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Abstract. Signals of short duration and containing a small number of cycles require special 
procedures if the precise estimation of their frequencies is intended. In this paper, we present an 
algorithm that allows accurate estimation of frequencies and simultaneously explains the decision 
regarding the prediction made. We first show why predictions regarding the frequency of signals 
mentioned above can contain significant errors and the prediction dependency on the analysis 
time. We then prove that the errors are systematic, and it is possible to train a neural network to 
quantify the errors and later correct the predictions. The algorithm also indicates the level of error 
by analyzing the signal-to-noise ratio. The algorithm was tested for numerous similar cases and 
proved to be reliable. At the end of the paper, we present how to use the algorithm using a signal 
generated with a known frequency. 
Keywords: frequency estimation, spectral analysis, neural network, artificial intelligence. 

1. Introduction 

Analyzing the signals in the frequency domain is a common practice in structural health 
monitoring (SHM), which has proved its reliability [1]. Although the procedure seems simple, the 
accuracy of the results is unsatisfactory by applying standard methods such as DFT or FFT [2]. 
The low accuracy is achieved because the vibration signals resulting from impulsive excitation 
are short and contain few vibration cycles. Numerous researchers have tried to introduce 
interpolation methods to improve the estimation results and consequently obtain frequencies with 
a high level of precision [3]-[7]. A systematic review of these methods, which also quantify errors 
concerning the signal length, is presented in [8]. Zero-padding is a viable alternative to 
interpolation [9]. Trim-to-fit methods are also used for more accurate frequency estimation [2], 
[11]. However, the methods mentioned above do not yield highly accurate results. 

This paper presents a method to estimate the frequencies based on the discrete Fourier 
Transform (DFT) property to produce systematically repeatable errors and a method involving 
artificial neural networks (ANN). In addition to other existing frequency estimation methods, this 
network also provides information regarding the accuracy of the estimation. 

2. The origin of errors in standard frequency estimation 

An analog sinusoidal signal has its time history 𝑎ሺ𝑡ሻ expressed as follows: 𝑎ሺ𝑡ሻ ൌ 𝐴 𝑠𝑖𝑛ሺ2𝜋𝑓ோ𝑡ሻ. (1) 

In Eq. (1), 𝐴 is the signal amplitude, 𝑓ோ is the signal frequency, and 𝑡 is the length of the signal 
in the time domain. In the digital form, when sampling the signal with a sampling rate 𝑓ௌ and using 𝑁 samples, the signal becomes a sequence: 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2023.23678&domain=pdf&date_stamp=2023-10-20


ESTIMATING THE FREQUENCIES OF VIBRATION SIGNALS USING A MACHINE LEARNING ALGORITHM WITH EXPLAINED PREDICTIONS.  
DANIELA GIORGIANA BURTEA, GILBERT-RAINER GILLICH, CRISTIAN TUFISI 

 VIBROENGINEERING PROCEDIA. OCTOBER 2023, VOLUME 51 161 

𝑎[𝑛] = 𝐴 𝑠𝑖𝑛 ൬2𝜋𝑓ோ 𝑛𝑓ௌ൰  , 𝑛 = 0, . . . ,𝑁. (2) 

Applying a standard DFT, the sequence 𝑎[𝑛] is converted in the frequency domain. It results 
in 𝑁 amplitudes displayed on spectral lines 𝑘 numbered from 0 to 𝑁–1. The value calculated for 
the 𝑘-th line is: 

𝐴௞ = ෍𝑎[𝑛] ൤𝑐𝑜𝑠 ൬2𝜋𝑁 𝑛𝑘൰ − 𝑗 𝑠𝑖𝑛 ൬2𝜋𝑁 𝑛𝑘൰൨ேିଵ
௡ୀ଴ ,   𝑤ℎ𝑒𝑟𝑒  𝑗ଶ = −1. (3) 

Every 𝐴௞ can be decomposed into a real part 𝑅𝑒 𝐴௞, and an imaginary part 𝐼𝑚𝐴௞, as follows: 

𝑅𝑒 𝐴௞ = ෍𝑎[𝑛] 𝑐𝑜𝑠 ൬2𝜋𝑁 𝑛𝑘൰ேିଵ
௡ୀ଴ . (4)

𝐼𝑚𝐴௞ = −෍𝑎[𝑛] 𝑠𝑖𝑛 ൬2𝜋𝑁 𝑛𝑘൰ேିଵ
௡ୀ଴ . (5)

In consequence, the 𝑘-th spectral line will display the magnitude: |𝐴௞| = ඥሺ𝑅𝑒 𝐴௞ሻଶ + ሺ𝐼𝑚𝐴௞ሻଶ. (6) 

The spectral lines on which the amplitudes are displayed are equidistant. The distance between 
them is nominated as the frequency resolution. It is calculated according to the expression: 

∆𝑓 = 𝑓ௌ𝑁 = 1𝑡  . (7) 

If 𝑓ோ is a multiple of the frequency resolution ∆𝑓, thus: 

𝑓ோ = 𝑘∆𝑓 = 𝑘 𝑓ௌ𝑁 = 𝑛𝑘𝑁 . (8) 

with 𝑘 as a natural number, the true frequency is located on one of the spectral lines. At that 
spectral line, the actual amplitude |𝑀௞| of the signal will be displayed. The displayed amplitudes 
are zero on all other lines, meaning the true frequency was found. In Figure 1, we represent with 
red color the spectral line on which the true frequency is located. 

The abovementioned case corresponds to the case where the signal has an integer number of 
cycles. It means the time length 𝑡 is a multiple periods 𝑇 of the sinusoidal signal. We can deduce 
this from the reversed Eqs. (7) and (8). These are:  𝑡 = 1∆𝑓   𝑎𝑛𝑑  𝑇 = 1𝑓ோ = 1𝑘∆𝑓 . (9) 

Now, from Eq. (9), it directly results that:  𝑡 = 𝑘𝑇. (10) 
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Fig. 1. The DFT represents a sinusoidal signal. The spectral lines for the standard DFT are represented with 
red lines having squares with a red contour on the tip; the additional squares represent the amplitudes of the 
supplementary spectral lines obtained by zero-padding (dashed lines); the magenta line with a blue square 

on the tip is associated with the actual frequency and is located on an inter-line position 

Hence, the spectral line number indicates the number of cycles present in the signal for the 
harmonic component with frequency 𝑓ோ. If k is not an integer, 𝑓ோ will be located at an inter-line 
position due to the positions of the spectral lines defined by the time length 𝑡. In this case, the 
displayed amplitude is 𝐴௞, smaller than the actual amplitude of the signal. Moreover, amplitudes 
will also be displayed on other spectral lines. On the neighbor spectral lines of 𝑘, these amplitudes 
are 𝐴௞ିଵ and 𝐴௞ାଵ, plotted with a square having a red contour in Figure 1.  

The distribution of 𝐴௞ when modifying the time length of the sinusoidal signal is quasi a sinc 
function (Figure 2) centered on the real frequency or its spectral line if the spectrum is constructed 
using this approach. In order to have more points in the spectrum, we can lengthen the signal by 
adding points with zero amplitude, the so-called zero-padding [9]. If we double the number of 
samples, we obtain twice more spectral lines. The new amplitudes in the DFT represented in 
Figure 1 are marked with green squares with a red contour.  

 
Fig. 2. Comparison between the (quasi-sinc) distribution of 𝐴௞ and the sinc function  

One can observe in Figure 1 that the more dense spectral lines provide a better image of the 
shape of the sinc function. We can also observe that the distance between the frequency displayed 
at line 𝑘 − 1 (i.e., 𝑓௞ିଵ) and 𝑓ோ is the so-called correction term 𝛿. We can write: 𝑓ோ = 𝑓௞ିଵ + 𝛿 = ൫𝑘 − 1 + 𝛿̅൯∆𝑓. (11) 

Hence, the normalized correction term can be calculated with the mathematical relation: 

𝛿̅ = 𝑓ோ − 𝑓௞ିଵ𝛥𝑓 . (12) 
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The following section proposes finding the correction term using an ANN model.  

3. The methodology to create the ANN model and estimate correctly the frequency  

The ANN is destined to find the correction term 𝛿. The first step in developing the ANN model 
is to generate a sinusoidal signal with known frequency and amplitude. Using this signal, we 
develop a database containing the frequencies 𝑓௞ିଵ, 𝑓௞ଵ, 𝑓௞ାଵ and the associated amplitudes 𝐴௞ିଵ, 𝐴௞ଵ, 𝐴௞ାଵ, obtained using the DFT algorithm for different signal lengths. The crop is made by 
extracting two samples at iteration. For each set of data, we also calculate the correction term 𝛿. 

The generated sinusoidal signal has the amplitude 𝐴 = 1 and the frequency 𝑓ோ = 5 Hz. It is 
zero-padded to double its length. Initially, the entire signal has 𝑁௠௔௫ = 2155 samples taken by a 
frequency rate of 𝑓ௌ =1000 Hz. Two samples are extracted by iteration, one from the sinusoid and 
one from the zero-padded end until the signal contains 𝑁௠௜௡ = 1925 samples. The longest signal 
time length is 𝑡௠௔௫ = 2.154 s, and the shortest is 𝑡௠௜௡ = 1.924 s. Figure 3 represents the amplitudes 𝐴௞ obtained in the DFT spectrum. We can observe the pattern for each cycle of time length 𝑇. The 
amplitudes decrease with each cycle because less energy is contained in the shorter signal. 

 
Fig. 3. The amplitude 𝐴௞ obtained for the signal by applying a standard DFT; the limits of the portion 

extracted for training are marked with arrows 

Based on the repeatability, it is enough to consider the data obtained by cropping one cycle, 
thus having a time length between 𝑘 – 0.5 (a minimum in the diagram in Figure 3) and 𝑘 + 0.5 
(the following minimum in the diagram in Figure 3). So, we extract the portion of data contained 
between 2149 and 2051 samples. Aiming for the generalization, we do the following: 

1. We normalize the amplitudes 𝐴௞ିଵ, 𝐴௞ଵ, and 𝐴௞ାଵ obtained at each iteration by dividing 
them with the biggest amplitude 𝐴௞ଵ achieved in the selected data set; 

2. We normalize the calculated correction coefficient 𝛿 with the frequency resolution 𝛥𝑓 for 
each iteration separately. 

An example of data with highlights on the training data (three input neurons and one output 
neuron) is given in Table 1. 

Table 1. Example of data used to create the training dataset 𝑁 2149 2147 2145 2143 2141 2139  𝛥𝑓 0.465 0.465 0.466 0.466 0.467 0.467  𝑓௞ିଵ  4.654 4.658 4.663 4.667 4.671 4.676  𝑓௞ 4.887 4.891 4.896 4.901 4.905 4.909  𝑓௞ାଵ 5.119 5.124 5.129 5.134 5.138 5.143  𝐴௞ିଵ 330.641 345.598 360.616 375.683 390.783 405.903 Input data 𝐴௞ 970.866 977.306 983.488 989.412 995.078 1000.484 Input data 𝐴௞ାଵ 962.558 952.333 941.808 930.994 919.902 908.547 Input data 𝛿 0.345 0.341 0.337 0.332 0.328 0.323  𝛿 normalized 1.485 1.465 1.445 1.425 1.405 1.385 Output data 
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With the data generated using the above procedure, we train a feed-forward backpropagation 
neural network with the architecture and main meta-parameters described in Figure 4.  

 
a) The network architecture 

 
b) The main meta-parameters of the network 

Fig. 4. Description of the deep neural network 

To avoid the phenomenon of network overfitting, we train the network by using the Bayesian 
Regularization function. The performance of the ANN reflected in the regression coefficients 
obtained after training is as follows: for Training and Validation 0.99847; for Test 0.997316; for 
the Cumulative data 0.9981. It means we obtained an excellent trained network.  

After estimating the normalized correction term 𝛿̅ with the ANN model, we calculate the 
(estimated) frequency 𝑓ை using the mathematical relation: 𝑓ை = 𝑓௞ିଵ + 𝛿̅∆𝑓. (13) 

However, to explain why the prediction was made and if it is trustworthy, we add a follow-up 
to the standard use of the network. This step consists of the following: 

1. Calculus of the period 𝑇ை that corresponds to 𝑓ை; 
2. Calculus of the signal length 𝑡ை by multiplying 𝑇ை with k; 
3. Calculus of 2𝑘 the amplitudes in the DFT of the reconstructed sinusoidal signal with length 𝑡ை and frequency 𝑓ை;  
4. Calculus of the signal-to-noise ratio. 
The signal-to-noise ratio is used to prove the trustworthiness of the prediction. We calculate 

this parameter with the mathematical relation: 𝑆𝑁𝑅 =  𝑀௞∑ 𝐴௞ଶ௞ିଵ௞ୀ଴ . (14) 

In Eq. (13), 𝑀௞ is the largest amplitude in the DFT with the length 𝑘𝑇ை. The sum representing 
the denominator in Eq. (13) is the energy spread on the first 2𝑘 spectral lines. The bigger the ratio, 
the better the frequency estimation. In the ideal case, 𝑆𝑁𝑅 = 1. 

4. Validation of the proposed methodology 

For validation, we use the original signal described at the beginning of Section 3. We calculate 
the amplitudes displayed at the first 24 spectral lines and identify the maximizer 𝑀௞. The spectrum 
is presented in Figure 5 with a red line, and the relevant data regarding the signal and its DFT is 
given in Table 2. 
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Fig. 5. The DFT of the original signal (red line) and truncated signal (blue line) 

Afterward, we double the length of the signal by zero-padding and estimate the correction term 
δ involving the trained ANN. With this correction term, we calculate with Eq. (13) the fine 
estimation of the frequency, which is 𝑓ை. It follows the calculus of 𝑇ை and that of the length of the 
new signal with an entire number of cycles. The spectrum of this signal is represented in Figure 5 
with a blue line. It is easily observable that the amplitudes in the red spectrum are spread along all 
spectral lines. Dissimilar, the blue spectrum is concentrated around the spectral line displaying the 
correct frequency, and on all other spectral lines, the amplitudes are small. 

Table 2. Example of data used to create the training dataset 
Signal 𝑁 𝛥𝑓 𝑓௞ିଵ 𝛿 𝑓ை 𝑀௞ Σ𝐴௞ 𝑆𝑁𝑅 

Original 2155 0.47619 – – 5.238 0.7148 2.8194 0.2631 
Truncated 2103 0.5 4.7561 0.2439 5 0.9718 1.5659 0.6247 

Table 2 presents the relevant data regarding the shortened signal and its DFT. We can observe 
that the fine estimation of the frequency is highly accurate, and the 𝑆𝑁𝑅 is significantly bigger for 
the signal with the tuned length calculated following 𝑓ை. Therefore, the SNR is a clear indicator 
of the estimation accuracy, and it can be used to explain the decision of the AI system.   

5. Conclusions 

Automatic decision systems that rely on Artificial Intelligence must prove their decisions to 
be accepted by humans without hesitation. Thus, in addition to the results, the AI system should 
accompany the decision with data that a human can interpret. In this study, we show how the 
frequency estimation of signals can be improved by involving a machine-learning algorithm and 
propose using the SNR in a follow-up procedure to justify the decision.  

Following the numerous experiments performed, one of which we presented in the paper, we 
noticed that the SNR is always the highest in the case of the correct frequency estimation. For 
even greater credibility, the system can be adjusted to calculate two more SNRs for a signal 
slightly more extended and one slightly shorter than the one considered correct. Both SNRs must 
present lower values than the SRN calculated for the correct estimation. 

On the other hand, we demonstrated that using a Machine Learning algorithm, the frequency 
of the harmonic components of a signal can be estimated with excellent accuracy.  

Future concerns will focus on estimating the frequencies of a signal with two close harmonic 
components. 
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