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Abstract. A third-order shear deformation plate bending formulation is presented in this study 
from the first principles. The derivation assumed a displacement field constructed using 
third-order polynomial function of the transverse (𝑧) coordinate; and made to apriori satisfy the 
linear three-dimensional (3D) kinematics relations as well as the transverse shear stress free 
boundary conditions at the top and bottom plate surfaces. The formulation thus has no need for 
shear stress correction factors of the first-order shear deformation plate theories. The domain 
equations of equilibrium are obtained as a set of three coupled differential equations in terms of 
three unknown displacements. The system of coupled equations is solved for simply supported 
rectangular and square plates subjected to four cases of loading distributions: sinusoidal loading, 
uniformly distributed loading, linearly distributed loading and point load at the plate center. 
Navier’s double trigonometric series method is used to construct trial solutions for the three 
displacement functions such that the boundary conditions are satisfied identically. The integration 
problem is thus reduced to an algebraic problem and is solved for each considered loading. It is 
found that the present formulation gives exact results for the normal stresses 𝜎𝑥𝑥 for sinusoidal 
and uniformly distributed loads. The study further showed that the results for deflection and 
stresses agreed with Krishna Murty’s higher order shear deformation plate theory results. The 
present formulation gave accurate results because of the inclusion of transverse normal strain 
effects in the formulation. The formulation gives a quadratic variation of the transverse shear 
stresses across the thickness in consonance with the theory of elasticity method. 
Keywords: third-order shear deformation plate bending formulation, thick plate, Navier double 
trigonometric series method, transverse shear stress, transverse normal stress. 

Nomenclature 𝑥, 𝑦, 𝑧 Three-dimensional Cartesian coordinates 𝑥, 𝑦 In-plane Cartesian coordinate 𝑧 Transverse coordinate 𝑎 Length of plate (in-plane dimension of plate) 𝑏 Width (in-plane dimension) of plate ℎ Thickness of plate 𝑢ሺ𝑥, 𝑦, 𝑧ሻ Displacement field component in the 𝑥 direction 𝑣ሺ𝑥,𝑦, 𝑧ሻ Displacement field component in the 𝑦 direction 𝑤ሺ𝑥, 𝑦, 𝑧ሻ Transverse (𝑧) component of the displacement 𝑤଴ሺ𝑥, 𝑦ሻ ൌ 𝑤ሺ𝑥, 𝑦, 𝑧 ൌ 0ሻ Transverse (𝑧) component of the displacement of the middle surface (𝑧 ൌ 0) 𝛼௫ሺ𝑥,𝑦ሻ, 𝛼௬ሺ𝑥, 𝑦ሻ Rotations of the normals to the middle surfaces of the plate about the 𝑦 and 𝑥 
axes respectively 𝛽௫ሺ𝑥, 𝑦ሻ, 𝛽௬ሺ𝑥, 𝑦ሻ Displacement warping functions 𝜀௫௫, 𝜀௬௬, 𝜀௭௭ Normal strains in the 𝑥, 𝑦 and 𝑧 directions respectively 𝛾௫௬, 𝛾௬௭, 𝛾௫௭ Shear strains about the 𝑥𝑦, 𝑦𝑧 and 𝑥𝑧 planes 𝜎௫௫, 𝜎௬௬, 𝜎௭௭ Normal stresses in the 𝑥, 𝑦 and 𝑧 directions respectively 
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𝜏௫௬, 𝜏௬௭, 𝜏௫௭ Shear stresses in the 𝑥𝑦, 𝑦𝑧 and 𝑥𝑧 planes 𝐸 Young’s modulus of elasticity 𝐺 Shear modulus 𝐷 Modulus of flexural rigidity of plate 𝜇 Poisson’s ratio 𝑀௫௫, 𝑀௬௬ Bending moments in the 𝑥 and 𝑦 directions respectively 𝑀௫௬ Twisting moment 𝑄௫, 𝑄௬ Shear force 𝑃௫  Higher order internal stress resultant defined using 𝜎௫௫ 𝑃௬ Higher order internal stress resultant defined using 𝜎௬௬ 𝑃௫௬ Higher order internal stress resultant defined using 𝜏௫௬ 𝑅௫ Higher order internal stress resultant defined using 𝜏௫௭ 𝑅௬ Higher order internal stress resultant defined using 𝜏௬௭ 𝛱 Total potential energy functional 
2D Two-dimensional 
3D Three-dimensional 𝑅ଶ Two-dimensional domain of plate 𝑞(𝑥, 𝑦) Distribution of transverse load over the plate domain 𝛿 Change in (variation in) or, first variation 𝑁௫௫ Resultant normal in-plane force in 𝑥 direction 𝑁௬௬ Resultant normal in-plane force in 𝑦 direction 𝑁௫௬ Resultant in-plane shear force 𝛻ଶ Laplacian; Laplacian operator 𝛻ସ Biharmonic operator 𝑚, 𝑛 Integers 𝐴௠௡ Unknown parameters used to define double trigonometric series for 𝑤(𝑥, 𝑦)  𝐵௠௡ Unknown parameters used to define double trigonometric series for 𝛼௫(𝑥, 𝑦) 𝐶௠௡ Unknown parameters used to define double trigonometric series for 𝛼௬(𝑥,𝑦) 𝜆௠ Parameter defined in terms of 𝑚, 𝜋 and 𝑎 𝛾௡ Parameter defined in terms of 𝑛, 𝜋 and 𝑏 𝑞௠௡ Double Fourier series coefficients of the load 𝑄௠௡ Parameter defined in terms of 𝑞௠௡ and d 𝑞଴ Intensity of uniformly distributed load 𝛿(𝑥 = 𝑥̅,𝑦 = 𝑦ത)  Dirac delta function 𝑃଴ Point load 𝑆 Parameter defined in terms of a and h 𝑤ഥ   Dimensionless deflection 𝜎ത௫௫, 𝜎ത௬௬ Dimensionless normal stresses 𝜏̅௫௬ Dimensionless shear stress 𝜏̅௭௫  Dimensionless transverse shear stress 
CR Constitutive relations 
EE Equilibrium equations 
RdPT Reddy plate theory 
MdPT Mindlin plate theory 
FSDPT First order shear deformation plate theory 
HSDPT Higher order shear deformation plate theory 
CPT Classical plate theory 
KPT Kirchhoff plate theory 

1. Introduction 

Plates are three-dimensional (3D) structural members characterized by in-plane dimensions 
and a transverse dimension that is usually smaller than the in-plane dimensions. They are widely 
used in civil, structural, mechanical, naval, marine engineering to carry static, dynamic or 
compression loadings. They may be made of homogeneous or non-homogeneous materials, 
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isotropic, orthotropic, laminated or composite materials, and hence can be classified accordingly 
based on their material makeup. They are also classified based on their thickness relative to the 
in-plane dimensions as thin, moderately thick or thick plates. 

Depending on the nature of applied loadings, plates may be subject to static flexure, dynamic 
flexure or buckling. 

Generally, plate problems are three-dimensional (3D) problems of elasticity theory. However, 
a rigorous 3D elasticity formulations of plate behaviour entails complicated mathematical 
problems even for simple considerations of isotropic, homogeneous materials. 

Problems of plates have therefore been expressed by simplifying the 3D elasticity formulations 
to one-dimensional (1D) and two-dimensional (2D) approximations; and this has been the main 
objective of plate research. 

The classical thin plate theory (CPT) commonly called the Kirchhoff plate theory (KPT) 
assumed the Navier-Kirchhoff hypothesis [1-10]. 

– orthogonality of the cross-sectional planes to the middle surface prior to flexural deformation 
and after bending deformation. 

– the invariance of thickness during bending deformation. 
– the following are the notable advantages of the KPT [1-16]: 
– the equation of equilibrium is linear and contains only one unknown function – deflection of 

the middle surface. 
– the internal force resultants are expressible in terms of the transverse deflection function. 
– it gives parabolic variation of shear stresses over the thickness in consonance with mechanics 

of structures. 
The main disadvantage of the KPT is the inability to consider transverse shear deformations, 

thus limiting the scope of applicability to thin plates where transverse shear deformations are 
ignorable without significant errors [17-22]. Despite the disadvantages, KPT has been found to be 
satisfactory for thin plates and various methods for solving KPT are found in references [1-22] 
and [23-24]. 

Research efforts to develop improved formulations and postulations to consider shear 
deformation effects and thus extend the scope of plate theory to moderately thick and thick plates 
led to the derivations by Reissner [25], [26]; Mindlin [27]; Krishna Murty [28], Srinivas and Rao 
[29], Shimpi and Patel [30]; Sayyad and Shinde [31]; Ghugal and Gajbiye [32], Sayyad and Shinde 
[33]; Bathini and Reddy [34], [35]; Bathini et al. [36]; Eipakchi and Moshir [37]; Zagaripoor et 
al. [38], Raissi et al. [39] and Rodrigues et al. [40]. 

2. Review of previous works 

Ike [20], [22] studied Mindlin’s first order shear deformable plates. Nwoji et al [21] obtained 
satisfactory solutions for the flexural analysis of simply supported rectangular Mindlin plates 
subjected to sinusoidal transverse load distribution using the Navier’s double trigonometric series 
method. 

Ike [41] used Fourier series method to find the stresses and deflections in thick beams. Ike et 
al [42] used least squares method solve the stresses in rectangular plates under parabolic edge 
loads. Onah et al [43] derived stress function for solving elastostatic problems of thick circular 
plates. 

Onyeka et al [44-46] and Onyeka and Okeke [47] used polynomial displacement function in 
an energy formulation to solve the flexural problem of thick plate with simply supported, free and 
clamped boundaries. Their work considered shear deformation and did not need shear correction 
factors. They used 3D kinematics and constitutive relations in formulating the energy functional 
and minimization procedure for the equilibrium equations. This solution for center deflections 
were in error by 2.9 %-3.7 % compared with the exact solution. 

Onyeka and Mama [48] and Onyeka et al [49] have used a trigonometric displacement function 
in an energy functional minimization method to obtain satisfactory solutions respectively for the 
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bending and stability of thick plates. 
Rouzegar and Abdoli Sharifpoor [50] developed a finite element formulation based on two-

variable refined plate theory (RPT) for the flexural analysis of isotropic and orthotropic plates. 
The RPT used is applicable to thin and thick plates and gives parabolic transverse shear stress 
variation across the plate thickness, thus obviating the need for shear correction as boundary 
conditions are satisfied. They used variational principles to obtain the equilibrium and weak form 
equations; and considered a 4-node rectangular plate element with six nodal degrees of freedom. 
They found satisfactory solutions using MATLAB software on the resulting algebraic problem. 

Gajbhiye et al [51] used a 5th order shear and normal deformation theory to satisfactorily solve 
the eigenvalue problem of free vibration of simply supported thick isotropic square plates. 

Gajbhiye et al [52] used a quasi-three-dimensional theory that considered shear and normal 
deformation to solve the bending problem of simply supported sandwich plates. They considered 
shear stress free boundary conditions, thus obviating the need for stress correction. They used 
virtual work principle for the domain equations, and Navier’s method for satisfactory solutions 
for sinusoidal and uniform transverse loadings. 

Ghugal and Sayyad [53], [54] used a trigonometric shear deformation theory (TSDT) to obtain 
satisfactory solutions to the elasticity problem of thick laminated plates under transverse loading. 

Ghugal and Gajbhiye [32] developed a 5th order shear deformation theory that considered 
transverse shear deformation and transverse normal strain effects, and applied it to the bending 
analysis of thick plates. They used virtual work principles to obtain field equations and boundary 
conditions and Navier’s series method to solve the resulting boundary value problem (BVP). 

Zargaripoor et al [55] used exact wave propagation approach for the first time to obtain free 
vibration and buckling solutions for thick rectangular plates modelled using third-order shear 
deformation plate theory. They considered plates with opposite simply supported edges while the 
other edges may be clamped or simply supported. They derived the matrices of wave propagation 
and reflection for the plate problem and by superposition, obtained the characteristic equation, 
which was solved for the dimensionless frequencies and buckling loads for the different boundary 
conditions studied. 

Kumar et al [56] have used radial basis function based meshfree methods for the analysis of 
thick plates using higher order shear deformation theory. Makvandi et al [57] studied the 
behaviour of moderately thick plates under compressive load. Civalek and Ulker [58] used the 
harmonic differential quadratic method for the flexural analysis of thin isotropic circular plates. 
Civalek [59] used the discrete singular convolution (DSC) method to solve bending problems of 
thick rectangular plates. Other seminal works with significant insight to the thick plate problem 
are found in references [60-83]. 

In this study a third-order shear deformation plate bending formulation is presented from first 
principles for the modelling and solution of thick plate bending problems under transverse 
loadings. 

2.1. Novelty of the study 

The novelty of the study is the first principle approach adopted in the paper for the formulation 
of the thick plate bending problem using a third order shear deformation plate theory that satisfies 
the transverse shear stress boundary conditions. The study presents a systematic study that uses 
equilibrium method to derive the governing differential equations of equilibrium. The Navier’s 
double trigonometric series method is used in a first principles, systematic way to derive solutions 
for: 

(i) sinusoidal distribution of transverse load, 
(ii) uniformly distributed transverse load, 
(iii) linearly varying transverse load, 
(iv) transverse point load acting at any point on the plate domain. 
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2.2. Theoretical framework 

The thick plate considered which is shown in Fig. 1 has length 𝑎, width 𝑏, and thickness ℎ, 
and is defined using the Cartesian coordinates by: 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, −ℎ/2 ≤ 𝑧 ≤ ℎ/2. 

 
Fig. 1. Thick plate 

Basic assumptions of the formulation 
(i) The plate material is homogeneous, isotropic and linearly elastic. 
(ii The plate is only subjected to transverse load. 
(iii) The body forces are ignored, but can be incorporated into the formulation by adding them 

to the distributed transverse load. 
(iv) The in-plane components of displacement in the 𝑥 and 𝑦 directions and the transverse 

component of displacement in the 𝑧 direction are small in comparison with the plate thickness. 

2.3. Displacement field 

Ignoring the in-plane deformations, the displacement field components for flexural 
deformations are: 𝑢(𝑥,𝑦, 𝑧) = 𝑧𝛼௫ ൅ 𝑧ଷ𝛽௫ = 𝑧(𝛼௫ ൅ 𝑧ଶ𝛽௫), (1a)𝑣(𝑥,𝑦, 𝑧) = 𝑧𝛼௬ ൅ 𝑧ଷ𝛽௬ = 𝑧൫𝛼௬ ൅ 𝑧ଶ𝛽௬൯, (1b)𝑤(𝑥,𝑦, 𝑧) = 𝑤(𝑥,𝑦, 𝑧 = 0) = 𝑤଴(𝑥,𝑦), (1c)

where, 𝑢(𝑥,𝑦, 𝑧) is the displacement field component in the 𝑥 coordinate direction, 𝑣(𝑥,𝑦, 𝑧) is 
the displacement field component in the 𝑦 coordinate direction, 𝑤଴(𝑥,𝑦) is the transverse (𝑧) 
component of the displacement of the middle surface (𝑧 = 0), 𝛼௫, 𝛼௬, 𝛽௫, 𝛽௬ are the unknown 
displacement variables 𝛼௫(𝑥,𝑦) and 𝛼௬(𝑥,𝑦) are the rotations of the normals to the middle 
surface of the plate about the y and x axes respectively; while 𝛽௫(𝑥,𝑦) and 𝛽௬(𝑥,𝑦) are called the 
displacement warping functions. 

Five unknown functions, namely 𝛼௫(𝑥,𝑦), 𝛼௬(𝑥,𝑦), 𝛽௫(𝑥,𝑦), 𝛽௬(𝑥,𝑦) and 𝑤଴(𝑥,𝑦) are used 
to describe the displacement field components in the Reddy plate theory (RdPT). Two of these 
unknown functions (𝛼௫(𝑥,𝑦), 𝛼௬(𝑥,𝑦)) are encountered in the Mindlin plate theory (MdPT) 
which is a first order shear deformation plate theory (FSDPT). The displacement warping 
functions 𝛽௫(𝑥,𝑦), 𝛽௬(𝑥,𝑦) are derivable/expressible in terms of 𝛼௫(𝑥,𝑦) and 𝛼௬(𝑥,𝑦) by the 
imposition of the transverse shear stress free boundary conditions at the top and bottom faces of 
the plate. 

2.4. Strain field (Kinematics) 

Assuming infinitesimally small displacements, the strain fields are obtained from the 
strain-displacement relations of the small displacement linear elasticity as follows: 
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𝜀௫௫ = 𝜕𝑢𝜕𝑥 ,    𝜀௬௬ = 𝜕𝑣𝜕𝑦 ,    𝜀௭௭ = 𝜕𝑤𝜕𝑧 ,𝛾௫௬ = 𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑥 ,    𝛾௬௭ = 𝜕𝑣𝜕𝑧 + 𝜕𝑤𝜕𝑦 ,    𝛾௫௭ = 𝜕𝑢𝜕𝑧 + 𝜕𝑤𝜕𝑥 , (2)

where 𝜀௫௫, 𝜀௬௬ and 𝜀௭௭ are the normal strains in the 𝑥, 𝑦 and 𝑧 Cartesian coordinate directions 
respectively; 𝛾௫௬, 𝛾௬௭ and 𝛾௫௭ are the shear strains. 

By substitution of the displacement field components – Eq. (1) – into Eq. (2) we have: 

𝜀௫௫ = 𝜕𝜕𝑥 (𝑧𝛼௫ + 𝑧ଷ𝛽௫) = 𝑧 𝜕𝛼௫𝜕𝑥 + 𝑧ଷ 𝜕𝛽௫𝜕𝑥 , (3a)𝜀௬௬ = 𝜕𝜕𝑥 ൫𝑧𝛼௬ + 𝑧ଷ𝛽௬൯ = 𝑧 𝜕𝛼௬𝜕𝑦 + 𝑧ଷ 𝜕𝛽௬𝜕𝑦 , (3b)𝜀௭௭ = 𝜕𝑤଴𝜕𝑧 (𝑥,𝑦) = 0, (3c)𝛾௫௬ = 𝜕𝜕𝑥 ൫𝑧𝛼௬ + 𝑧ଷ𝛽௬൯ + 𝜕𝜕𝑦 (𝑧𝛼௫ + 𝑧ଷ𝛽௫), (3d)𝛾௫௬ = 𝑧 ቆ𝜕𝛼௫𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇ + 𝑧ଷ ቆ𝜕𝛽௫𝜕𝑦 + 𝜕𝛽௬𝜕𝑥 ቇ, (3e)𝛾௬௭ = 𝜕𝑤଴𝜕𝑦 + 𝜕𝜕𝑧 ൫𝑧𝛼௬ + 𝑧ଷ𝛽௬൯ = 𝜕𝑤଴𝜕𝑦 + 𝛼௬ + 3𝑧ଶ𝛽௬, (3f)𝛾௫௭ = 𝜕𝑤଴𝜕𝑥 + 𝜕𝜕𝑧 (𝑧𝛼௫ + 𝑧ଷ𝛽௫) = 𝜕𝑤଴𝜕𝑥 + 𝛼௫ + 3𝑧ଶ𝛽௫. (3g)

2.5. Stress fields 

The stress fields are determined by using the stress-strain relations of isotropic homogeneous 
elasticity. Thus: 𝜎௫௫ = 𝐸1 − 𝜇ଶ ൫𝜀௫௫ + 𝜇𝜀௬௬൯, (4a)𝜎௬௬ = 𝐸1 − 𝜇ଶ ൫𝜀௬௬ + 𝜇𝜀௫௫൯, (4b)𝜏௫௬ = 𝐺𝛾௫௬, (4c)𝜏௬௭ = 𝐺𝛾௬௭, (4d)𝜏௫௭ = 𝐺𝛾௫௭, (4e)

where: 𝐺 = 𝐸2(1 + 𝜇), (5)

and 𝐸 is the Young’s modulus of elasticity, 𝐺 is the shear modulus, 𝜇 is the Poisson’s ratio. 
Substituting the expressions for normal and shear strains into Eqs. (4a-4e), the stress fields are 

found as: 

𝜎௫௫ = 𝐸1 − 𝜇ଶ ൬𝑧 𝜕𝛼௫𝜕𝑥 + 𝑧ଷ 𝜕𝛽௫𝜕𝑥 ൰ + 𝜇𝐸1 − 𝜇ଶ ቆ𝑧 𝜕𝛼௬𝜕𝑦 + 𝑧ଷ 𝜕𝛽௬𝜕𝑦 ቇ, (6a)𝜎௬௬ = 𝐸1 − 𝜇ଶ ቆ𝑧 𝜕𝛼௬𝜕𝑦 + 𝑧ଷ 𝜕𝛽௬𝜕𝑦 ቇ + 𝜇𝐸1 − 𝜇ଶ ൬𝑧 𝜕𝛼௫𝜕𝑥 + 𝑧ଷ 𝜕𝛽௫𝜕𝑥 ൰, (6b)
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𝜏௬௭ = 𝐺 ൬𝛼௬ + 3𝑧ଶ𝛽௬ + 𝜕𝑤଴𝜕𝑦 ൰, (6c)𝜏௫௭ = 𝐺 ൬𝛼௫ + 3𝑧ଶ𝛽௫ + 𝜕𝑤଴𝜕𝑥 ൰, (6d)𝜏௫௬ = 𝐺𝑧 ቆ𝜕𝛼௫𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇ + 𝐺𝑧ଷ ቆ𝜕𝛽௫𝜕𝑦 + 𝜕𝛽௬𝜕𝑥 ቇ. (6e)

2.6. Enforcement of boundary conditions 

The thick plate bending problem considered in this study is subjected to a distributed transverse 
load of intensity 𝑞(𝑥,𝑦) on the top surface (𝑧 = ℎ/2) while the bottom surface (𝑧 = −ℎ/2) of 
the plate is free of load. The top and bottom surfaces of the plate (𝑧 = ±ℎ/2) are free from shear 
stresses. The shear stress free boundary conditions at the top and bottom surfaces of the plate can 
be expressed as follows: 

𝜏௬௭ ൬𝑥,𝑦, 𝑧 = ±ℎ2൰ = 0, (7a)𝜏௫௭ ൬𝑥,𝑦, 𝑧 = ±ℎ2൰ = 0. (7b)

Applying the shear stress free boundary conditions on Eq. (6c) we have: 

𝐺 ൬𝛼௬ + 3𝑧ଶ𝛽௬ + 𝜕𝑤଴𝜕𝑦 ൰ฬ௭ୀ±௛/ଶ = 0, (8a)

𝐺 ቆ𝛼௬ + 3 ൬±ℎ2൰ଶ 𝛽௬ + 𝜕𝑤଴𝜕𝑦 ቇ = 0. (8b)

𝐺 ≠ 0 hence: 

𝛼௬ + 3ℎଶ4 𝛽௬ + 𝜕𝑤଴𝜕𝑦 = 0. (8c)

Solving for 𝛽௬ gives: 

𝛽௬ = −43ℎଶ ൬𝛼௬ + 𝜕𝑤଴𝜕𝑦 ൰. (8d)

Similarly, applying the boundary conditions – Eq. (7b) on Eq. (6d) gives: 

𝜏௫௭ ൬𝑥,𝑦, 𝑧 = ±ℎ2൰ = 𝐺 ൬𝛼௫ + 3𝑧ଶ𝛽௫ + 𝜕𝑤଴𝜕𝑥 ൰ฬ௭ୀ±௛/ଶ = 0. (9a)

𝐺 ≠ 0. Hence: 

𝛼௫ + 3ℎଶ4 𝛽௫ + 𝜕𝑤଴𝜕𝑥 = 0. (9b)

Solving for 𝛽௫ gives: 

𝛽௫ = − 43ℎଶ ൬𝛼௫ + 𝜕𝑤଴𝜕𝑥 ൰. (9c)
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The relationships between 𝛽௫ and 𝛼௫ and 𝑤଴ and between 𝛽௬ and 𝛼௬ and 𝑤଴, thus reduce the 
number of unknown displacement parameters in the formulation to three, namely 𝛼௫(𝑥,𝑦), 𝛼௬(𝑥,𝑦) and 𝑤଴(𝑥,𝑦). 

2.7. Displacement field that satisfy shear stress free boundary conditions 

The displacement field components are thus simplified and expressed in terms of the three 
unknown displacement parameters as follows: 

𝑢(𝑥,𝑦, 𝑧) = 𝑧 ൭𝛼௫ − 43 ቀ𝑧ℎቁଶ ൬𝜕𝑤଴𝜕𝑥 + 𝛼௫൰൱, (10a)

𝑣(𝑥,𝑦, 𝑧) = 𝑧 ൭𝛼௬ − 43 ቀ𝑧ℎቁଶ ൬𝜕𝑤଴𝜕𝑦 + 𝛼௬൰൱, (10b)𝑤(𝑥,𝑦, 𝑧) = 𝑤଴(𝑥,𝑦). (10c)

The displacement field components are now simplified and expressed in terms of only three 
unknown displacement parameters (𝛼௫(𝑥,𝑦), 𝛼௬(𝑥,𝑦) and 𝑤଴(𝑥,𝑦)) as in the MdPT and other 
FSDPTs even though a third order displacement variation has been apriori assumed in the 
formulation. 

2.8. Strain fields that satisfy shear stress free boundary conditions 

The resulting strain fields that satisfy the shear stress free boundary conditions at the top and 
bottom plate surfaces are now found as follows: 

𝜀௫௫ = 𝑧 ൭𝜕𝛼௫𝜕𝑥 − 43 ቀ𝑧ℎቁଶ ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜕𝛼௫𝜕𝑥 ቇ൱, (11a)

𝜀௬௬ = 𝑧 ൭𝜕𝛼௬𝜕𝑦 − 43 ቀ𝑧ℎቁଶ ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜕𝛼௬𝜕𝑦 ቇ൱, (11b)𝜀௭௭ = 0, (11c)𝛾௫௬ = 𝑧 ቈቊ𝜕𝛼௫𝜕𝑦 − 43 ቀ𝑧ℎቁଶ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦 + 𝜕𝛼௫𝜕𝑦 ቇቋ + ቊ𝜕𝛼௬𝜕𝑥 − 43 ቀ𝑧ℎቁଶ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇቋ቉, (11d)𝛾௬௭ = ቆ1 − 4𝑧ଶℎଶ ቇ ൬𝛼௬ + 𝜕𝑤଴𝜕𝑦 ൰, (11e)𝛾௫௭ = ቆ1 − 4𝑧ଶℎଶ ቇ ൬𝛼௫ + 𝜕𝑤଴𝜕𝑥 ൰. (11f)

2.9. Stress fields that satisfy shear stress free boundary conditions 

The stress fields that satisfy the shear stress free boundary conditions on 𝑧 = ±ℎ/2 surfaces 
are: 

𝜎௫௫ = 𝐸𝑧1 − 𝜇ଶ ൭𝜕𝛼௫𝜕𝑥 − 43 ቀ𝑧ℎቁଶ ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜕𝛼௫𝜕𝑥 ቇ൱ + 𝜇𝐸𝑧1 − 𝜇ଶ ൭𝜕𝛼௬𝜕𝑦 − 43 ቀ𝑧ℎቁଶ ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜕𝛼௬𝜕𝑦 ቇ൱, (12a)

𝜎௬௬ = 𝐸𝑧1 − 𝜇ଶ ൭𝜕𝛼௬𝜕𝑦 − 43 ቀ𝑧ℎቁଶ ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜕𝛼௬𝜕𝑦 ቇ൱ + 𝜇𝐸𝑧1 − 𝜇ଶ ൭𝜕𝛼௫𝜕𝑥 − 43 ቀ𝑧ℎቁଶ ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜕𝛼௫𝜕𝑥 ቇ൱, (12b)
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𝜏௫௬ = 𝐺𝑧 ቆ𝜕𝛼௫𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇ − 𝐺 43 𝑧ଷℎଶ ቆ2 𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦 + 𝜕𝛼௫𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇ, (12c)𝜏௬௭ = 𝐺 ቆ1 − 4𝑧ଶℎଶ ቇ ൬𝛼௬ + 𝜕𝑤଴𝜕𝑦 ൰, (12d)𝜏௭௫ = 𝐺 ቆ1 − 4𝑧ଶℎଶ ቇ ൬𝛼௫ + 𝜕𝑤଴𝜕𝑥 ൰. (12e)

Simplification gives the normal stress fields as: 

𝜎௫௫ = 𝐸𝑧1 − 𝜇ଶ ቆ𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ − 43 𝑧ଷℎଶ 𝐸1 − 𝜇ଶ ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ, (13a)𝜎௬௬ = 𝐸𝑧1 − 𝜇ଶ ቆ𝜕𝛼௬𝜕𝑦 + 𝜇 𝜕𝛼௫𝜕𝑥 ቇ − 43 𝑧ଷℎଶ 𝐸1 − 𝜇ଶ ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜕𝛼௬𝜕𝑦 + 𝜇 𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜇 𝜕𝛼௫𝜕𝑥 ቇ. (13b)

2.10. Internal stress resultants 

The internal stress resultants are given by the following integration problems over the plate 
thickness: 

𝑀௫௫ = න 𝜎௫௫𝑧 𝑑𝑧௛/ଶ
ି௛/ଶ , (14a)

𝑀௬௬ = න 𝜎௬௬𝑧 𝑑𝑧௛/ଶ
ି௛/ଶ , (14b)

𝑀௫௬ = න 𝜏௫௬𝑧 𝑑𝑧௛/ଶ
ି௛/ଶ , (14c)

𝑄௫ = න 𝜏௫௬ 𝑑𝑧௛/ଶ
ି௛/ଶ , (14d)

𝑄௬ = න 𝜏௬௭ 𝑑𝑧௛/ଶ
ି௛/ଶ , (14e)

𝑃௫ = න 𝜎௫௫𝑧ଷ 𝑑𝑧௛/ଶ
ି௛/ଶ , (14f)

𝑃௬ = න 𝑧ଷ𝜎௬௬ 𝑑𝑧௛/ଶ
ି௛/ଶ , (14g)

𝑃௫௬ = න 𝑧ଷ𝜏௫௬ 𝑑𝑧௛/ଶ
ି௛/ଶ , (14h)

𝑅௫ = න 𝑧ଶ𝜏௫௭ 𝑑𝑧௛/ଶ
ି௛/ଶ , (14i)

𝑅௬ = න 𝑧ଶ𝜏௬௭ 𝑑𝑧௛/ଶ
ି௛/ଶ , (14j)

where 𝑀௫௫, 𝑀௬௬ are bending moments; 𝑀௫௬ is twisting moment; 𝑃௫, 𝑃௬, 𝑃௫௬, 𝑅௫ and 𝑅௬ are the 
higher-order internal stress resultants. 

By substitution of the expressions for the stress fields, and integration over the thickness of the 
plate, explicit expressions are obtained for the internal stress resultants. These expressions relate 
the internal stress resultants to the unknown displacements of the formulation. 

Thus, 
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𝑀௫௫ = න ቊ 𝐸𝑧ଶ1 − 𝜇ଶ ቆ𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ − 43 𝐸1 − 𝜇ଶ 𝑧ସℎଶ ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇቋ௛/ଶ
ି௛/ଶ 𝑑𝑧. (15)

Simplifying: 

𝑀௫௫ = ቆ𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ න 𝐸𝑧ଶ1 − 𝜇ଶ௛/ଶ
ି௛/ଶ 𝑑𝑧 

      −ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ න 43 𝐸1 − 𝜇ଶ 𝑧ସℎଶ௛ ଶ⁄
ି௛ ଶൗ 𝑑𝑧. 

Let: 

𝐷 = න 𝐸𝑧ଶ1 − 𝜇ଶ௛/ଶ
ି௛/ଶ  𝑑𝑧 = 𝐸ℎଷ12(1 − 𝜇ଶ). (16)

𝐷 is the modulus of flexural rigidity: 

𝑀௫௫ = 𝐷 ቆ𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ − 𝐷5 ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ, (17)𝑀௫௫ = 𝐷 ቆ𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ − 𝐷5 ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑦ଶ ቇ − 𝐷5 ቆ𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ, (17a)𝑀௫௫ = 4𝐷5 ቆ𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ − 𝐷5 ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑦ଶ ቇ. (17b)

Similarly: 𝑀௬௬= න ቊ 𝐸𝑧ଶ1 − 𝜇ଶ ቆ𝜕𝛼௬𝜕𝑦 + 𝜇 𝜕𝛼௫𝜕𝑥 ቇ − 43 𝐸1 − 𝜇ଶ 𝑧ସℎଶ ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜕𝛼௬𝜕𝑦 + 𝜇 𝜕𝛼௫𝜕𝑥 ቇቋ𝑑𝑧௛/ଶ
ି௛/ଶ , (18a)

𝑀௬௬ = 4𝐷5 ቆ𝜕𝛼௬𝜕𝑦 + 𝜇 𝜕𝛼௫𝜕𝑥 ቇ − 𝐷5 ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑥ଶ ቇ, (18b)

𝑀௫௬ = න 𝐺𝑧ଶ௛/ଶ
ି௛/ଶ ቆ𝜕𝛼௫𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇ − න 43ℎଶ 𝐺𝑧ସ𝑑𝑧௛ ଶ⁄

ି௛ ଶ⁄ ቆ2 𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦 + 𝜕𝛼௫𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇ. (19a)

Simplifying: 

𝑀௫௬ = 𝐺ℎଷ15 ቆ𝜕𝛼௫𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇ − 𝐺ℎଷ30 𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦, (19b)

𝑄௫ = න 𝐺 ቆ1 − 4𝑧ଶℎଶ ቇ௛/ଶ
ି௛/ଶ ൬𝛼௫ + 𝜕𝑤଴𝜕𝑥 ൰ 𝑑𝑧 = 2𝐺ℎ3 ൬𝛼௫ + 𝜕𝑤଴𝜕𝑥 ൰, (20)
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𝑄௬ = න 𝐺 ቆ1 − 4𝑧ଶℎଶ ቇ௛/ଶ
ି௛/ଶ ൬𝛼௬ + 𝜕𝑤଴𝜕𝑦 ൰𝑑𝑧 = 2𝐺ℎ3 ൬𝛼௬ + 𝜕𝑤଴𝜕𝑦 ൰, (21)

𝑃௫௫ = න 𝐸𝑧ସ1 − 𝜇ଶ௛/ଶ
ି௛/ଶ ቆ𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ𝑑𝑧

− න 43ℎଶ 𝐸𝑧଺1 − 𝜇ଶ௛ ଶ⁄
ି௛ ଶ⁄ 𝑑𝑧 ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ, (22a)

𝑃௫௫ = 4𝐷ℎଶ35 ቆ𝜕𝛼௫𝜕𝑥 + 𝜇 𝜕𝛼௬𝜕𝑦 ቇ − 𝐷ℎଶ28 ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑦ଶ ቇ, (22b)

𝑃௬௬ = න 𝐸𝑧ସ1 − 𝜇ଶ௛/ଶ
ି௛/ଶ ቆ𝜕𝛼௬𝜕𝑦 + 𝜇 𝜕𝛼௫𝜕𝑥 ቇ𝑑𝑧

− න 43ℎଶ 𝐸𝑧଺1 − 𝜇ଶ௛ ଶൗି௛ଶ 𝑑𝑧 ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑥ଶ + 𝜕𝛼௬𝜕𝑦 + 𝜇 𝜕𝛼௫𝜕𝑥 ቇ, (23a)

𝑃௬௬ = 4𝐷ℎଶ35 ቆ𝜕𝛼௬𝜕𝑦 + 𝜇 𝜕𝛼௫𝜕𝑥 ቇ − 𝐷ℎଶ28 ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ + 𝜇 𝜕ଶ𝑤଴𝜕𝑥ଶ ቇ, (23b)

𝑃௫௬ = න 𝐺𝑧ସ௛/ଶ
ି௛/ଶ 𝑑𝑧 ቆ𝜕𝛼௫𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇ − න 43ℎଶ 𝐺𝑧଺

௛ଶ
ି௛ଶ

𝑑𝑧 ቆ2 𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦 + 𝜕𝛼௫𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇ, (24a)

𝑃௫௬ = 𝐺ℎହ30 ቆ𝜕𝛼௫𝜕𝑦 + 𝜕𝛼௬𝜕𝑥 ቇ − 𝐺ℎହ168 𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦, (24b)

𝑅௫ = න 𝐺 ൬𝛼௫ + 𝜕𝑤଴𝜕𝑥 ൰௛/ଶ
ି௛/ଶ  𝑧ଶ ቆ1 − 4𝑧ଶℎଶ ቇ𝑑𝑧 = 𝐺ℎଷ30 ൬𝛼௫ + 𝜕𝑤଴𝜕𝑥 ൰, (25)

𝑅௬ = න 𝐺 ൬𝛼௬ + 𝜕𝑤଴𝜕𝑦 ൰௛/ଶ
ି௛/ଶ  𝑧ଶ ቆ1 − 4𝑧ଶℎଶ ቇ𝑑𝑧 = 𝐺ℎଷ30 ൬𝛼௬ + 𝜕𝑤଴𝜕𝑦 ൰. (26)

3. Governing equations of equilibrium 

The principle of minimum potential energy gives the total potential energy functional 𝛽௫ and Π as follows: 

∏ = න න න12 (𝜎௫௫𝜀௫௫ + 𝜎௬௬𝜀௬௬ + 𝜏௫௬𝛾௫௬ + 𝜏௬௭𝛾௬௭ + 𝜏௫௭𝛾௫௭)ோమ
௭ୀ௛/ଶ

௭ୀ(ି௛/ଶ) 𝑑𝑥𝑑𝑦𝑑𝑧
−ඵ𝑞𝑤(𝑥,𝑦)ோమ 𝑑𝑥𝑑𝑦, (27)

where 𝑅ଶ is the two-dimensional (2D) domain of the plate (0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏), 𝑎 and 𝑏 are 
the in-plane dimensions of the plate, 𝑞(𝑥,𝑦) is the distribution of transverse load over the plate 
domain. 

For equilibrium: 
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𝛿∏ = 0. (28)

The equilibrium of the internal stress resultants or the principle of minimum total potential 
energy are used to obtain the differential equations of equilibrium of the plate. Using the 
equilibrium approach, the equations of equilibrium are found using: 𝜕𝑁௫௫𝜕𝑥 + 𝜕𝑁௫௬𝜕𝑦 = 0, (29a)𝜕𝑁௫௬𝜕𝑥 + 𝜕𝑁௬௬𝜕𝑦 = 0, (29b)𝜕𝑄௫𝜕𝑥 + 𝜕𝑄௬𝜕𝑦 + 43ℎଶ ቆ𝜕ଶ𝑃௫௫𝜕𝑥ଶ + 𝑧 𝜕ଶ𝑃௫௬𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑃௬௬𝜕𝑦ଶ ቇ + 𝑞(𝑥,𝑦) = 0, (29c)𝜕𝑀௫௫𝜕𝑥 + 𝜕𝑀௬௬𝜕𝑦 − 𝑄௫ = 0, (29d)𝜕𝑀௫௬𝜕𝑥 + 𝜕𝑀௬௬𝜕𝑦 − 𝑄௬ = 0, (29e)

where 𝑁௫௫, 𝑁௬௬, 𝑁௫௬ are resultant in-plane forces. 
The governing differential equations of equilibrium of the shear deformable thick plate are 

found in terms of the three displacement parameters as follows: 

ቆ𝜕ଷ𝑤଴𝜕𝑥ଷ + 𝜕ଷ𝑤଴𝜕𝑥𝜕𝑦ଶቇ − 174 ቆ𝜕ଶ𝛼௫𝜕𝑥ଶ + 1 − 𝜇2 𝜕ଶ𝛼௫𝜕𝑦ଶ + 1 + 𝜇2 𝜕ଶ𝛼௬𝜕𝑥𝜕𝑦ቇ       + 21(1 − 𝜇)ℎଶ ൬𝛼௫ + 𝜕𝑤଴𝜕𝑥 ൰ = 0, (30)

ቆ𝜕ଷ𝑤଴𝜕𝑦ଷ + 𝜕ଷ𝑤଴𝜕𝑦𝜕𝑥ଶቇ − 174 ቆ𝜕ଶ𝛼௬𝜕𝑦ଶ + 1 − 𝜇2 𝜕ଶ𝛼௬𝜕𝑥ଶ + 1 + 𝜇2 𝜕ଶ𝛼௫𝜕𝑥𝜕𝑦ቇ       + 21(1 − 𝜇)ℎଶ ൬𝛼௬ + 𝜕𝑤଴𝜕𝑦 ൰ = 0, (31)

∇ସ𝑤଴ − 165 ቆ𝜕ଷ𝛼௫𝜕𝑥ଷ + 𝜕ଷ𝛼௫𝜕𝑥𝜕𝑦ଶ + 𝜕ଷ𝛼௬𝜕𝑥ଶ𝜕𝑦 + 𝜕ଷ𝛼௬𝜕𝑦ଷ ቇ − 3365ℎଶ (1 − 𝜇)∇ଶ𝑤଴       −3365ℎଶ (1 − 𝜇)ቆ𝜕𝛼௫𝜕𝑥 + 𝜕𝛼௬𝜕𝑦 ቇ − 21𝑞(𝑥,𝑦)𝐷 = 0, (32)

where: 

∇ଶ= 𝜕ଶ𝜕𝑥ଶ + 𝜕ଶ𝜕𝑦ଶ, (33)

∇ସ= ∇ଶ∇ଶ= (∇ଶ)ଶ = ቆ 𝜕ଶ𝜕𝑥ଶ + 𝜕ଶ𝜕𝑦ଶቇଶ, (34)

∇ସ= 𝜕ସ𝜕𝑥ସ + 2𝜕ସ𝜕𝑥ଶ𝜕𝑦ଶ + 𝜕ସ𝜕𝑦ସ. (35)

Alternatively, the domain equations are: 𝜕𝜕𝑥 (∇ଶ𝑤଴) − 174 ቆ𝜕ଶ𝛼௫𝜕𝑥ଶ + 1 − 𝜇2 𝜕ଶ𝛼௫𝜕𝑦ଶ + 1 + 𝜇2 𝜕ଶ𝛼௬𝜕𝑥𝜕𝑦ቇ + 21(1 − 𝜇)ℎଶ ൬𝛼௫ + 𝜕𝑤଴𝜕𝑥 ൰ = 0, (36)
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𝜕𝜕𝑦 (∇ଶ𝑤଴) − 174 ቆ𝜕ଶ𝛼௬𝜕𝑦ଶ + 1 − 𝜇2 𝜕ଶ𝛼௬𝜕𝑥ଶ + 1 + 𝜇2 𝜕ଶ𝛼௫𝜕𝑥𝜕𝑦ቇ + 21(1 − 𝜇)ℎଶ ൬𝛼௬ + 𝜕𝑤଴𝜕𝑦 ൰ = 0, (37)∇ସ𝑤଴(𝑥,𝑦) − 165 ൤ 𝜕𝜕𝑥 (∇ଶ𝛼௫) + 𝜕𝜕𝑦 (∇ଶ𝛼௬)൨ − 3365ℎଶ (1 − 𝜇)∇ଶ𝑤଴      −3365ℎଶ (1 − 𝜇)ቆ𝜕𝛼௫𝜕𝑥 + 𝜕𝛼௬𝜕𝑦 ቇ − 21𝑞(𝑥,𝑦)𝐷 = 0.  (38)

3.1. Alternative exact method for the study by Srivinas and Rao [29] 

Srivinas and Rao [29] presented an alternative method for formulating and solving the 
candidate problem of this study. They presented a unified exact analysis for the static flexural 
solutions of simply supported thick plates and laminated plates based on a three-dimensional 
linear, small deformation theory of elasticity. Their work considered orthotropic plates, but 
isotropic solutions were also presented as special cases of the orthotropic material. They obtained 
formally exact solutions which were presented as simple infinite series for stresses and 
displacements for static flexural solutions.  

3.2. Advantages and limitations of the third order shear deformable plate formulation 

These formulated third order shear deformable plate equations avoid some issues associated 
with the use of lower order and simpler Kirchoff plate theory (KPT) and first order shear 
deformable plate theories (FSDPTs) of Timoshenko and Mindlin. 

In particular, the advantages are: 
1) The formulation allows the determination of a more accurate stress analysis without the use 

of shear correction factors of the FSDPTs of Timoshenko and Mindlin. 
2) The resulting displacement field for the present theory determines a quadratic variation of 

shear strains and shear stresses across the thickness, with the shear strains and shear stresses 
vanishing at the top and bottom surfaces of the plate and attaining the maximum values at the 
middle plane. This leads to the satisfaction of the shear stress-free boundary conditions at the top 
and bottom plate surfaces 𝑧 = ±ℎ/2, and the obviation of the need for shear correction factors. 

3) The governing equations formulated take due consideration of transverse shear deformation 
in deriving the equations of equilibrium, and hence make the resulting formulation applicable to 
moderately thick and thick plates where transverse shear deformation is vital to their behaviour. 

The disadvantages are: 
1) The formulation assumes that the plate material is homogenous and hence the equations 

would not apply to non-homogenous plates. 
2) The assumption of isotropic plate material also restricts the applicability to isotropic plates. 
3) The formulation applies to linear, small displacement static flexure problems and is 

inapplicable to large displacement, nonlinear flexural problems. 
4) The formulation contains three unknown displacements, which increase the difficulty in 

obtaining solutions to the governing equations as the solutions involve prior determination of the 
three unknown displacement parameters. 

4. Application to the flexural analysis of simply supported thick plate 

A rectangular thick plate with simply supported edges 𝑥 = 0, 𝑥 = 𝑎, 𝑦 = 0, 𝑦 = 𝑏 is 
considered. The plate has in-plane dimensions 𝑎 × 𝑏 and thickness ℎ, and is subjected to a 
distributed transverse load of intensity 𝑞(𝑥,𝑦) over the domain 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏. 

The boundary conditions along the simply supported edges are given by along 𝑥 = 0: 𝑤(𝑥 = 0,𝑦) = 0, (39a)
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𝑃௫௫(𝑥 = 0,𝑦) = 0, (39b)𝑀௫௫(𝑥 = 0,𝑦) = 0, (39c)𝛼௬(𝑥 = 0,𝑦) = 0. (39d)

Similarly, along 𝑥 = 𝑎: 𝑤(𝑥 = 𝑎,𝑦) = 0, (40a)𝑃௫௫(𝑥 = 𝑎,𝑦) = 0, (40b)𝑀௫௫(𝑥 = 𝑎,𝑦) = 0, (40c)𝛼௬(𝑥 = 𝑎,𝑦) = 0. (40d)

Along 𝑦 = 0: 𝑤(𝑥,𝑦 = 0) = 0, (41a)𝑃௬௬(𝑥,𝑦 = 0) = 0, (41b)𝑀௬௬(𝑥,𝑦 = 0) = 0, (41c)𝛼௫(𝑥,𝑦 = 0) = 0. (41d)

Along 𝑦 = 𝑏: 𝑤(𝑥,𝑦 = 𝑏) = 0, (42a)𝑃௬௬(𝑥,𝑦 = 𝑏) = 0, (42b) 𝑀௬௬(𝑥,𝑦 = 𝑏) = 0, (42c) 𝛼௫(𝑥,𝑦 = 𝑏) = 0. (42d) 

4.1. Navier’s double trigonometric series method of solution 

Using Navier’s double trigonometric series method and considering the displacement shape 
functions that satisfy apriori the boundary conditions along the four edges, 𝑤(𝑥,𝑦), 𝛼௫(𝑥,𝑦) and 𝛼௬(𝑥,𝑦) are expressed in terms of double series of infinite terms as: 

𝑤(𝑥,𝑦) = ෍ ෍𝐴௠௡sin𝜆௠𝑥sin𝛾௡𝑦ஶ
௡ୀଵ

ஶ
௠ୀଵ , (43)

𝛼௫(𝑥,𝑦) = ෍ ෍𝐵௠௡cos𝜆௠𝑥sin𝛾௡𝑦ஶ
௡ୀଵ

ஶ
௠ୀଵ , (44)

𝛼௬(𝑥,𝑦) = ෍ ෍𝐶௠௡sin𝜆௠𝑥cos𝛾௡𝑦ஶ
௡ୀଵ

ஶ
௠ୀଵ , (45)

where 𝐴௠௡, 𝐵௠௡ and 𝐶௠௡ are the unknown parameters of 𝑤(𝑥,𝑦), 𝛼௫(𝑥,𝑦), and 𝛼௬(𝑥,𝑦) 
respectively, and 𝜆௠ and 𝛾௡ are defined in terms of 𝑚, 𝑛, 𝑎 and 𝑏 as: 𝜆௠ = 𝑚𝜋𝑎 , (46)𝛾௡ = 𝑛𝜋𝑏 . (47)

The distributed transverse load 𝑞(𝑥,𝑦) is represented as the double Fourier sine series 
expansion: 
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𝑞(𝑥,𝑦) = ෍ ෍𝑞௠௡sin𝜆௠𝑥sin𝛾௡𝑦ஶ
௡ୀଵ

ஶ
௠ୀଵ , (48)

where 𝑞௠௡ are the Fourier series coefficients of the load. 
Then by Fourier series theory: 

𝑞௠௡ = 4𝑎𝑏නන𝑞(𝑥,𝑦)sin𝜆௠𝑥sin𝛾௡𝑦 𝑑𝑥𝑑𝑦௕
଴

௔
଴ . (49)

Substitution of Eqs. (43-45) and Eq. (49) into the governing PDEs and simplification gives the 
following system of equations: 

൬−𝜆௠(𝜆௠ଶ + 𝛾௡ଶ) + 21(1 − 𝜇)ℎଶ 𝜆௠൰𝐴௠௡ + ൬174 ൬𝜆௠ଶ + ൬1 − 𝜇2 ൰ 𝛾௡ଶ൰ + 21(1 − 𝜇)ℎଶ ൰𝐵௠௡      + 178 (1 + 𝜇)𝜆௠𝛾௡𝐶௠௡ = 0,  (50)

൭𝛾௡ ൬21(1 − 𝜇)ℎଶ − (𝜆௠ଶ + 𝛾௡ଶ)൰൱𝐴௠௡ + 178 (1 + 𝜇)𝜆௠𝛾௡ 𝐵௠௡ 
      + ൬174 ൬𝛾௡ଶ + 1 − 𝜇2 𝜆௠ଶ ൰ + 21(1 − 𝜇)ℎଶ ൰𝐶௠௡ = 0, (51)

൬(𝜆௠ଶ + 𝛾௡ଶ)ଶ − 336(1 − 𝜇)5ℎଶ (𝜆௠ଶ + 𝛾௡ଶ)൰𝐴௠௡ + ൬336(1 − 𝜇)5ℎଶ 𝜆௠ − 165 𝜆௠(𝜆௠ଶ + 𝛾௡ଶ)൰𝐵௠௡       + ൬336(1 − 𝜇)5ℎଶ 𝛾௡ − 165 𝛾௡(𝜆௠ଶ + 𝛾௡ଶ)൰ 𝐶௠௡ = 21𝐷 𝑞௠௡. (52)

4.2. Matrix representation of the algebraic problem 

The resulting algebraic problem is represented in matrix format as follows: 

൭𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ൱൭𝐴௠௡𝐵௠௡𝐶௠௡൱ = ൭ 00𝑄௠௡൱, (53)

wherein: 
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𝑎ଵଵ = 21(1 − 𝜇)ℎଶ 𝜆௠ − 𝜆௠(𝜆௠ଶ + 𝛾௡ଶ),  𝑎ଵଶ = 174 ൬𝜆௠ଶ + 1 − 𝜇2 𝛾௡ଶ൰ + 21(1 − 𝜇)ℎଶ , 𝑎ଵଷ = 178 (1 + 𝜇)𝜆௠𝛾௡, 𝑎ଶଵ = 𝛾௡ ൬21(1 − 𝜇)ℎଶ − (𝜆௠ଶ + 𝛾௡ଶ)൰, 𝑎ଶଶ = 178 (1 + 𝜇)𝜆௠𝛾௡ = 𝑎ଵଷ, 𝑎ଶଷ = 174 ൬𝛾௡ଶ + 1 − 𝜇2 𝜆௠ଶ ൰ + 21(1 − 𝜇)ℎଶ , 𝑎ଷଵ = (𝜆௠ଶ + 𝛾௡ଶ)ଶ + 336(1 − 𝜇)5ℎଶ (𝜆௠ଶ + 𝛾௡ଶ), 𝛼ଷଶ = 336(1 − 𝜇)5ℎଶ 𝜆௠ଶ − 165 𝜆௠(𝜆௠ଶ + 𝛾௡ଶ), 𝛼ଷଷ = 336(1 − 𝜇)5ℎଶ 𝛾௡ − 165 𝛾௡(𝜆௠ଶ + 𝛾௡ଶ), 𝑄௠௡ = 21𝑞௠௡𝐷 . 

(54)

Case 1: Sinusoidal distribution of transverse load: 𝑞(𝑥,𝑦) = 𝑞଴sin𝜋𝑥𝑎 sin𝜋𝑦𝑏 . (55)

Then: 

𝑞௠௡ = 4𝑎𝑏නන𝑞଴sin𝜋𝑥𝑎 sin𝜋𝑦𝑏 sin𝑚𝜋𝑥𝑎 sin𝑛𝜋𝑦𝑏௕
଴

௔
଴  𝑑𝑥𝑑𝑦, (56)

𝑞௠௡ = ൜𝑞଴, 𝑚 = 𝑛 = 1,0, 𝑚 > 1,    𝑛 > 1. (57)

Case 2: Uniformly distributed transverse load 𝑞଴ on the surface 𝑧 = −ℎ/2 acting in the 𝑧 
direction: 𝑞(𝑥,𝑦) = 𝑞଴,     0 ≤ 𝑥 ≤ 𝑎,     0 ≤ 𝑦 ≤ 𝑏, (58)𝑞୫ୟ୶ = 4𝑎𝑏නන𝑞଴sin𝑚𝜋𝑥𝑎 sin𝑛𝜋𝑦𝑏௕

଴
௔
଴  𝑑𝑥𝑑𝑦 = 16𝑞଴𝑚𝑛𝜋ଶ ,   𝑚 = 1,3,5,7,9 … ,     𝑛 = 1,3,5,7,9 …, (59a)𝑞௠௡ = 0,     𝑚 = 2,4,6,8,10 … ,     𝑛 = 2,4,6,8,10 …. (59b)

Case 3: Linearly varying transverse load: 𝑞(𝑥,𝑦) = 𝑞଴𝑥𝑎 . (60)

Then: 

𝑞௠௡ = 4𝑎𝑏න න 𝑞଴𝑥𝑎 sin𝑚𝜋𝑥𝑎 sin𝑛𝜋𝑦𝑏௕
଴

௔
଴  𝑑𝑥𝑑𝑦, (61a)
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𝑞௠௡ = 8𝑞଴𝑚𝑛𝜋ଶ cos𝑚𝜋. (61b)

Case 4: Transverse point load 𝑃଴ acting at 𝑥 = 𝑥̅, 𝑦 = 𝑦ത, then: 𝑞(𝑥,𝑦) = 𝑃଴𝛿(𝑥 = 𝑥̅,𝑦 = 𝑦ത), (62)𝑞௠௡ = 4𝑎𝑏න න 𝑃଴𝛿(𝑥 = 𝑥̅,𝑦 = 𝑦ത)௕
଴

௔
଴ sin𝑚𝜋𝑥𝑎 sin𝑛𝜋𝑦𝑏  𝑑𝑥𝑑𝑦, (63)𝑞௠௡ = 4𝑃଴𝑎𝑏 sin𝑚𝜋𝑥̅𝑎 sin𝑛𝜋𝑦ത𝑏 . (64)

For center point loads, 𝑥̅ = ௔ଶ, 𝑦ത = ௕ଶ: 

𝑞௠௡ = 4𝑃଴𝑎𝑏 sin𝑚𝜋2 sin𝑛𝜋2 . (65)

5. Results and discussion 

For each loading case considered, non-dimensional transverse displacement 𝑤ഥ  and the normal 
stresses (𝜎ത௫௫,𝜎ത௬௬) and shear stresses (𝜏௫̅௬, 𝜏௭̅௫, 𝜏௬̅௭) are calculated at defined points on the plate 
as follows: 𝑤ഥ = 100𝐸𝑤𝑞ℎ𝑠 ,     𝜎ത௫௫ = 𝜎௫௫𝑞𝑠ଶ ,     𝜎ത௬௬ = 𝜎௬௬𝑞𝑠ଶ ,     𝜏௫௬ = 𝜏௫௬𝑞𝑠ଶ ,     𝜏̅௭௫ = 𝜏௭௫𝑞𝑠 ,     𝜏௬௭ = 𝜏௬௭𝑞𝑠 , (66)

where 𝑠 = 𝑎 ℎ⁄ . 
The results for the dimensionless displacements and stresses are shown in Tables 1-4 for the 

four cases of load distributions considered in the study. In the tables, 𝜏̅௭௫ and 𝜏̅௬௭ were evaluated 
using two procedures namely constitutive relations, which is denoted by CR and equilibrium 
equations denoted by EE as superscripts for each of the stress notations. The percentage error in 
the results obtained and other results from literature sources are calculated by comparison with 
the exact solution as follows: 

% error = value of result − exact resultexact result × 100 %. (67)

The values enclosed in brackets in Tables 1-4 are the % errors for the displacements and 
stresses relative to the exact solutions computed by Srivinas and Rao [29] as indicated in the 
corresponding table. 

Table 1 presents the results for dimensionless displacement 𝑤ഥ  and stresses for the case of 
sinusoidal load distribution on a square thick plate for ℎ/𝑎 = 0.10 and for ℎ/𝑎 = 0.25. Table 1 
shows that the present results for 𝑤ഥ  at the center (for ℎ/𝑎 = 0.10) is 0.62 % greater than the exact 
result obtained by Srivinas and Rao [29]. Table 1 further shows that Krishna Murty’s HSDPT 
solutions gave a better result for 𝑤ഥ  at the center as the result coincides with the exact result. 
However, the present result gave better result than the Kirchhoff CPT result which showed a 
percentage error of –4.76 %. 
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Table 1. Dimensionless deflection 𝑤ഥ  at (𝑥 = 𝑎/2,𝑦 = 𝑏/2, 𝑧 = 0), Dimensionless in-plane normal stress 𝜎ത௫௫ at (𝑥 = 𝑎/2,𝑦 = 𝑏/2, 𝑧 = ℎ/2), 𝜎ത௬௬ at (𝑥 = 𝑎/2,𝑦 = 𝑏/2, 𝑧 = ℎ/2) in-plane shear stress 𝜏̅௫௬  
at (𝑥 = 0, 𝑦 = 0, 𝑧 = ℎ/2) and transverse shear stress 𝜏̅௭௫ at (𝑥 = 0, 𝑦 = 𝑏௫, 𝑧 = 0)  

in square thick plate subjected to single sine load 𝑎𝑏 ℎ𝑎 Theory 𝑤ഥ  𝜎ത௫௫ 𝜎ത௬௬ 𝜏̅௫௬ 𝜏̅௭௫஼ோ 𝜏̅௭௫ாா 

1 0.1 Present work 2.960 
(0.62 %) 

0.289 
(0.00 %) 

0.2890 
(0.00 %) 0.1070 0.2380 

(0.00 %) 0.228 

  Krishna Murty [28] HSDT 2.942 
(0.00%) 

0.290 
(0.34 %) 

0.290 
(0.34 %) 0.107 0.238 

(0.00 %) 0.228 

  Kirchhoff [6] (CPT) 2.802 
(–4.76 %) 

0.287 
(–1.50%) 

0.287 
(–1.50 %) 0.106 – 0.238 

  (Exact) Srivinas et al [29] 2.942 0.289 0.289 – 0.238 – 

 0.25 Present Study 3.7810 
(3.39%) 

0.2090 
(2.45 %) 

0.2090 
(2.45%) 0.1120 0.2370 

(0.38 %) – 

  Sayyad and Ghugal [31] 3.7480 
(2.32 %) 

0.2130 
(4.41%) 

0.2130 
(4.41 %) 0.1140 0.2380 

(0.80 %) – 

  Kirchhoff [6] 2.8030 
(–23.48 %) 

0.1970 
(–3.43 %) 

0.1970 
(–3.43 %) 0.1060 – – 

  (Exact) Srivinas and Rao [29] 3.6630 0.2040 0.2040 – 0.2361 – 

Table 2. Non-dimensionless transverse deflection 𝑤ഥ  at (𝑥 = 𝑎/2, 𝑦 = 𝑏/2, 𝑧 = 0), Dimensionless in-plane 
stresses 𝜎ത௫௫ at (𝑥 = 𝑎/2,𝑦 = 𝑏/2, 𝑧 = ℎ/2), 𝜎ത௬௬ at (𝑥 = 𝑎/2,𝑦 = 𝑏/2, 𝑧 = ℎ/2) in-plane shear stress 𝜏̅௫௬ 

at (𝑥 = 0, 𝑦 = 0, 𝑧 = ℎ/2) and transverse shear stress 𝜏̅௭௫ at (𝑥 = 0, 𝑦 = 𝑏/2, 𝑧 = 0)  
in rectangular thick plate subjected to uniformly distributed loading 𝑎𝑏 ℎ𝑎 Theory / Method / Procedure 𝑤ഥ  𝜎ത௫௫ 𝜎ത௬௬ 𝜏̅௫௬ 𝜏̅௭௫஼ோ 𝜏̅௭௫ாா 

0.5 0.10 Present Study 11.420 
(0.39 %) 

0.612 
(0.00 %) 

0.278 
(–1.06 %) 0.280 0.679 

(0.00 %) 
0.6776 

(–0.206 %) 

  Krishna Murty [28] HSDT 11.310 
(–0.57 %) 

0.613 
(0.163 %) 

0.310 
(10.32 %) 0.278 0.682 

(0.441 %) 
0.667 

(–1.76 %) 

  Kirchhoff [6] (CPT) 11.060 
(–2.78 %) 

0.610 
(–0.32 %) 

0.278 
(–1.06 %) 0.277 0.686 

(1.03 %) 
0.6865 

(1.104 %) 
  (Exact) Srivinas and Rao [29] 11.375 0.612 0.281 – 0.679 – 

Table 1 also reveals that the present results for 𝜎ത௫௫ and 𝜎ത௬௬ (at 𝑥 = 𝑎/2, 𝑦 = 𝑏/2, 𝑧 = ℎ/2) 
coincide with the exact result obtained by Srivinas et al [29] while Krishna Murty’s results for 𝜎ത௫௫ 
and 𝜎ത௬௬ are 0.34 % in error and CPT of Kirchhoff is –1.50 % in error. 

For the case of sinusoidal load distribution for ℎ/𝑎 = 0.25, the present result for 𝑤ഥ  at the 
center is 3.39 % different from the exact result given by Srivinas et al [29], while the exponential 
shear deformation plate theory solution by Sayyad and Ghugal [31] gave better result for 𝑤ഥ  at the 
center as the error is 2.32 %. The error of the CPT is however –23.48 % for 𝑤ഥ  at the center for ℎ/𝑎 = 0.25.  

The present method gave more accurate results as the error is 2.45 % compared with 4.41 % 
error of the ESDPT of Sayyad and Ghugal and –3.43 % error of the CPT. 

In the both cases of ℎ/𝑎 = 0.1 and ℎ/𝑎 = 0.25, the 𝜏௫̅௬was calculated by the present method, 
but was not determined by the exact results of Srivinas et al [29]. In both cases, the present study 
gave satisfactory results for 𝜏௭̅௫.  

Table 2 presents non-dimensional values of 𝑤ഥ  and stresses for rectangular thick plate (with 𝑎/𝑏 = 0.5, ℎ/𝑎 = 0.10) subjected to uniformly distributed loading. Table 2 shows that the present 
results for 𝑤ഥ  at the center has a relative difference of 0.39 % as compared with the exact solution 
by Srivinas et al [29]. The present result for 𝑤ഥ  is more accurate than the result by Krishna Murty’s 
HSDPT which has an error of –0.57 % and the CPT which has an error of –2.78 %. Table 2 further 
shows that the present results for 𝜎ത௫௫ is exact as it coincides with the exact solution by Srivinas et 
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al [29], while Krishna Murty’s result gave an error of 0.163% and CPT gave an error of –0.32 %. 
The present result for 𝜎ത௬௬ at the point (𝑥 = 𝑎/2, 𝑦 = 𝑏/2, 𝑧 = ℎ/2) gave an error of –1.06 % 

compared with the exact result by Srivinas et al [29]. The present result is more accurate than 
Krishna Murty’s HSDPT result which has an error of 10.32 %. The present result for 𝜏௭̅௫஼ோ gave an 
exact result compared with Krishna Murty’s HSDPT result which has an error of 0.441 % and 
CPT with an error of 1.03 %. 

Table 3. Dimensionless deflection 𝑤ഥ  at (𝑥 = 𝑎/2,𝑦 = 𝑏/2, 𝑧 = 0), in-plane normal stress 𝜎ത௫௫ at  (𝑥 = 𝑎/2, 𝑦 = 𝑏/2, 𝑧 = ℎ/2), 𝜎ത௬௬ at (𝑥 = 𝑎/2, 𝑦 = 𝑏/2, 𝑧 = ℎ/2) in-plane shear stress 𝜏̅௫௬  
at (𝑥 = 0, 𝑦 = 0, 𝑧 = ℎ/2) and transverse shear stress 𝜏̅௭௫ at (𝑥 = 0, 𝑦 = 𝑏/2, 𝑧 = 0)  
in square and rectangular thick isotropic plate subjected to linearly distributed loading 𝑎𝑏 ℎ𝑎 Theory / Method / 

Reference 𝑤ഥ  𝜎ത௫௫ 𝜎ത௬௬ 𝜏̅௫௬ 𝜏̅௭௫஼ோ 𝜏̅௭௫ாா 

0.5 0.1 Present work 5.7100 
(0.395 %) 

0.3060 
(0.00 %) 

0.139 
(–1.068 %) 0.1400 0.3395 

(0.00 %) 
0.3388 

(–0.206 %) 

  Krishna Murty  
[28] HSDT 

5.6878 
(0.0017 %) 

0.3067 
(0.228 %) 

0.155 
(10.32 %) 0.1390 0.341 

(0.441 %) 
0.3375 

(–0.589 %) 

  Kirchhoff [6] (CPT) 5.5300 
(–2.772 %) 

0.3048 
(–0.39 %) 

0.139 
(–1.068 %) 0.1385 0.343 

(1.03 %) 
0.3433 

(1.104 %) 

  (Exact) Srivinas and 
Rao [29] 5.6875 0.3060 0.1405 – 0.3395 – 

1 0.1 Present Study 2.3325 
(0.560 %) 

0.1445 
(0.00 %) 

0.1445 
(0.00 %) 0.0995 0.2463 

(0.984 %) 
0.243 

(–0.20 %) 

  Krishna Murty [28] 
HSDT 

2.3199 
(0.017 %) 

0.1453 
(0.553 %) 

0.1453 
(0.553 %) 0.0975 0.2454 

(0.615 %) 
0.240 

(–1.44 %) 

  Kirchhoff [6] 2.2180 
(–4.375 %) 

0.1435 
(–0.007 %) 

0.1435 
(–0.007 %) 0.0975 – 0.247 

(1.64 %) 

  (Exact) Srivinas  
and Rao [29] 2.3195 0.1445 0.1445 – 0.2439 – 

Table 3 presents the results for 𝑤ഥ  and stresses for square and rectangular thick plates subjected 
to linearly distributed loading. For rectangular thick plate ℎ/𝑎 = 0.1, 𝑎/𝑏 = 0.5, the present 
study gave 𝑤ഥ  that is 0.395 % in error compared with the exact result by Srivinas et al [29]. Krishna 
Murty’s HSDPT result with an error of 0.0017 % gave better accuracy while the present study is 
more accurate than the CPT which has –2.772 % error. Table 3 also shows that the present method 
gave accurate results for 𝜎ത௫௫ and 𝜎ത௬௬ than the Krishna Murty’s HSDPT and Kirchhoff’s CPT 
results. For 𝜎ത௫௫ the present result is identical with the exact result while Krishna Murty had an 
error of 0.228 % and CPT an error of –0.39 %. The present method gave exact results for 𝜏௭̅௫஼ோ 
while Krishna Murty’s HSDPT result had an error of 0.441 % and CPT had an error of 1.03 %. 

For square thick plate presented in Table 3, the present study gave an error of 0.56 % for 𝑤ഥ  at 
the center compared with 0.017 % error of the Krishna Murty HSDPT and –4.375 % error of the 
CPT. Table 3 also shows that the present results for 𝜎ത௫௫ and 𝜎ത௬௬ are exact compared with the 
Srivinas et al [29] results; and are more accurate than Krishna Murty’s and CPT results. 

Table 4 presents the results for 𝑤ഥ  and stresses for thick square plates for ℎ/𝑎 = 0.10 subjected 
to center point load. Table 4 shows that the present study gave an error of 2.701 % for 𝑤ഥ  at the 
center which is more accurate than the CPT results with an error of –10.173 %. Moreover, Table 4 
shows that Krishna Murty’s HSDPT gave more accurate result for 𝑤ഥ  at the center as the error is –
0.063 %. However, for 𝜎ത௫௫, the present results gave an error of –2.481 % showing better accuracy 
than the Krishna Murty’s result (which has –6.609 % error) and CPT results (which has –27.03 % 
error). 



A THIRD-ORDER SHEAR DEFORMATION PLATE BENDING FORMULATION FOR THICK PLATES: FIRST PRINCIPLES DERIVATION AND APPLICATIONS.  
CHARLES CHINWUBA IKE 

 MATHEMATICAL MODELS IN ENGINEERING. DECEMBER 2023, VOLUME 9, ISSUE 4 163 

Table 4. Dimensionless transverse deflection 𝑤ഥ  at (𝑥 = 𝑎/2,𝑦 = 𝑏/2, 𝑧 = 0), normal stress 𝜎ത௫௫ at  (𝑥 = 𝑎/2, 𝑦 = 𝑏/2, 𝑧 = ℎ/2), and transverse shear stress 𝜏̅௭௫ at (𝑥 = 0, 𝑦 = 𝑏/2, 𝑧 = 0)  
in square thick isotropic plate subjected to center point load 𝑎𝑏 ℎ𝑎 Method / Reference 𝑤ഥ  𝜎ത௫௫ 𝜏̅௭௫஼ோ 

1.5 0.10 Present study 14.4717 
(2.701 %) 

2.4956 
(–2.481 %) 

0.9174 
(24.66 %) 

  Krishna Murty [28] HSDT 14.0821 
(–0.063 %) 

2.3902 
(–6.609 %) 

0.7936 
(7.840 %) 

  Kirchhoff [6] (CPT) 12.6575 
(–10.173 %) 

1.8672 
(–27.03 %) – 

  (Exact) Srivinas and Rao [29] 14.0910 2.5591 0.7359 

6. Conclusions 

The study has presented from first principles, a third-order shear deformation plate bending 
formulation for thick plates. 

1) The formulation is displacement based and includes the effect of transverse shear 
deformations thus making it applicable to thick plates. 

2) The formulation is based on infinitesimally small displacement assumptions, and linear 3D 
elasticity kinematics are used. 

3) The resulting formulation satisfies the transverse shear stress free boundary conditions at 
the top and bottom surfaces of the plate, and hence transverse shear stress correction factors of the 
Mindlin first-order shear deformation plate theories are not needed in the present formulation. 

4) The resulting governing differential equations of equilibrium are a set of three coupled 
differential equations in terms of three unknown displacements, namely 𝑤଴(𝑥,𝑦), 𝛼௫(𝑥,𝑦) and 𝛼௬(𝑥,𝑦).  

5) The resulting formulation is solved for simply supported rectangular and square thick plates 
subjected to four cases of loading distributions: 

– sinusoidal loading 
– uniformly distributed loading 
– linearly distributed loading 
– point load at the plate center. 
6) For simply supported boundaries, Navier’s double trigonometric series method is used to 

construct trial solutions for 𝑤(𝑥,𝑦), 𝛼௫(𝑥,𝑦) and 𝛼௬(𝑥,𝑦) that apriori satisfy all the boundary 
conditions. The trial solutions are expressed in terms of unknown displacement parameters 𝐴௠௡, 𝐵௠௡, 𝐶௠௡. 

7) Navier’s double trigonometric series method reduces the integration problem over the 2D 
domain of the plate to an algebraic problem where the unknown displacement parameters are 𝐴௠௡, 𝐵௠௡, 𝐶௠௡ for each load case studied. 

8) Unlike the Kirchhoff plate theory (KPT) the presented formulation can be used for both thin 
and thick plates and yields parabolic (quadratic) variation of transverse shear stresses across the 
plate thickness, in agreement with theory of elasticity methods. 

9) The presented formulation gives exact results for 𝜎௫௫ (at 𝑥 = 𝑎/2, 𝑦 = 𝑏/2, 𝑧 = ℎ/2) for 
sinusoidal loading (for 𝑏/𝑎 = 0.1, 𝑎/𝑏 = 1); uniformly distributed and linearly distributed loads 
(for ℎ/𝑎 = 0.1 and 𝑎/𝑏 = 0.5). 

10) The displacements and stresses obtained by the present formulations are in good agreement 
with the Krishna Murty’s HSDPT results. 

11) The present formulation gave accurate results for transverse deflection because of the 
inclusion of transverse normal strain effects in the formulation. 
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