾 = 5 or 6, which means mode aliasing. When 𝐾 = 4, the center frequency curve of each model component makes no difference to each other. 
This indicates that this is the most suitable number of VMD decomposition layers. For this reason, 
the parameter 𝐾 is set to 4 in this paper. 

2.3.2. Parameter setting of RCMDE, RCMFE and RCMPE 

From Eqn. (12), four parameters are needed to calculate RCMDE: number of classes 𝑐, 
embedding dimension 𝑚, time delay 𝑑, and scale factor 𝜏. It is generally recommended that the 
value of 𝑐 be set to an integer between 4 and 8. For the embedding dimension 𝑚, although a larger 
value of m can reconstruct the dynamic process in more detail, an overly large value of 𝑚 will 
require many data points, while the length of most data in the real world is always finite; on the 
other hand, too small a value of 𝑚 may result in insufficient information. In this paper, 𝑚 is kept 
2. To prevent information loss, the time delay 𝑑 is usually set as 1. Considering that too large a 
value of𝜏increases the computational quantity, while too small a value of𝜏falls short of extracting 
enough information for preventing the feature vector from growing too large and for ensuring a 
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balance between performance and computational efficiency [34], in this paper the scale factor 𝜏 
is kept 20, i.e., the RCMDE are extracted by a scale factor of 20 for data samples. In addition, the 
embedding dimension 𝑚 of RCMFE is the same as that of RCMDE, which is kept 2. And 𝑛 
determines the width and gradient of the fuzzy affiliation function boundary. Too narrow a fuzzy 
affiliation function will make the final estimation of statistical properties inaccurate and sensitive 
to noise, while too wide a fuzzy affiliation function may lead to a loss of detailed information, so 
the value of 𝑛 is kept 2. The similarity tolerance 𝑟 determines the similarity of matching. The 
larger the value is, the more data information will be lost, while the smaller it is, the more sensitive 
it is to noise. And 𝑟 is generally recommended to be 0.1-0.25 times the SD (Standard Deviation) 
of the original data, and thus kept 0.15 SD in this paper [35]. Time delay 𝑑 and scale factor 𝜏 are 
the same for RCMDE. In calculating RCMPE, too large a value of 𝑚 makes it difficult to identify 
the dynamic changes in the time series, while too small a value of 𝑚 may impede the RCMPE 
from working due to the much smaller number of different states (symbols) [36]. In this paper, 𝑚 
is kept 3, and the parameters of time delay 𝑑 and scale factor 𝜏 are the same as above. 

  

  

Fig. 4. Central frequency curves 

2.3.3. Parameter setting of CNN 

The detailed structure and parameter settings of the CNN network model are shown in 0. 
Firstly, a high-dimensional feature vector matrix composed of WMFE is input to the first 
convolutional layer Conv_1 network with 32 convolutional kernels and the activation function is 
Relu, which is self-normalized to the data. Subsequently, the maximum pooling is connected, and 
the output features are processed by taking the maximum value and discarding the remaining 
spatial features to achieve the purpose of feature dimensionality reduction. Then it is fed into the 
second convolutional layer, Conv_2 network, with 32 convolutional kernels, using the Relu 
activation function, followed by the maximum pooling operation. The last layer is the fully 
connected layer, and the Softmax activation function is applied to classify the output results into 
10 types of faults. The hyperparameters are set as follow, the learning rate is 0.001, the number of 
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small batches is 10, the number of iterations is 10, and the loss function is the cross-entropy. 

Table 1. CNN convolutional neural network parameter design 

Network layer 
type 

Convolutional 
kernel size/steps 

Number of 
convolutional 

kernels 
Input size Output size Activation 

function 

Input layer   10×4×20×3 10×4×20×3 Relu 
Conv_1 2×2/1 32 10×4×20×3 10×4×20×32 Relu 
Batch 

normalization   10×4×20×32 10×4×20×32  

Max pooling_1 2×2/1  10×4×20×32 10×2×10×32  
Conv_2 2×2/1 32 10×2×10×32 10×2×10×32 Relu 

Max pooling_2 2×2/1  10×2×10×32 10×1×5×32  
Flatten   10×1×5×32 10×160  

Dense_1   10×160 10×16 Relu 
Dense_2   10×16 10×10 Softmax 

2.4. Rolling bearing fault diagnosis based on VMD and WMFE Fusion 

Based on the good robustness of VMD, end effect suppression, fewer model pseudo-
components, and the advantages of WMFE being capable to extract multidimensional signal 
feature vectors adaptively, the fault diagnosis process is designed as shown in 0 The rolling 
bearing fault diagnosis based on VMD and WMFE fusion includes three major parts: VMD of the 
original signal, extraction of WMFE characteristic information, and CNN neural network 
classification. The procedure starts with decomposing the rolling bearing vibration signal under 
variable working conditions by VMD; next, RCMDE, RCMFE and RCMPE feature vectors are 
extracted from IMFs and weights are obtained using SDM, which are then assembled into WMFE 
data grid in matrix form and input into CNN. After the convolution layer of the multi-scale 
convolution kernel and the maximum pooling and dimension reduction of the multi-scale features 
in high dimension, the final input fully connected layer for classification by the Softmax activation 
function. 

 
Fig. 5. Flowchart of rolling bearing fault diagnosis method 
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3. Analysis of simulation signals 

3.1. Construction of a data set for rolling bearing simulation signals 

Based on the structural characteristics of rolling bearings, a component of the bearing, when 
damaged in the bearing operation process where other components collide with each other, excites 
a shock signal in the form of high-frequency damped oscillation and an inherent vibration at high 
frequency. The vibration signal simulation model for rolling bearing fault diagnosis is expressed 
as follows [37]: 

⎩⎪⎨
⎪⎧𝑓(𝑡) = ෍𝐴௞௞ 𝑠(𝑡 − 𝑘𝑇 − 𝜏௞) + 𝑛(𝑡),𝑠(𝑡) = 𝑒ି஼௧sin(2𝜋𝑓௡𝑡),𝐴௞ = cos(2𝜋𝑓௠𝑡 + 𝜑௞) + 𝑐௞ + rand𝑛(𝑡), (22)

where: 𝜏௞ is the time fluctuation of the 𝑘th shock interval with respect to the shock period 𝑇; 𝑠(𝑡) 
is an exponentially decaying sinusoidal signal vibrating at the intrinsic frequency 𝑓௡; 𝐶 is the 
system damping ratio; 𝐴௞is the amplitude modulated signal;𝜑௞ and 𝑐௞ are random numbers; rand𝑛(𝑡) is a random signal with mean 0; 𝑓௠ is the modulation frequency, which depends on the 
fault type. In case of outer race fault, 𝑓௠ is 0; in case of inner race fault, 𝑓௠ is the axis rotation 
frequency; in case of ball fault, 𝑓௠ is the cage rotation frequency. 

Due to the complexity of long-term high-speed working conditions and the special 
characteristics of their structure, rolling bearings are prone to compound faults, and multiple fault 
characteristics are superimposed on and interfere with each other, increasing the difficulty of 
feature extraction from compound faults. 𝑥ଵ(𝑡) (outer race), 𝑥ଶ(𝑡) (inner race), and 𝑥ଷ(𝑡) (ball) 
are the vibration simulation signals for single faults of rolling bearings, whereas 𝑥ସ(𝑡) (outer race 
& inner race), 𝑥ହ(𝑡) (outer race & ball), and 𝑥଺(𝑡) (inner race & ball) are the vibration simulation 
signals for compound faults of rolling bearings: 𝑥ଵ(𝑡) = ෍𝑒ି஼೚(௧ି௜ ೚்ିఛ೔)௜ sin൫2𝜋𝑓௡௢(𝑡 − 𝑖𝑇௢ − 𝜏௜)൯ + 𝑛(𝑡), (23)𝑥ଶ(𝑡) = ෍ ൫cos(2𝜋𝑓௥𝑡 + 1)൯௜ 𝑒ି஼೔(௧ି௜்೔ିఛ೔)sin൫2𝜋𝑓௡௜(𝑡 − 𝑖𝑇௜ − 𝜏௜)൯ + 𝑛(𝑡), (24)𝑥ଷ(𝑡) = ෍ ൫cos(2𝜋𝑓௖𝑡 + 1)൯௜ 𝑒ି஼್(௧ି௜்್ିఛ೔)sin൫2𝜋𝑓௡௕(𝑡 − 𝑖𝑇௕ − 𝜏௜)൯ + 𝑛(𝑡), (25)𝑥ସ(𝑡) = 𝑥ଵ(𝑡) + 𝑥ଶ(𝑡), (26)𝑥ହ(𝑡) = 𝑥ଵ(𝑡) + 𝑥ଷ(𝑡), (27)𝑥଺(𝑡) = 𝑥ଶ(𝑡) + 𝑥ଷ(𝑡), (28)

where: 𝐶௢ = 600, 𝐶௜ = 800, 𝐶௕ = 600, 𝑓௡௢ = 3000 Hz, 𝑓௡௜ = 5000 Hz, 𝑓௡௕ = 2000 Hz, 𝑓௥ = 25 Hz, 𝑓௖ = 5 Hz, 𝑇௢ = 1/50, 𝑇௜ = 1/90, 𝑇௕=1/40, sampling frequency 𝑓௦ = 1.6 kHz. 
Figure 6 shows the temporal waveforms and FFT spectra of the 6 simulation signals to which 

the Gaussian white noise has been added with a signal-to-noise ratio (SNR) of –4 dB. The SNR 
equation is given as follows. According to in 0, it is impossible to distinguish fault types by 
directly observing the six temporal signals due to noise interference. Besides, from the FFT spectra 
in Fig. 6, the characteristic information of all other frequency bands but the resonance frequency 
band is quite similar, which means it is necessary to adopt an effective technique to process the 
information [38]: 𝑆𝑁𝑅 = 10logଵ଴ 𝑃௦𝑝௡, (29)
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where: 𝑃௦ is the input signal power, and 𝑝௡ is the noise power. 
Gaussian white noise signals with distinct SNRs are added to 𝑥ଵ(𝑡), 𝑥ଶ(𝑡), 𝑥ଷ(𝑡), 𝑥ସ(𝑡), 𝑥ହ(𝑡), and 𝑥଺(𝑡), forming the simulation vibration signals for rolling bearing faults with SNRs 

ranging within [–4, 8]. The number of training sets and test samples at each 𝑆 𝑁⁄  ratio of these 
signals are 40 and 10, respectively, with sample length 𝑁 = 5000, summing up to 1680 training 
set samples and 420 testing set samples. The data sets are described in Table 2. 

 
Fig. 6. Temporal waveform and FFT spectrum of 6 simulation signals (SNR = –4 dB) 

Table 2. Rolling bearing simulation data set 

Fault type SNR/ dB 
–4 –2 0 2 4 6 8 

Simulation signals 1 Training set 40 40 40 40 40 40 40 
Testing set 10 10 10 10 10 10 10 

Simulation signals 2 Training set 40 40 40 40 40 40 40 
Testing set 10 10 10 10 10 10 10 

Simulation signals 3 Training set 40 40 40 40 40 40 40 
Testing set 10 10 10 10 10 10 10 

Simulation signals 4 Training set 40 40 40 40 40 40 40 
Testing set 10 10 10 10 10 10 10 

Simulation signals 5 Training set 40 40 40 40 40 40 40 
Testing set 10 10 10 10 10 10 10 

Simulation signals 6 Training set 40 40 40 40 40 40 40 
Testing set 10 10 10 10 10 10 10 

3.2. Comparative analysis of simulation 

First, each rolling bearing simulation signal is decomposed by VMD into 4 IMF components. 
These IMFs with distinct center frequencies contain all the characteristic information of the 
simulation signal, as shown in Fig. 7. Then the RCMDE, RCMFE, and RCMPE of the IMFs are 
calculated via SDM to obtain the WMFE of the IMFs with entropy weights, as shown in Fig. 8, 
which correspond to the curves of different entropies of the 4 IMFs. It can be seen that the 
separability of the RCMDE, RCMFE, and RCMPE values of each IMF after weighting has been 
enhanced, which verifies that the WMFE method delivers higher accuracy than do the existing 
entropy methods in estimating the complexity of the signal at each scale. Compared with RCMDE, 
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RCMFE, and RCMPE, as shown in Fig. 9, the recognition rate of the proposed WMFE method 
converges fast, up to 99.52 % at the third time and 100 % at the fifth time, while the recognition 
rates of RCMDE and RCMPE finally reach 99.29 % and 99.76 %, respectively; the effect of 
RCMPE is slightly worse, and its recognition rate finally reaches 99.29 %. Therefore, WMFE 
outperforms the other entropy methods in recognition rate, convergence speed, and noise 
immunity according to the simulation data. 

 
Fig. 7. The VMD of rolling ball fault simulation signal (ball fault –4 dB) 

 
a) 

 
b) 

 
c) 

 
d) 



ROLLING BEARING FAULT DIAGNOSIS BASED ON VARIATIONAL MODE DECOMPOSITION AND WEIGHTED MULTIDIMENSIONAL FEATURE ENTROPY 
FUSION. NA LEI, FEIHU HUANG, CHUNHUI LI 

 JOURNAL OF VIBROENGINEERING. MAY 2024, VOLUME 26, ISSUE 3 605 

 
e) 

 
f) 

 
g) 

 
h) 

Fig. 8. Curves of different entropies of 4 IMFs: a), b) IMF1, c), d) IMF2, e), f) IMF3, and g), h) IMF4 

 
Fig. 9. Accuracy of CNN training process by different methods 

4. Actual signal analysis 

To verify the effectiveness and accuracy of the proposed method, the experiments in this paper 
are conducted with rolling bearing data collected from Case Western Reserve University (CWRU) 

[39], which are widely used for rolling bearing fault diagnosis. 

4.1. Description of dataset 

As shown in Fig. 10, the experimental platform consists of four components: a motor, a torque 
transducer, a power tester, and a controller. The faulty bearing under test is the drive end bearing 
of model SKF6205 motor. The electric spark method was used to machine single-point grooves 
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with damage diameters of 0.007 inches, 0.014 inches, and 0.021 inches on the surfaces of the inner 
race, ball and outer race, respectively, to simulate the wear process of the rolling bearing in real 
operation. At a sampling frequency of 12 kHz in this experiment, the acceleration data sets were 
collected at the speed of 1772 r/min, 1750 r/min, and 1730 r/min, corresponding to the load of 
1 hp, 2 hp, and 3 hp, respectively; the collected data were divided into 10 types according to the 
location and degree of different damages. As shown in 0, 5000 sampling points are set for each 
segment, and 1,000 samples are selected randomly from the 10 types and divided into the training 
samples and test samples at a ratio of 4:1. The data set for the experimental variable working 
condition is described in Table 3.  

 
a) 

 
b) 

Fig. 10. Experimental apparatus for bearing: a) physical diagram, b) structural sketch 

 
Fig. 11. Time-domain waveforms of CWRU bearing data for 10 different states 
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Table 3. Data set of rolling bearing experimental variable working conditions 
Defect 
size / 
inch 

Motor 
load / 

hp 

Motor 
speed / 
r⋅min-1 

Inner / 
label 

Training 
set 

Testing 
set Ball/label Training 

set 
Testing 

set 
Outer 
/ label 

Training 
set 

Testing 
set 

No 
defect 

1 hp 1772 
   Normal/0 240 65    2 hp 1750 

3 hp 1730 

0.007 
1 hp 1772 

IR007/1 45 18 B007/2 68 17 OR007/3 59 15 2 hp 1750 
3 hp 1730 

0.014 
1 hp 1772 

IR014/4 71 19 B014/5 66 18 OR014/6 66 11 2 hp 1750 
3 hp 1730 

0.021 
1 hp 1772 

IR021/7 61 14 B021/8 63 12 OR021/9 61 11 2 hp 1750 
3 hp 1730 

4.2. Experimental comparative analysis 

First, considering that VMD features adaptive signal decomposition, the rolling bearing 
vibration signal is decomposed by VMD into 4 IMF components. These IMF components with 
distinct center frequencies contain all the characteristic information of the rolling bearing vibration 
signal, as shown in Fig. 12.  

 
Fig. 12. The VMD of rolling ball fault signal(ball) 

Then the RCMDE, RCMFE, and RCMPE of the IMFs are calculated via SDM to obtain the 
WMFE of the IMFs with entropy weights, as shown in Fig. 13, which correspond to the curves of 
different entropies of the 4 IMFs. It can be seen that the separability of the RCMDE, RCMFE, and 
RCMPE values of each IMF after weighting has been enhanced, which verifies that the WMFE 
method delivers higher accuracy than do the existing entropy methods in estimating the 
complexity of the signal at each scale. In this paper, the high-dimensional data are represented by 
the low-dimensional distribution of the T-SNE method. As shown in Fig. 14, the T-SNE 
visualizations of the WMFE, RCMDE, RCMFE, and RCMPE methods are presented for the 
200 validation sets classified with the signal features extracted from them each. Evidently, the 
T-SNE visualization of WMFE for extracting features from rolling bearing signals has very 
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distinctive classification features; the same categories are clustered at the same location, and the 
inter class distance is relatively much great; the 10 categories are independently separated from 
each other. In contrast, the classification results of the RCMDE, RCMFE and RCMPE methods 
are cluttered in the two-dimensional space and are much less effective than the WMFE method. 
The features extracted by the WMFE method are definitely far more sensitive than by other 
entropy methods, and thus the performance of WMFE is verified. This performance upgrade is 
owing to WMFE taking advantage of the complementary nature of the differences between 
different feature entropies and combining the advantages of the RCMDE, RCMFE and RCMPE 
methods with more effectiveness, to build a more comprehensive representation for the signal 
information of the high-dimensional feature set and for the characteristics of fault type 
information. 

To verify the effectiveness of the method under real working conditions, the proposed method 
is compared with the RCMDE, RCMFE, and RCMPE methods, with the results shown in Fig. 15. 
The recognition rate of the WMFE method has converged to 98 % at the 3rd iterations, and 
stabilized to 100 % at the 4th iteration, while the maximum recognition rates of RCMFE and 
RCMDE are both 100 %. Nevertheless, they show unstable trends and fluctuations during the 
iterative process. Although RCMPE can also reach 100 % recognition rate eventually, its 
convergence speed is far inferior to that of the WMFE method, so WMFE significantly 
outperforms the other three methods. The combined VMD and WMFE methods are compared 
with WMFE, to find that the results of fault diagnosis by the former method are relatively 
satisfactory, probably because VMD decomposes and separates the vibration signal with distinct 
amplitude and frequency characteristics, thereby essentially enhancing the original signal. The 
processing results via CNN are visualized in Fig. 16. The VMD and WMFE combined feature 
extraction method is capable to completely separate the 10 states with the optimal intra class 
distance and inter class spacing compared with the previous 3 methods. 

 
a) 

 
b) 

 
c) 

 
d) 
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h) 

Fig. 13. Curves of different entropies of 4 IMFs: a), b) IMF1, c), d) IMF2, e), f) IMF3, and g), h) IMF4 

 
Fig. 14. Visualization feature distribution map using T-SNE 
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Fig. 15. Accuracy of CNN training process by different methods 

 
Fig. 16. Visualization feature distribution map using T-SNE 

Considering that the performance of the WMFE method may differ by the size of data samples, 
three sets of 300, 500, and 1000 faulty samples were created for comparison experiments and 
divided into training sets and testing sets at a ratio of 4:1. According to the results shown in Fig. 17, 
the WMFE method delivers the highest accuracy among the 300, 500, and 1000 samples. In 
particular, for small sample sets, WMFE can extract rolling bearing signal features with higher 
accuracy for taking advantage of the complementary nature of the differences between different 
entropies to build a more comprehensive representation for the signal information of the high-
dimensional feature set. Therefore, the performance and robustness of the method proposed in this 
paper are superior to the counterparts of RCMDE, RCMFE and RCMPE in extracting signal 
features. 



ROLLING BEARING FAULT DIAGNOSIS BASED ON VARIATIONAL MODE DECOMPOSITION AND WEIGHTED MULTIDIMENSIONAL FEATURE ENTROPY 
FUSION. NA LEI, FEIHU HUANG, CHUNHUI LI 

 JOURNAL OF VIBROENGINEERING. MAY 2024, VOLUME 26, ISSUE 3 611 

 
Fig. 17. Accuracy of different methods in different sample sets 

5. Conclusions 

In this paper, a rolling bearing fault diagnosis method based on VMD and WMFE fusion has 
been proposed to achieve adaptive diagnosis of different fault types and damage degrees of rolling 
bearings under variable working conditions. Through the simulation analysis, it has been verified 
that the WMFE method delivers higher accuracy than do other entropy methods in estimating the 
complexity of the signal at multi-scale. Also, this novel method can be used to extract the features 
of the signal more effectively and comprehensively enhanced feature vectors, and it outperforms 
RCMDE, RCMFE and RCMPE. Then, a validity analysis has been conducted by applying this 
method to the data of rolling bearings collected from Western Reserve University, followed by a 
comparative analysis with RCMDE, RCMFE and RCMPE. The experimental results show that 
the fault signal features extracted by the method deliver higher classification accuracy in bearing 
fault diagnosis irrespective of the type of bearing faults and the severity of faults. This method has 
also proven effective in identifying the type and location of bearing faults with higher recognition 
accuracy than the other 3 methods. The method has superior ability in extracting rolling bearing 
signal features and stronger noise immunity, self-adaptability and robustness under variable speed 
conditions, providing an effective way for rolling bearing fault diagnosis. 
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