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Abstract. Accurate positioning in space is an important foundation for ensuring the stability of 
autonomous flight and successful mapping and navigation of unmanned aerial vehicles (UAVs). 
At present, the SLAM algorithm based on the Cartographer algorithm for real-time positioning 
and mapping is widely used in fields such as robot navigation and autonomous driving. However, 
in the context of UAV applications, this algorithm has a high dependence on the amount of point 
cloud information in the surrounding environment, and cannot achieve precise positioning in open 
spaces with insufficient lighting and fewer feature points, resulting in significant mapping errors. 
In order to solve the problem of low positioning estimation accuracy in the Cartographer algorithm 
in above environment, this paper proposes a precise positioning algorithm for UAVs that 
integrates VIO and Cartographer. This algorithm can continuously output more accurate position 
estimation information during UAV flight, compensating for the problem of inaccurate position 
estimation caused by partial feature loss or coordinate system drift in point clouds. In addition, 
this algorithm ensures navigation obstacle avoidance in narrow spaces by improving positioning 
accuracy and mapping accuracy, making it more applicable in the field of UAVs. Finally, the 
effectiveness of the proposed positioning algorithm was verified through experimental analysis of 
the Cartographer dataset and practical testing of UAVs in real scenarios.  
Keywords: unmanned aerial vehicles, positioning algorithm, cartographer, VIO, Kalman filter. 

1. Introduction 

The key technology for mobile robots to achieve autonomous movement in unknown 
environments is known as Simultaneous Localization and Mapping (SLAM) [1]. Accurate 
positioning in space is an important foundation for ensuring the stability of autonomous flight and 
successful mapping and navigation of UAVs [2]. At present, the commonly used laser SLAMs for 
indoor positioning of UAVs include Hector SLAM, Karto SLAM, Gmapping, and Cartographer 
[3]. The Cartographer algorithm is a set of graph optimized laser SLAM algorithms launched by 
Google and it has been widely used in intelligent vehicles, robots, UAVs and other fields due to 
its advantages of high accuracy, good real-time performance and stability [4]. In recent years, 
many researchers and developers have made improvements to Cartographer, including improving 
the efficiency and accuracy of map construction, and increasing adaptability to dynamic 
environments. However, due to the fact that the Cartographer uses unscented Kalman filter to 
process LiDAR data to obtain the observed position [5], the method of obtaining the observed 
position based on inertial measurement sensor data and point cloud matcher has issues with 
position estimation lag and accuracy [6-7]. Hess et al. proposed a real-time loop closure algorithm 
[8], which updates the position estimation of the robot by utilizing closed-loop constraints in a 
local map and eliminates the lag in position estimation by combining it with a global map. This 
algorithm can significantly improve the position estimation accuracy and real-time performance 
of the Cartographer algorithm. However, in open environments, the point cloud data information 
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provided by radar is insufficient, and the point cloud data information within the scanning radius 
range constantly changes, making it difficult to form closed-loop constraints, and the position 
estimation accuracy cannot achieve ideal results. Ye et al. proposed a method for integrating 
inertial sensor data with LiDAR data [9], which can reduce computational resource requirements 
and improve positioning accuracy and map construction stability. However, in the application 
scenario of rapid movement of UAVs, coordinate system drift may occur. [10] Gao et al. [10] 
proposed VIO (visual-inertial odometry) as the front-end algorithm for SLAM mapping in the 
application of quadruped robots, and processed the image data of binocular cameras through LK 
optical flow tracking [11] and pre-integrated IMU data [12], optimizing the close fusion of inertial 
sensor data and visual data, greatly improving positioning accuracy. However, in the case of rapid 
movement of UAVs, visual data noise is high, leading to inaccurate positioning of the odometer 
output by VIO tight coupling and a decrease in positioning accuracy. Huang et al. [13] proposed 
the wheel based odometry method to eliminate motion distortion, reduce cumulative errors, and 
improve map construction performance. However, for UAVs, odometry information can only be 
provided through the IMU of flight control, and the accuracy is not as accurate as the pose obtained 
through wheels. 

To sum up, although there are many improved Cartographer algorithms currently available, 
most of them have certain limitations in the application direction of drones due to their rich 
environmental characteristics, complex structures, and static scenes. To solve the problem of 
insufficient point cloud data and fast moving coordinate system drift in open environments, we 
propose an algorithm that integrates VIO to optimize Cartographer position estimation based on 
our previous experience in engineering measurement research on underwater robots and structural 
vibration [14-15]. In addition to radar data and flight control IMU data, the position data of 
optimized tightly coupled binocular vision VIO is also introduced into the position estimation of 
the algorithm. After preprocessing these two kinds of data, the Kalman filter is used to output 
more accurate position information to the SLAM algorithm. This algorithm can provide initial 
position information for point cloud matching nonlinear least squares calculation, thereby 
enhancing the accuracy of mapping. By comparing the experimental data with the original 
algorithm, the improved algorithm achieves more accurate positioning, smaller coordinate system 
drift error, stronger robustness, and more accurate map construction. 

This paper is organized as follows: Section 2 is the basic theory derivation for algorithm 
construction. In Section 3, we constructed an improved cartographer algorithm that integrates 
VIO. Section 4 is devoted to experimental validation of the proposed improved cartographer 
algorithm integrating VIO using an UAV. Conclusions close the paper in Section 5. 

2. Algorithm construction 

Cartographer laser SLAM mapping is a type of SLAM synchronous positioning and map 
construction algorithm. It refers to the robot starting from an unknown location in an unknown 
environment, positioning its pose through repeatedly observed point cloud features during its 
movement, and then constructing an incremental map based on its own position, thereby achieving 
the goal of simultaneous positioning and map construction. The use of Ceres nonlinear 
optimization method and the idea of constructing a global map based on submap can effectively 
avoid interference from moving objects in the environment during the mapping process. In each 
frame, the Cartographer generates a new submap based on the LiDAR data in the current frame 
and matches it with the submap from the previous frame. If there are overlapping areas between 
two submaps, the loopback detection function [16] can be used for precise spatial mapping. 

2.1. Coordinate transformation 

The construction of precise maps using the Cartographer algorithm requires data information 
from multiple different sensors, which often requires a certain coordinate transformation before 
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being used by the algorithm. Coordinate transformation helps UAVs align multiple data 
coordinate systems in different environments, achieving precise positioning and map building 
functions. Taking the inertial odometer, two-dimensional radar, and depth camera as examples in 
unmanned aerial vehicles, the coordinate relationship in centimeter length units is shown in Fig. 1. 

 
Fig. 1. Schematic diagram of sensor coordinate system 

The Cartographer algorithm uses a transformation matrix to achieve coordinate 
transformation. The algorithm converts the data of each sensor based on the given position and 
direction of each sensor. Taking the coordinate transformation of radar sensors as an example, its 
transformation matrix relationship can be represented by Eq. (1): 𝑚𝑎𝑝 = 𝑇 ∗ 𝑅 ∗ 𝐿𝑖𝑑𝑎𝑟, (1)

where 𝐿𝑖𝑑𝑎𝑟 is a point in the LiDAR coordinate system, 𝑚𝑎𝑝 is a point in the map coordinate 
system, 𝑇 is the translation matrix, and 𝑅 is the rotation matrix. By using this transformation 
matrix, the coordinate information of various sensors at different spatial positions is integrated 
into the same coordinate system. After coordinate unification, the algorithm can continuously 
calculate the robot’s position based on data from multiple sensors, improving the accuracy of 
position estimation. 

2.2. Local SLAM and global SLAM 

The Cartographer algorithm can be treated as two relatively independent and interrelated 
subsystems. The first is the local SLAM (front-end), which is responsible for establishing a series 
of submaps, outputting and storing odometers and submaps. The second is global SLAM 
(back-end), which matches the submaps generated by the front-end according to the timestamp, 
and then optimizes the global submaps and odometers. The Cartographer algorithm first processes 
the LiDAR data in the front-end stage. The radar provides a frame of point cloud information 
every time it scans, and is converted into point cloud data in the radar coordinate system according 
to Eq. (2): 𝑋 = −|𝑃|cos 𝜋 − 𝜃 ,𝑌 = −|𝑃|sin 𝜋 − 𝜃 , (2)

where 𝑃 is the position of the three-dimensional point on the radar coordinate system, 𝜃 is the 
radian required to rotate around the 𝑧-axis to return to the radar coordinate system. Matching the 
converted radar data with the previous submap, the position of the point beam falls to the optimal 
position on the submap after conversion. As the data frames are continuously inserted, they are 
combined to form a new submap. Subsequently, in order to eliminate sensor measurement errors 
and improve the accuracy of the map, 𝑇 ℎ  was optimized through matching algorithms and 
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outputing the optimal pose for matching. This least squares problem can be solved by using the 
Ceres library in Cartographer according to Eq. (3): argmin𝜉 ∑ 1 −𝑀 (𝑇 ℎ ) , (3)

where 𝑀  is a linear evaluation function, 𝑇  is the position in the submap coordinate system, 
and ℎ  is a subset of the square radius of the Submap. Through this optimization method, 
Cartographer has higher accuracy than raster maps. Therefore, the adjacent two submaps obtained 
through scan matching during the mapping process are relatively accurate, but there are still 
cumulative errors compared to the global SLAM. The Cartographer algorithm adopts a branch and 
bound optimization method for optimization search, which can efficiently search for the best 
match in the global position space. For candidate positions, only one matching score needs to be 
calculated, and the pre-calculated values can be used to accelerate this calculation, thereby 
improving search efficiency and improving the accuracy of mapping. 

2.3. Visual inertia odometer (VIO) algorithm 

At present, the main navigation systems for UAVs include GPS satellite navigation systems, 
integrated navigation systems with LIDAR and inertial navigation. However, when the GPS signal 
is weak or there is significant environmental interference during the navigation process, the 
effectiveness of the data of these navigation systems is greatly reduced. The VIO algorithm for 
tightly coupled binocular camera IMU data and visual data can effectively solve the above 
problems. By aligning the IMU pose sequence with the camera pose sequence, the true scale of 
the camera trajectory can be obtained. The VIO-SlAM is divided into three parts in this paper: 
front-end visual inertial navigation odometer, back-end nonlinear optimization, and loop 
detection, as shown in Fig. 2. 

 
Fig. 2. Schematic diagram of VIO-SLAM structure 

Adopting the binocular LK optical flow method for feature tracking and built-in IMU pre-
integration processing to optimize the tightly coupled VIO algorithm theory, the sliding window 
is optimized for tightly coupled backend nonlinearity, and loop detection and repositioning are 
used to eliminate accumulated errors and improve positioning accuracy. 

2.4. Improved cartographer algorithm integrating VIO 

The improved Cartographer algorithm based on VIO proposed in this paper tightly couples the 
IMU of binocular cameras and the visual data of binocular fish eyes with VIO, and outputs the 
odom data information after fusion with the flight control IMU and LiDAR multi-sensor. After 
preprocessing, it is converted into robot_local_position and then used Kalman filtering to denoise 
the incoming data, followed by normalization processing. Finally, the processed data is input into 
the Kalman filter for state estimation, and the position estimation value is calculated based on the 
state estimation results, greatly improving robustness and accuracy of position estimation. 
Applying the processed position information to the Cartographer algorithm for mapping can 
improve the accuracy of the map. 
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2.5. Optimized tightly coupled VIO position output 

Using LK optical flow method for feature tracking in VIO tightly coupled binocular fish eye 
visual data and pre-integrated binocular camera IMU data, the optimized variables are calculated 
using Jacobian matrix and covariance matrix through minimum edge residual, visual residual, etc. 
Finally, loop detection is performed to improve the accuracy of the output position information. 
The LK optical flow method tracks the movement of image pixels, while 𝑥 and 𝑦 represent the 
position of pixels in the image. By using the least squares method, the position movement of pixels 
within Δ𝑡 time can be calculated, as shown in Eq. (4): 

𝑢𝑣 = ⎣⎢⎢
⎢⎢⎡ 𝐼 𝐼 𝐼

𝐼 𝐼 𝐼 ⎦⎥⎥
⎥⎥⎤
⎣⎢⎢
⎢⎢⎡ 𝐼 𝐼
− 𝐼 𝐼 ⎦⎥⎥

⎥⎥⎤. (4)

The feature quantity to be estimated is the spatial three-dimensional coordinates (𝑥,𝑦, 𝑧) , and 
the observed values (𝑢, 𝑣)  are the coordinates of the feature points on the camera normalization 
plane. Therefore, the observed values cannot be directly output as position information. It is 
necessary to transform the matrix and perform inverse depth parameterization to meet the 
Gaussian system, and calculate the three-dimensional coordinate output. The equation is shown 
in Eq. (5): (𝑥,𝑦, 𝑧) = 1𝜆 (𝑢, 𝑣, 1) , (5)

where 𝜆 = 1/𝑧 is the inverse depth. Then, the optimized visual position data is tightly coupled 
with the IMU preprocessed pose data for VIO, thereby outputting more stable position 
information. 

2.6. Position output after fusion of LiDAR and flight control IMU 

The Cartographer algorithm integrates local SLAM and global SLAM, and both SLAM 
processes require optimized position information, which is the scanned position data obtained 
from radar observations (𝑥,𝑦,𝜃). When the radar is applied to UAVs during testing, the platform 
cannot achieve decisive stability, so it integrates the IMU (Inertial Measurement Unit) of flight 
control. IMU will provide the direction of gravity, which is used to project radar data onto the 2D 
plane, provide the radar with an attitude, and determine the 2D plane scanned by the radar. 
Mapping navigation requires submap matching, and the construction of submap is an iterative 
process of continuously aligning Scans with the coordinate system of submap. Scans' data is 
obtained from each frame of the radar using Eq. (6): 𝐻 = ℎ , , ...... ,ℎ ∈ 𝑅 , (6)

where 𝑅 is the radius size of the submap. When matching and aligning the obtained Scans’ data 
with the submap, it needs to be converted into the position 𝑇  of the radar frame in the submap 
coordinate system 𝜉. The conversion can be done through Eq. (7): 𝑇 ℎ = cos𝜉 −sin𝜉sin𝜉 cos𝜉 ℎ + 𝜉𝜉 . (7)
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Through the transformed position 𝑇  , the constructed submap can be matched to obtain more 
accurate maps. 

2.7. Optimization of position information output using Kalman filtering 

The front-end of the Cartographer is responsible for inputting and storing position information 
data. In order to provide accurate position information for it, this paper constructs a sequence by 
pruning to ensure that all data timestamps are in order before tightly coupled VIO pose data and 
LiDAR fusion flight control IMU data fusion. Then, the first and last LiDAR odometer data and 
VIO odometer data are taken out, and the position transformation relationship at two time points 
is calculated using Eq. (8): 𝑉𝐼𝑂 = 𝑉𝐼𝑂 ∗ 𝑉𝐼𝑂 , 𝐿𝑖𝑑𝑎𝑟 = 𝐿𝑖𝑑𝑎𝑟 ∗ 𝐿𝑖𝑑𝑎𝑟 , (8)

where 𝑂𝐷𝑂𝑀  is the position transformation from the last data to the first data, and 𝑂𝐷𝑂𝑀  
is the first received VIO or Lidar position data. 𝑂𝐷𝑂𝑀  is the VIO or Lidar position data 
received at the last moment. Calculate the translation from the last data to the first data, and then 
divide by the elapsed time to obtain the average linear velocity of the 𝑋, 𝑌, and 𝑍 axes for that 
time period. The initial prediction of odom and point cloud position by Cartographer is based on 
the uniform velocity model, which is often difficult to meet in practical application scenarios. For 
UAVs, the shorter the running distance, the more capable the uniform velocity model can replace 
the linear and angular velocities of UAVs. Therefore, using the closest two odometer data for 
estimation can obtain more accurate odometer data. The position of each timestamp of the UAV 
can be obtained through an inference device, and its displacement inference mainly relies on the 
latest line velocity from odom, which is calculated using Eq. (9): 𝐿𝑖𝑑𝑎𝑟 = 𝐿𝑖𝑑𝑎𝑟 ∗ 𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑉𝐼𝑂 = 𝑉𝐼𝑂 ∗ 𝑙𝑖𝑛𝑒𝑎𝑟 . (9)

By calculation, Lidar_linearlocal and VIO_linearlocal can be obtained, both of which can be used 
to calculate and infer the latest speed information and odometer data in UAV coordinate system. 
However, due to the different accuracy of sensors in different environments, the calculated UAV 
line speed is weighted and integrated according to Eq. (10) to obtain odometer data: 

𝑟𝑜𝑏𝑜𝑡 = 𝑉𝐼𝑂 ∗ 𝑀 + 𝐿𝑖𝑑𝑎𝑟 ∗ 𝑁 𝑑𝑡, (10)

where robot_local_position is the latest odometer data, and 𝑀 and 𝑁 are the weights of trust for 
the two postures. The weight of 𝑀 and 𝑁 depends on the variance of Lidar_linearlocal and 
VIO_linearlocal. Under the conditions of 𝑀, 𝑁, and 1, the smaller the data variance, the greater the 
trust weight. 

Obtain the latest odometer information and input it into the Kalman filter for prediction. In 
Eq. (11), 𝑃  is the current robot_local_position odometer information observation value, 𝑃  is 
the previous time value, and during the testing process, the UAV is set to move at a constant speed, 
so 𝑉  = 𝑉  the speed remains unchanged: 
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𝑃 = 𝑃 + 𝑉 Δ𝑡,𝑉 = 𝑉 , ⇒ 𝑃𝑉 = 1 Δ𝑡0 1 𝑃𝑉 , 𝑥 = 𝐹𝑥 + 𝜔 . (11)

The simplified matrix equation yields the predicted pose result 𝑥 , where 𝐹 is the 
hyperparameter, 𝑥  represents the predicted pose from the previous moment, and 𝜔  represents 
the noise generated during the UAV motion process. 

Perform covariance calculation on the predicted pose result 𝑥  from the previous moment, 
and simplify the equation as shown in Eq. (12): 𝐶𝑜𝑣(𝑥 , 𝑥 ) = 𝐶𝑜𝑣(𝐹𝑥 + 𝜔 ,𝐹𝑥 + 𝜔 ) = 𝐹𝐶𝑜𝑣(𝑥 , 𝑥 )𝐹 + 𝐶𝑜𝑣(𝜔 ,𝜔 )= 𝐹𝐶𝑜𝑣(𝑥 , 𝑥 )𝐹 + 𝑄, 𝑝 = 𝐹𝑝 𝐹 + 𝑄. (12)

The covariance of the calculated pose estimation contains 𝑝  the covariance of the prior 
estimation, 𝑄 remains the covariance of the noise: 𝑍 = 𝐻 ∗ 𝑥 + 𝑉. (13)

where, 𝑍  is the measured value, 𝐻 is the matrix between the observed value and the measured 
value, 𝑥  is the observed value, and 𝑉 is the noise of the observed value. Apply Eq. (13) to 
calculate Eq. (14), where 𝑍  is the position measurement value, 𝑍  is the velocity measurement 
value, 𝑃  is the position observation value, 𝑉  is the velocity observation value, Δ𝑃  is the 
observation position noise, and Δ𝑉  is the observation velocity noise: 𝑍 = 𝑃 + Δ𝑃 . (14)

In this experiment, only the position is observed without considering the velocity. The 
observation value is equal to the measurement value, so matrix 𝐻 is [1, 0]. The observation 
velocity and noise are both 0, and only the pose measurement calculation is considered. Therefore, 
Eq. (14) can also be simplified into Eq. (15): 𝑍 = 𝑃 + Δ𝑃 . (15)

The calculated measurement value 𝑍  is 𝑍  in the basic equation (16), and 𝑥  is the predicted 
value from the previous moment. The accurate pose output 𝑥  is obtained by inputting the 
corrected estimation result: 𝑥 = 𝑥 + 𝑘 (𝑍 − 𝐻𝑥 ). (16)

The updated Kalman gain Eq. (17) and the updated validation estimation covariance Eq. (18) 
will yield 𝑘  and 𝑃 , respectively, for the next Kalman filtering process. In Eq. (17), 𝑅 is the 
variance of the observed noise, which is not considered in this experiment. The value of 𝑅 is 0, 
and 𝐼 is the identity matrix: 

𝑘 = 𝑃 𝐻𝐻𝑃 𝐻 + 𝑅, (17)𝑃 = (𝐼 − 𝑘 𝐻)𝑃 . (18)

The real-time processing of updated position information through Kalman filtering will make 
it more accurate, providing it to the local SLAM and global SLAM systems in the Cartographer 
algorithm to achieve higher positioning accuracy and robustness in mapping. 
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The structure of the improved Cartographer algorithm that integrates binocular VIO is shown 
in Fig. 3, which is divided into four parts: the VIO algorithm part, the multi-sensor fusion part, 
the global SLAM, and the local SLAM. Compared to the original Cartographer front-end, the 
improved algorithm after fusion is responsible for the input, storage, and operation of LiDAR data, 
and outputs odom data for Cartographer mapping. The improved algorithm solves the problem of 
inaccurate positioning caused by insufficient point cloud data in complex environments due to 
map matching using time stamps and the problem of inaccurate positioning accuracy caused by 
coordinate system drift caused by the rapid movement of the drone when integrating IMU data 
and LiDAR data for flight control. Combined with the optimized VIO tightly coupled algorithm 
and Kalman filtering algorithm, it can enhance robustness and adapt to environments with fewer 
feature points, improve the accuracy of position estimation and ensure the accuracy of the 
mapping. 

 
Fig. 3. Cartographer algorithm framework diagram 

3. Experimental validation 

After installing the environment dependencies of programs such as the Cartographer 
algorithm, VIO algorithm, and ROS robot software platform on an embedded platform, the 
algorithm data input interface was connected to the ROS platform. ROS provides hardware, device 
drivers, and other functions. In order to facilitate the observation of real-time data, a method of 
sharing ROS interface data between the host computer and the laptop computer is adopted, and 
flight instructions are issued and valid data is recorded on the laptop computer. 

 
Fig. 4. Photo of the UAV 

3.1. Design of UAV controller 

The hardware platform of this paper is a self-built unmanned aerial vehicle, as shown in Fig. 4. 
The flight controller is PX4 flight control, using Cortex-M7 core and having a master-slave 
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processor. It can communicate with onboard computers through its own UART serial port or USB 
interface. The embedded controller is Jetson Orin NX, the binocular camera is RealsenseT265, 
and the two-dimensional radar is Silan A2M12 LiDAR. The structure and algorithm framework 
of the entire UAV are shown in Fig. 5. 

 
Fig. 5. Hardware structure of quadrotor UAV 

3.2. Site layout and experimental testing 

The flight test environment is located inside the safety net site, with three rectangular obstacles 
placed around the UAV to provide more point cloud information and facilitate the accuracy of the 
map. The improved algorithm and original algorithm proposed in this paper are tested, and the 
effectiveness of the algorithm is verified through various data analysis and comparison. The size 
of the site is within the radar scanning radius, and the takeoff height of the UAV does not exceed 
the height of the obstacle. The actual test environment is shown in Fig. 6. 

 
Fig. 6. Real flight test of UAV in laboratory 

4. Comparison and analysis of test data 

In order to further verify the accuracy of the improved algorithm, the improved algorithm was 
run separately from the original algorithm and the VIO algorithm. By using unmanned aerial 
vehicles for fixed-point flight, the positioning data of 20 sampling points were recorded for two 
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situations: insufficient data in open point clouds and rapid movement. The relative error with the 
actual position data measured in the environment was calculated and the absolute value was taken, 
which is shown in Fig. 7 and Fig. 8. 

 
Fig. 7. Comparison of absolute relative error values for insufficient point cloud data 

 
Fig. 8. Comparison of absolute values of relative error for rapid movement 

Through the data analysis of Fig. 7 and Fig. 8, it can be concluded that the original algorithm 
has a large range of absolute relative error changes and obvious curve peaks when the 
environmental point cloud information is insufficient. The VIO algorithm also has a large 
fluctuation range of output pose information when moving rapidly. In comparison, the improved 
algorithm tends to output sensor values with more accurate pose information in either 
case. Therefore, the improved algorithm that integrates both poses has a smaller relative error in 
pose information and a smoother and more stable error curve. 

Positioning accuracy is one of the important standards for algorithm improvement. In order to 
evaluate the accuracy of the improved algorithm, local position information data of the integrated 
UAV is observed and recorded based on the data of these 40 sampling points. Due to the fast 
refresh rate of data, the average of 10 data records is taken each time, and their absolute translation 
error, mean square translation error, absolute rotation error, and mean square rotation error are 
compared item by item. The data records are shown in Fig. 9. 

Through analysis of Fig. 9, it can be clearly observed that the improved algorithm has greatly 
reduced various errors, and the accuracy of positioning is improved by about 19.6 % compared to 
the original algorithm. In order to further test the actual effectiveness of the algorithm, multiple 
algorithms and combinations were compared, and the experimental site was mapped as shown in 
Fig. 10, and more detailed data analysis was conducted. 
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Fig. 9. Data test comparison and quantitative analysis 

 
a) Lidar 

 
b) Lidar +IMU 

 
c) Lidar +VIO 

 
d) Lidar +IMU+VIO 

Fig. 10. 2D maps of the laboratory constructed using different algorithms 

Fig. 10(a) is a map constructed with only LiDAR data, Fig. 10(b) is a map containing LiDAR 
and IMU data, Fig. 10(c) is a map constructed with LiDAR and VIO data, and Fig. 10(d) is a map 
constructed with three types of data fusion: LiDAR+IMU+VIO. Fig. 10(a) uses LiDAR as a single 
source of pose information, resulting in significant map errors. Fig. 10(b) uses IMU data from 
flight control as auxiliary data, which plays a certain optimization role. Fig. 10(c) shows that the 
improved algorithm combines VIO data with the original algorithm data from Cartographer for 
filtering, resulting in significant map optimization. Fig. 10(d) introduces IMU data into the 
improved algorithm as auxiliary, greatly improving map matching. From the perspective of the 
constructed maps, it can be seen that the improved algorithm results in a more complete map with 
almost no coordinate system drift. The combination matching score of each algorithm is shown in 
Fig. 11. 

From Fig. 11, it can be intuitively concluded that when VIO is integrated with the Cartographer 
algorithm for localization, it has the highest matching score. In actual testing, this combination 
performs better than other combinations in pointing flight. After reaching the designated point, 
the UAV can perform faster convergence control with higher accuracy, and the accuracy of the 
map is also increased by about 14.8 %. Based on the test results, it can be further concluded that 
the improved algorithm not only improves the accuracy of positioning, but also has smaller drift 
error, achieving the best mapping effect and improving the accuracy of subsequent navigation 
obstacle avoidance control. 

Absolute
translation

error

Mean
square

translation
error

Absolute
rotation

error

Mean
square
rotation

error
Original algorithm 0,1921 0,1823 0,5526 0,4582
improvement algorithm 0,1611 0,1381 0,4846 0,3395
Error reduction
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Fig. 11. Combination matching score of each algorithm 

5. Conclusions 

This paper mainly focuses on the problem of inaccurate mapping caused by the inaccurate 
positioning of the Cartographer algorithm using LiDAR on UAVs. By integrating tightly coupled 
VIO position information and performing Kalman filter to optimize the position estimation of the 
Cartographer algorithm, various flight tests and data comparison analysis are conducted to verify 
the accuracy of the improved algorithm. After comparative analysis, the improved algorithm can 
stably and continuously output low ripple position information when the UAV is moving rapidly. 
For some open environments with less point cloud information and environments with fewer 
spatial feature points due to insufficient lighting, the positioning accuracy of the improved 
algorithm is improved by about 30 % compared to the original algorithm. The output position 
information of the improved algorithm is integrated into the Cartographer algorithm, resulting in 
an increase of about 20 % in map matching and a significant improvement in the accuracy of the 
flight control system. 
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