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Abstract. Power equipment is an important component of the whole power system, so that it is 
obvious that it is required to develop a correct method for accurate analysis of the infrared image 
features of the equipment in the field of detection and recognition. This study proposes a 
troubleshooting strategy for the power equipment based on the improved AlexNet neural network. 
Multi-scale images based on the Pan model are used to determine the equipment features, and to 
determine the shortcomings of AlexNet neural network, such as slower recognition speed and easy 
overfitting. After knowing these shortcomings, it would become possible to improve the specific 
recognition model performance by adding a pooling layer, modifying the activation function, 
replacing the LRN with BN layer, and optimizing the parameters of the improved WOA algorithm, 
and other measures. In the simulation experiments, this paper's algorithm was compared with 
AlexNet, YOLO v3, and Faster R-CNN algorithms in the lightning arrester fault detection, circuit 
breaker fault detection, mutual transformer fault detection, and insulator fault detection improved 
by an average of 5.47 %, 4.69 %, and 3.42 %, which showed that the algorithm had a better 
recognition effect. 
Keywords: power equipment, infrared image, neural network. 

1. Introduction 

It is obvious that power equipment is a key component of the power system, so its operating 
condition influences the operation of the entire power grid a lot. Due to the unpredictability of 
equipment failure, it brings great trouble to industrial production and people’s life, so it is 
extremely important to provide proper fault detection method in the field of current power 
equipment. At present, the equipment fault detection method mainly includes the signal diagnosis, 
sound diagnosis, infrared image diagnosis and other ways, and infrared image detection that can 
carried out with a time lag or in real time in the state of non-stop power. Despite this method is 
also fast and safe, requires no contact connections and is widely used in practice [1], this 
identification method is very susceptible to the interference of artificial factors, and the resulting 
image has such demerits as a poor resolution, low contrast, visual blurring and other shortcomings 
that affect the recognition accuracy. At present, the existing methods to solve the infrared image 
recognition method mainly focus on the technology improvement research [2-4] and segmentation 
technology research [5-7]. So, these methods can improve the recognition effect of infrared 
images, but these algorithms have a high degree of complexity, increasing the difficulty of image 
analysis and detection. With the development of information technology, the integration of 
artificial intelligence technology and image processing technology has become the main direction 
of current scholars' research [8]. Faster-RCNN and YOLO gained good results in fault 
identification of power equipment [9-12] and substantiated the positive effect of the application 
of artificial intelligence technology. AlexNet is a newer convolutional image recognition neural 
network model, that has a high recognition rate and other parameters, so it is widely used in 
agriculture, military, industry and other fields. Being especially actual in fault diagnosis of bearing 
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equipment [13-14] and hydraulic piston pumps [15], AlexNet has a better effect than Faster-
RCNN and YOLO. However, the infrared image diagnosis of power equipment is easily affected 
by the influence of temperature and light, resulting in the reduction of detection and recognition 
accuracy, so the AlexNet structure shall be installed in a protected space and shall be optimized 
in size. Based on the above two factors, the research proposes a fault diagnosis strategy for power 
equipment based on AlexNet neural network, so as to help electric power enterprises quickly find 
and remedy the faults of power equipment. This strategy provides as follows: 

1) Adopts a multi-scale image input method for the different volumes, textures, structures and 
other characteristics of electric power equipment, and is able to solve the feature extraction of 
electric power equipment images in complex scenes such as extreme weather, light and so on. 

2) Improves the recognition performance by adding a pooling layer, modifying the activation 
function, using the BN layer instead of LRN, and optimizing the model parameters using WOA 
algorithm in case of the shortcomings of AlexNet neural network structure, which has a slow 
recognition speed and is easy to overfitting. 

In simulation experiments, this paper’s algorithm is compared with several current popular 
image recognition algorithms, such as optimized YOLO v3, optimized Faster-RCNN, and the 
results illustrate the recognition performance of this paper’s algorithm. 

The structure applied in this paper is as follows: Section 2 describes the current research status 
of image recognition and fault diagnosis of power equipment, Section 3 describes the AlexNet 
model and WOA algorithm that need to be used in this paper, Section 4 describes the process of 
infrared image detection and recognition of power equipment based on the improvement of 
AlexNet; Section 5 conducts the simulation experiments to validate the recognition effect of this 
paper's algorithms with respect to the power equipment, and Section 6 concludes the whole paper. 

2. Related works 

Scholars have used three main AI techniques for fault detection of devices in their researches: 
CNN, YOLO and other AI techniques. 

(1) CNN related technology research. Literature [9] uses improved the Faster R-CNN for 
infrared image target detection of electrical equipment in substations. Their simulation 
experiments illustrate that the improved measures have obvious effects to enhance the accuracy 
of target detection. Literature [10] enhances the proportion of residual blocks in the basic Faster 
R-CNN model, which makes the network’s ability to acquire features enhanced, and the 
experiments illustrate greater accuracy in terms of MAP metrics. Literature [16] proposes a deep 
learning-based power IoT device detection strategy, which mainly uses a multi-channel-based 
CNN fault detection method, and their experiments verify the effectiveness of the method. 
Literature [17] proposes a target detection model based on the important region recommendation 
network, which reduces the background interference by calculating the weight of the feature map, 
and their experiments show that the image detection algorithm has a certain degree of feasibility. 
Literature [18] proposes a visible light image recognition model for substation equipment based 
on the Mask R-CNN, which has good results in fault detection and recognition effects of 11 typical 
substation equipment. Literature [19] applies the Faster R-CNN algorithm for the equipment 
recognition and state detection in electric power plant rooms, and the mAP of all test images in 
the simulation experiments is 91.3 %, which further verifies that the algorithm has a recognition 
effect. Literature [20] combines a deep convolutional neural network model for power equipment 
remote sensing image target detection, and FTL-R-CNN neural network model to complete the 
detection and analysis of equipment targets in order to obtain, in terms of the actual test data, the 
high detection accuracy and confidence. 

(2) YOLO related technology research. Literature [11] proposes a new method for power 
equipment fault detection based on YOLO v4, and simulation experiments illustrate that the 
effective intelligent diagnosis of faults is achieved through target identification and fast extraction 
of equipment temperature. Literature [21] proposed an improved YOLO v4 backbone network for 
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solving the problem of difficult localization in target detection of power equipment, which greatly 
alleviates the problem of low detection accuracy due to the imbalance of positive and negative 
samples. Literature [22] uses a lightweight multilayer convolutional neural network based on 
YOLO v3 for a multi-fault diagnosis, and the experimental results show that the framework has a 
better recognition accuracy, which improves the performance of defect analysis applications. 
Literature [23] proposed an improved Yolo v3 algorithm to detect electrical connector defects, 
and the results show that the Yolo v3 algorithm has faster recognition speed compared to the Faster 
R-CNN. 

(3) Other artificial intelligence techniques. Literature [12] proposes a multi-label image 
recognition model based on the multi-scale dynamic graph convolutional network for power 
equipment detection, and the experimental results are analyzed to show that the model improves 
the results by 0.8 % and 31.8 % compared to the original model and the baseline model, 
respectively. Literature [24] proposes a matching algorithm based on phase consistency and scale 
invariant features, which is able to solve the problem of dense and accurate matching of visible 
and infrared images in power equipment. 

These research results show that CNN and YOLO-based neural network models have a certain 
effect in power equipment fault detection, but the CNN correlation model of its own structure is 
relatively complex, and at the same time, it is inconsistent to process models of different sizes and 
target proportions, because it can easily lead to the identification of infrared images of different 
power equipment with a greater error risk, the YOLO correlation model in the processing of large-
scale infrared images of electric power equipment has a better effect, but this model is not precise 
enough for the detection of small targets, and, at the same time, in case of the occlusion or 
availability irregularly shaped equipment, the results can be inaccurate. 

In this paper, the AlexNet model is introduced in the power equipment fault detection, because 
this model pioneers the application of deep convolutional neural networks in computer vision 
tasks, has a higher accuracy for image recognition, improves the model's recognition ability by 
using more convolutional and fully-connected layers, helps to alleviate the problem of gradient 
vanishing, and has better recognition results than the current CNN and YOLO models. The 
recognition effect is better than the current CNN and YOLO models. Meanwhile, the AlexNet 
model was improved in this paper by optimizing the number of convolutional layers, pooling 
layers, modifying the activation function, and optimizing the important parameters using the 
whale optimization algorithm to improve the diagnostic performance of the AlexNet model.  

3. Basic algorithms 

3.1. AlexNet 

AlexNet is a deep convolutional neural network model proposed by Alex Krizhevsky et al. in 
[25], which made a remarkable breakthrough in the ImageNet image classification challenge. 
AlexNet uses a deep convolutional neural network structure, which consists of five convolutional 
layers, three fully connected layers, and a final output layer. The structure is shown in Fig. 1. 

 
Fig. 1. AlexNet structure 
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The main features of AlexNet are as follows: 
(1) Alternating stacks of convolutional and pooling layers: the first 5 layers of AlexNet are 

alternating stacks of convolutional and pooling layers. The first convolutional layer uses 96 filters 
of size 11×11 with a step size of 4. Subsequent convolutional layers use smaller filters (size 5×5 
or 3×3) but with more channels. The pooling layer uses the maximum pooling for downsampling 
to reduce the size of the feature map. 

(2) ReLU nonlinear activation function: AlexNet uses a modified linear unit (ReLU) as an 
activation function to increase the nonlinear expressiveness of the network. The ReLU function 
perfectly handles the gradient vanishing problem and speeds up the computation. 

(3) Local Response Normalization (LRN): after each convolutional layer, AlexNet introduces 
a local response normalization layer. This layer operation allows neurons with larger responses to 
get larger response values, thus improving the generalization ability of the network. 

(4) Dropout regularization: AlexNet introduces the Dropout regularization technique to reduce 
overfitting between the fully connected layers. By randomly setting the output of some neurons to 
0, Dropout can force the network to learn features that are more robust and have better 
generalization performance. 

(5) Multi-GPU parallel training: AlexNet is the first deep learning model to fully utilize 
multiple GPUs for parallel training. By assigning different parts of the neural network to different 
GPUs and communicating and synchronizing between GPUs, AlexNet is able to accelerate the 
training process of the network and improve the performance.  

AlexNet is a deep convolutional neural network model that successfully achieves the 
classification task on large-scale image datasets by using advanced techniques such as deep 
convolutional and pooling layers, ReLU activation function, LRN, Dropout, etc., which lays the 
foundation for the development of subsequent deep neural network models. 

3.2. Whale optimization algorithm 

Mirjalili S and Lewis A invented an intelligent optimization algorithm - Whale Optimization 
Algorithm based on the habits of whales, a large group of predators living in the oceans [26]. The 
algorithm carries out three main activities for prey, which are encircling predation, bubble attack 
and searching for prey. The size of the whole whale population is set as 𝑁 provided that the search 
algorithm space is 𝑑-dimensional, and the position of the 𝑖th whale in the 𝑑-dimensional space is 
denoted as 𝑋௜ = (𝑋௜ଵ,𝑋௜ଶ,⋯𝑋௜஽), 𝑖 = 1,2,⋯𝑁, and the position where the whale captures the prey 
is the global optimal solution of the algorithm. 

3.2.1. Surrounding predation 

Whales use an encircling strategy to capture food in the sea, as well as the algorithm does in 
the beginning. The optimal position in the current group is assumed to be the current prey position, 
and then all other whales in the group swim towards the optimal position. The position of 
individual whales is updated according to Eq. (1): 𝑋(𝑡 + 1) = 𝑋௣(𝑡) − 𝐴 ⋅ ห𝐶 ⋅ 𝑋௣(𝑡) − 𝑋(𝑡)ห, (1)

where, 𝑡 denotes the position of the 𝑝th whale individual in the 𝑡th iteration, 𝑋௣(𝑡) and 𝑋(𝑡 + 1) 
denote the positions of the 𝑡th and 𝑡 + 1th whale individuals, respectively. 𝐴 ⋅ |𝐶 ⋅ 𝑋௣(𝑡) − 𝑋(𝑡)| 
is the enclosing step, and 𝐴 and 𝐶 are expressed as follows: 𝐴 = 2𝑎 ⋅ 𝑟𝑎𝑛𝑑ଵ − 𝑎, (2)𝐶 = 2 • 𝑟𝑎𝑛𝑑ଶ, (3)𝑎 = 2 − 2 𝑡𝑡୫ୟ୶, (4)
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where, the algorithm is designed with two random parameters between (0, 1) 𝑟𝑎𝑛𝑑ଵ and 𝑟𝑎𝑛𝑑ଶ, 
which are used to control the parameters 𝐴 and 𝐶. 𝑎 denotes the convergence factor, which 
controls the convergence of the algorithm, and 𝑡୫ୟ୶ is the maximum iteration result set by the 
algorithm. 

3.2.2. Bubble attack 

The whale optimization algorithm simulates the bubble attack behavior using shrink-wrapping 
and spiraling methods. Contraction envelopment is achieved through Eq. (2) and (4) as the 
convergence factor 𝑎 decreases. In spiral position updating, the individual whale obtains the 
distance to the current prey by calculating the distance between them and maintains the search for 
the prey in a spiral manner. Thus, the spiral wandering mode is formulated as follows: 𝑋(𝑡 + 1) = 𝐷ᇱ ⋅ 𝑒௟௕ ⋅ cos(2𝜋𝑙) + 𝑋௣(𝑡), (5)

where 𝐷ᇱ = |𝑋௣(𝑡) − 𝑋(𝑡)| denotes the distance between the 𝑖th whale and its prey in the 𝑗th 
dimension of the spatial position update, 𝑏 denotes the limiting constant for the shape of the 
logarithmic spiral, and 𝑙 is a random number between –1 and 1. In particular, it is important to 
note that the probability of selection of the contraction-enclosure mechanism and the spiral 
position update is the same, and equal to 0.5.  

3.2.3. Prey-seeking phase 

Whales in the sea tend to search for food randomly, so the algorithms does as per the 
expression as follows: 𝑋(𝑡 + 1) = 𝑋௥௔௡ௗ(𝑡) − 𝐴|𝐶 ⋅ 𝑋௥௔௡ௗ(𝑡) − 𝑋(𝑡)|, (6)

where 𝑋௥௔௡ௗ(𝑡) denotes the position of a randomly selected individual whale in the population at 
the current 𝑡th iteration, and 𝐶 ⋅ 𝑋௥௔௡ௗ(𝑡) − 𝑋(𝑡) denotes the distance between a whale individual 
in the 𝑗th dimension at each iteration and the current randomized individual. 

It is well known that most of the parameters of deep learning models are set by human beings 
in a way that affects the model performance. So the use of meta-heuristic algorithms for optimizing 
the parameters of deep-learning models has been verified to be an effective method [27], and the 
literature [28-29] illustrates that the use of the WOA algorithm has a good performance in 
comparison with other meta-heuristic algorithms, and it has been widely used to obtain a better 
effect on optimizing the parameters of the deep-learning models. 

4. Infrared image detection and recognition based on improved AlexNet neural networks 

4.1. Multi-scale image processing 

Traditional image recognition mainly extracts target features through layer-by-layer 
abstraction, in which the size of the sensory field of view is the key to obtaining target features. If 
the field of view is too small, only local features can be observed, and there is a possibility of 
losing the key information of the power equipment image; on the contrary, a lot of invalid 
information of the surrounding scene may be detected, which obstructs the correct infrared image 
feature extraction. The use of multi-scale image input enables the network to perceive the volume, 
texture, structure, etc. of power equipment at different scales, along with the impact of extreme 
weather, street buildings, light and other complex conditions which increase the difficulty of 
image extraction. The use of multi-scale image processing can accomplish better recognition 
results for power equipment targets at different distances. In this paper, the PAN model is applied 
[30] (Fig. 2) to obtain the image feature information, and utilize the bottom-up path technique of 
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this model to increase the whole feature hierarchy, so as to obtain the image size features of 
different scales and improve the robustness of the model.  

 
Fig. 2. PAN model 

4.2. Improved AlexNet model 

Aiming at the shortcomings of AlexNet algorithm in image recognition, which is slow and 
prone to overfitting, the authors improve the model performance by reducing the number of 
convolutional layers, increasing the number of pooling layers, modifying the activation function, 
using the BN instead of LRU, and optimizing the weights and bias of AlexNet by using the whale 
optimization algorithm. 

(1) Convolutional layers number reduction. The number of convolutional layers in the current 
AlexNet structure is 5 layers, which can effectively extract the deep features of infrared images of 
power equipment, but the deeper number of network layers leads to a long training time prone to 
overfitting. In this paper, a 3-layer convolutional neural network is used with 32 5×5 convolutional 
kernels in layer 1, 32 3×3 convolutional kernels in layer 2 and 64 5×5 convolutional kernels in 
layer 3, respectively. This setup can effectively maintain the number of convolutional layers, while 
reducing the problem of too deep layers, using a large number of convolutional kernels to complete 
the in-depth identification of image features, but still be able to maintain the ability to extract 
image features, and reduce the complexity of the model caused by the overfitting problem. 

(2) Pooling layers number increase. Pooling layer is mainly used to reduce the size of the 
parameter matrix along with the reduction of other network parameters. Only one pooling layer is 
added after the second convolutional layer and the third convolutional layer of the AlexNet model, 
because the number of pooling layers is relatively small to avoid the loss of information and 
features, as well as to reduce the complexity of the model, improve the model invariance to spatial 
transformations, and reduce the sensory wildness of the network, which can reduce the risk of 
overfitting relatively. 

(3) Activation function modification. The current AlexNet algorithm uses the ReLU activation 
function to solve the gradient disappearance and improve the convergence speed, but the neuron’s 
“death phenomenon” is easy to occur during the training process. As a result the neuron may no 
longer be activated by any data, so the network will not be able to perform the backpropagation 
and learning, then the ReLU function does not do amplitude compression of the data, resulting in 
the number of layers of the algorithm. As the ReLU function does not compress the data, the 
algorithm expands as the number of layers increases. In order to solve this problem, this paper 
chooses Leaky ReLU as the activation function, which can complete the backpropagation and 
solve the problem of gradient disappearance with the expression shown below: 𝑓(𝑥) = maxሼ𝑎𝑥, 𝑥ሽ, (7)
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where 𝑎 is a fixed slope, when 𝑥 <= 0, Leaky ReLU function can be back-propagated to solve 
the ReLU function neuron “death phenomenon”, and can solve the problem of gradient 
disappearance. However, because the value domain of Leaky ReLU activation function has no 
fixed interval, it is necessary to normalize the result of Leaky ReLU function with the expression 
as follows: 

𝑏௫,௬௜ = 𝑎௫,௬௜ቆ𝑘 + 𝛼 ∑ (𝛼௫,௬௝ )ଶ୫୧୬ቄேିଵ,௜ା௡ଶቅ௝ୀ୫ୟ୶ቄ଴,௜ି௡ଶቅ ቇఉ, 
(8)

where 𝑏௫,௬௜  is the normalized activation function value, 𝑎௫,௬௜  denotes the output of the neuron at the 𝑖th kernel location (𝑥,𝑦) after its processing by the Leaky ReLU function, 𝑛 is the number of 
feature images, 𝑁 is the total number of feature image output channels, 𝛼 is the scaling factor, and 𝛽 is the exponential term. 

(4) Exchange of LRN with BN layer. The parameter update of each layer in the inverse training 
process leads to changes in the input data distribution of the upper layer, which makes the deeper 
layer constantly re-adapt to the parameter update of the bottom layer, and the deeper the layer is, 
the more drastic the change in the parameter input distribution will be. Usually, in order to achieve 
better training results, a lower learning rate is often set, and saturation nonlinearity has to be 
avoided. In order to solve this problem, this study introduces the regularization layer of Batch 
Normalization (BN) [31] instead of LRN. The BN data normalization algorithm is shown in 
Eq. (9): 

𝑥(௞) = 𝑥(௞) − 𝐸[𝑥(௞)]ඥ𝑉𝑎𝑟(𝑥(௞)) , (9)

where 𝑥(௞) denotes the input neurons, 𝐸[𝑥(௞)] denotes the neuronal mean value of the training 
data elements, and ඥ𝑉𝑎𝑟(𝑥(௞)) denotes one standard deviation of the activation of the training 
data neuron ඥ𝑉𝑎𝑟(𝑥(௞)). If only this normalization formula is used for a certain layer, it will 
reduce its expressive power, which in turn will affect the network’s ability to learn features. For 
this reason learnable parameters 𝛼 and 𝛽 are introduced for each neuron. The expression is as 
follows: 𝑦(௞) = 𝛾(௞) × 𝑥(௞) + 𝛽(௞). (10)

4.3. Improved whale optimization algorithm to optimize model parameters 

Considering that the whale algorithm has low convergence accuracy and is easy to fall into the 
local optimum, this study further optimizes the performance of the algorithm from the population 
initialization and the dynamic division of the adaptive convergence factor. 

4.3.1. Population initialization 

Population initialization affects the convergence speed and accuracy of the algorithm, while 
the whale optimization algorithm only uses a random approach to initialization thus affecting the 
solution quality. The Laplace distribution function facilitates the exploration of the search space 
and the discovery of new potential solutions thus preventing the algorithm from falling into a local 
optimum. Therefore, the Laplace distribution is applied to generate the initial position of the 
individual whales. As a result of this action, the probability density function of the Laplace 
distribution will take the following form: 
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𝑓(𝑥;𝑝, 𝑞) = 12𝑞 expቆ− |𝑥 − 𝑝|𝑞 ቇ ,     −∞ < 𝑥 < ∞. (11)

Therefore, the improved method of population initialization is as follows: 

𝐹(𝑥) = ⎩⎪⎨
⎪⎧12 exp ൬− |𝑥 − 𝑝|𝑞 ൰ ,     𝑥 ≤ 𝑝,1 − 12𝑞 expቆ− |𝑥 − 𝑝|𝑞 ቇ ,     𝑥 > 𝑝, (12)

where 𝑙𝑎𝑝(𝑝, 𝑞) is the Laplace distribution, 𝑝 is the location parameter, 𝑝 ∈ (−∞,∞), 𝑞 are the 
scale parameters, 𝑞 > 0, and the function 𝑓 is always symmetric with respect to the location 
parameter 𝑝 and is increasing on ⌈0,𝑝⌉ and decreasing on ⌈𝑝,∞⌉. 
4.3.2. Adaptive factor optimization 

In order to further improve the local search and global optimal ability of the traditional whale 
optimization algorithm, this paper optimizes the factor 𝑎. The optimization expression is as 
follows: 

𝑎 = 𝑎௠௔௫ − ൬2 − 𝑒 ௧௧೘ೌೣ൰ × (𝑎௠௔௫ − 𝑎௠௜௡), (13)

where 𝑎௠௔௫ and 𝑎௠௜௡ denote the factor maximum and minimum values, respectively. In the early 
stage of the algorithm, due to a small value of 𝑡, the whale individual approaches the global 
optimal individual slowly, which is favorable to the global search. In the middle and late stage of 
the algorithm, the value of 𝑡 gradually increases, the whale individual and the global optimal 
whale individual are located in the region close to each other, which is favorable to the local 
search, and maintains the diversity of the population. So the dynamics balances the algorithm's 
ability of the local search and the global optimal ability to avoid effectively the premature 
convergence phenomenon.  

In order to better improve the recognition effect of AlexNet model in images, weights and bias 
being important components of the model performance, the parameter optimization is applied for 
the network model based on the whale optimization algorithm with the following steps: 

Step 1: Define the objective function. Set the classification accuracy of AlexNet model as the 
objective function of whale optimization algorithm. 

Step 2: Initialize whale individuals. Represent each whale individual as a set of neural network 
parameters. 

Step 3: Calculate the fitness function. According to each whale individual, calculate the 
performance metric (classification accuracy) of the neural network as the fitness function of the 
individual. 

Step 4: Update the global optimal solution. Select an individual whale with the highest fitness 
as the global optimal solution. 

Step 5: Update whale position and velocity. For each whale individual, update the position and 
velocity of the whale based on the global optimal solution and the current optimal solution. 

Step 6: Adjust the parameters. Update the weights and biases of the neural network by 
adjusting the parameter values of the individual whales. 

Step 7: Iterative update: Repeat steps 3 to 6 until a preset stopping condition is reached, i.e. till 
the maximum number of iterations or the target accuracy rate. 

Step 8: Output the optimal solution. Output the neural network parameter settings 
corresponding to the global optimal solution, i.e. as the best parameters of the optimized AlexNet 
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neural network.  
Therefore, the modified Alexnet power device is applied for infrared image detection process 

as shown in Fig. 3. 

 
Fig. 3. Flowchart of infrared image detection process 

5. Simulation experiment 

5.1. Performance comparison of whale optimization algorithm 

In order to illustrate the performance of the improved whale optimization algorithm in this 
paper, the ACO algorithm, PSO algorithm, WOA algorithm and the algorithm of this paper-IWOA 
are selected for comparison. Table 1 shows six commonly used benchmark functions. Tables 2-7 
show the comparison of the performance results of the four algorithms with the six benchmark 
functions. The maximum value, minimum value, variance and standard value are chosen as the 
measure of the performance comparison of the four algorithms. 

Table 1. Benchmark function 
No. Benchmark function No. Benchmark function 

F1 ෍ [100(𝑥௜ାଵ − 𝑥௜ଶ)ଶ + (𝑥௜ − 1)ଶ]௡ିଵ௜ୀଵ  F4 ෍ ([𝑥௜ + 0.5])ଶ௡௜ୀଵ  

F2 20expቌ− 15ඨ1𝑛෍ 𝑥௜ଶ௡௜ୀଵ ቍ − exp൭1𝑛෍ cos(2𝜋𝑥௜)௡
௜ୀଵ ൱ F5 

11000෍𝑥௜ଶ௡
௜ୀଵ −  ෑ cos ൬𝑥௜√𝑖൰ + 1௡

௜ୀଵ  

F3 ෍ (𝑥௜ଶ − 10cos(2𝜋𝑥௜) + 10)௡௜ୀଵ  F6 ෍ |𝑥௜|௡௜ୀଵ + ෑ |𝑥௜|௡௜ୀଵ  

Based on the data provided in Tables 2-7, the IWOA clearly outperforms the other algorithms 
in terms of minimum, maximum, mean, and standard value results for the six functions studied. 
The superiority of IWOA compared to ACO and PSO is clearly demonstrated in these tables. In 
addition, the IWOA exhibits a clear performance advantage over the WOA, especially on 
functions F3, F5 and F6.  
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Table 2. F1 test function comparison 
Algorithm Dim Min value Max value Mean St-deviation 

ACO 

2 2.3527 9.9684 4.2127 5.1629 
5 5.8146 9.8915 8.1347 9.0442 
10 27.1343 100.1349 91.6176 75.1753 
30 87.1672 130.1363 97.1872 92.8172 

PSO 

2 2.9803 8.1257 5.0152 3.1258 
5 9.0521 18.4956 11.2147 10.7517 
10 30.2918 100.4217 83.7527 78.9172 
30 90.8231 140.8162 128.7216 96.2952 

WOA 

2 9.1212E-04 3.9143E-02 3.1893E-03 5.2721E-03 
5 4.8271E-08 7.9462E-07 3.2138E-06 2.1497E-06 
10 2.8314E-11 9.8752E-09 7.3912E-08 3.1271E-09 
30 7.5401E-15 2.6321E-10 2.3531E-11 3.5246E-12 

IWOA 

2 8.4012E-04 5.8917E-03 4.1029E-03 9.2731E-03 
5 3.4412E-10 3.2348E-08 2.8426E-09 7.5421E-09 
10 4.1384E-14 2.6235E-10 5.1981E-11 4.1392E-09 
30 3.2187E-17 2.3681E-15 6.2982E-14 3.2741E-14 

Table 3. F2 test function comparison 
Algorithm Dim Min value Max value Mean St-deviation 

ACO 

2 2.3712 8.2318 4.8284 2.3531 
5 10.1452 14.7229 12.1821 10.7842 
10 61.8391 79.2129 73.2126 72.1752 
30 90.8131 110.2315 95.3182 98.5315 

PSO 

2 5.5164 8.7018 6.2404 5.2156 
5 8.6182 20.3721 16.9126 12.2973 
10 21.9102 53.2761 41.1831 48.5128 
30 80.1412 114.2691 86.3621 63.3914 

WOA 

2 8.1335E-03 3.3514E-01 8.1926E-02 3.8212E-03 
5 9.1371E-04 7.9283E-02 4.9812E-01 3.1346E-02 
10 6.3174E-09 2.7416E-07 3.1238E-08 4.3128E-08 
30 3.3128E-15 9.9126E-10 3.8346E-11 3.7123E-12 

IWOA 

2 2.6125E-04 4.9193E-03 3.1597E-03 2.1839E-03 
5 5.5915E-08 9.9143E-06 6.1929E-06 6.2612E-06 
10 1.4586E-18 1.1698E-16 1.1762E-16 1.1874E-16 
30 3.1982E-29 3.8485E-25 3.7043E-25 2.1466E-26 

Table 4. F3 test function comparison 
Algorithm Dim Min value Max value Mean St-deviation 

ACO 

2 1.9317 10.1894 9.4517 7.2465 
5 3.3278 6.8219 6.7213 4.7813 
10 13.7813 27.6827 15.4322 15.7922 
30 29.3164 39.8264 32.9129 34.2154 

PSO 

2 4.1272 9.1045 6.2193 2.9108 
5 8.1283 14.9134 12.3139 11.1418 
10 14.2164 61.1341 44.7542 43.6894 
30 64.9863 74.1284 70.1291 72.6354 

WOA 

2 6.7041E-04 1.922E-03 8.4612E-03 3.9254E-04 
5 1.8817E-07 4.1691E-05 6.2134E-05 6.6745E-05 
10 1.3701E-15 3.5828E-10 6.1272E-08 3.7292E-09 
30 2.3146E-20 2.2214E-18 5.1249E-18 3.1214E-19 

IWOA 2 0 3.3721E-04 2.1578E-04 5.3051E-04 
 5 9.1471E-08 5.1362E-06 2.5190E-06 7.1378E-06 
 10 7.4471E-09 2.7805E-06 2.2801E-06 3.1874E-08 
 30 3.3432E-26 5.9127E-25 5.6317E-24 9.8234E-24 
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Table 5. F4 test function comparison 
Algorithm Dim Min value Max value Mean St-deviation 

ACO 

2 2.9172 6.1673 4.3278 4.2182 
5 9.1423 13.3163 10.1783 9.1783 
10 19.1279 40.8122 24.1402 36.1953 
30 85.4056 99.3291 89.1736 91.2193 

PSO 

2 1.9032 3.7812 2.2196 2.6571 
5 5.1085 10.3812 9.3717 7.6194 
10 15.8716 64.1218 36.8129 22.1975 
30 78.1476 126.71832 90.1472 69.1758 

WOA 

2 2.6512E-02 2.1925E+01 4.1643E-01 6.1254E-01 
5 2.4061E-03 3.1029E+01 6.3218E-01 4.1927E+00 
10 9.0321E-07 6.1856E-03 4.2821E-03 3.1027E-04 
30 3.5712E-14 4.1235E-10 3.1738E-10 8.1525E-11 

IWOA 

2 4.1562E-04 1.0292E-03 5.8231E-03 3.1368E-03 
5 4.5197E-07 3.8125E-06 5.8237E-06 4.1568E-05 
10 3.0165E-13 9.2815E-10 5.1275E-10 3.1428E-10 
30 1.5123E-16 1.239E-13 5.9201E-10 3.1563E-09 

Table 6. F5 test function comparison 
Algorithm Dim Min value Max value Mean St-deviation 

ACO 

2 2.2757 8.1365 6.1726 5.1538 
5 5.1485 8.7219 5.9122 6.2178 
10 17.3176 40.9232 29.1956 33.1461 
30 40.9821 78.9341 54.9212 56.7216 

PSO 

2 5.6112 3.0152 3.1722 3.4732 
5 8.1742 9.1213 3.1416 7.1565 
10 12.1877 15.1870 11.5714 14.8714 
30 38.0165 69.9267 40.1398 43.5813 

WOA 

2 4.9231E-05 8.1227E-03 6.1905E-04 1.5317E-05 
5 3.3261E-05 3.1782E-02 5.1832E-03 5.8218E-03 
10 4.2521E-07 3.4713E-06 5.4316E-02 5.2174E-02 
30 3.8218E-11 1.8258E-08 4.1226E-09 4.089E-07 

IWOA 

2 6.1523E-06 6.1496E-04 6.1868E-05 3.1674E-05 
5 5.5171E-10 0 3.1786E-07 6.2491E-07 
10 9.1058E-09 6.8673E-08 5.1574E-08 1.3143E-08 
30 3.8473E-13 9.0216E-10 5.2243E-10 3.7126E-10 

Table 7. F6 test function comparison 
Algorithm Dim Min value Max value Mean St-deviation 

ACO 

2 2.1296 7.4395 4.9365 6.2163 
5 4.0289 9.4915 8.2932 5.8159 
10 10.2763 33.6967 28.6136 30.6732 
30 33.2593 74.2818 48.4178 48.1271 

PSO 

2 7.1795 8.9016 7.9315 3.1276 
5 11.9821 13.0924 13.1043 13.9102 
10 4.9165E-03 3.0139E-02 3.9105E-03 3.9123E-03 
30 2.9724E-10 3.1376E-08 3.0987E-07 3.0159E-07 

WOA 

2 9.8132E-05 5.2154E-04 6.2712E-05 6.7821E-05 
5 1.2461E-07 6.1357E-04 5.1762E-05 8.3931E-04 
10 7.7149E-10 4.1893E-09 4.6292E-07 5.2483E-05 
30 6.3127E-20 1.9193E-18 3.3126E-18 3.1923E-18 

IWOA 

2 0 1.5384E-04 5.8528E-05 3.3916E-04 
5 5.7206E-07 3.6872E-05 3.3709E-05 4.8192E-05 
10 6.1882E-12 9.2913E-10 7.8716E-11 3.9127E-11 
30 6.6761E-24 1.7695E-20 4.8925E-21 3.9561E-21 
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It is noteworthy that IWOA has a minimum value of 0 when the dimensions are between 2 and 
5, while the IWOA consistently provides favorable results on all six functions when the 
dimensions are between 10 and 30. This suggests that the overall performance of IWOA is greatly 
improved by strategies such as population initialization, call behavior optimization, and individual 
filtering. The consistently superior results obtained by IWOA on various statistical metrics, as 
well as its significant advantages over competing algorithms, validate the superiority of the 
population initialization, adaptive convergence factors, and dynamic partitioning employed in 
optimizing its overall performance. 

5.2. Experimental comparison subjects 

In order to verify that the algorithm (IAlexNet) in this paper has the effect, the AlexNet model, 
the YOLO v3 model from [13], and the Faster R-CNN model from [8] are selected for comparison. 
The Alexnet model is mainly composed of 5 convolutional layers, 3 maximum pooling layers, 3 
FC layers using leaky ReLU activation function. YOLO v3 mainly uses DarkNet53 as the 
backbone network, 2 DBL units, 2 residual units and leaky ReLU activation function. Faster 
R-CNN uses VGG16 as the base model. Faster R-CNN uses VGG16 as the base model and leaky 
ReLU activation function. This study applies Tensorflow1.10.0 as an open source framework, 
Windows 10 as the operating system. The required hardware performance is: CPU of Core 
I7-6700, RAM of 16GB, and hard disk capacity of 1T. Fig. 4 shows the infrared images of some 
of the commonly used electric power devices. 

 
a) Surge arrester 

 
b) Circuit breakers 

 
c) Transformers 

 
d) Insulators 

Fig. 4. Some commonly used electrical equipment 

5.3. Comparison of algorithm accuracy 

In order to verify the performance of the algorithms in this paper, the accuracy values of the 
four algorithms we compared, and the results are shown in Fig. 5. The figure demonstrates that 
with the gradual increase in the number of training times, all the four algorithms show different 
degrees of upward trend in training accuracy values. When the number of training times reaches 
400, the algorithm in this paper takes the lead in approaching stability and always maintains a flat 
state. While the AlexNet accuracy curve had an upward trend throughout the training process, the 
accuracy curves of YOLO v3 and Faster R-CNN algorithms also moved upward. Therefore, 
throughout the training process, the accuracy of this paper’s algorithm is better than the other three 
algorithms, indicating that this paper's algorithm has a more obvious improvement effect in 
AlexNet. 

5.4. Comparison of algorithm effectiveness 

This paper takes and considers 100 images of the above four power devices for verifying the 
algorithms performance. Table 8 shows the recognition results of the four algorithms for the four 
types of power equipment. From the results shown in the table, it is found that these algorithms 
have different results for the recognition rate of power equipment, but the advantage of this paper’s 
algorithm is more obvious. The color of the surrounding scene has a certain impact on the infrared 
image of the device, and the multi-scale image input of this paper’s algorithm reduces the impact 
of these invalid elements, thus making the device feature extraction more accurate. In a lightning 
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arrester, the recognition rate of AlexNet, YOLO v3, Faster-RCNN increased by 6.54 %, 5.68 % 
and 3.95 %, respectively, in a circuit breaker, the recognition rate of AlexNet, YOLO v3, and 
Faster-RCNN is improved by 3.54 %, 3.47 % and 1.57 %, respectively. And finally, in mutual 
inductors, the recognition rate of AlexNet, YOLO v3, and Faster-RCNN is improved by 5.97 %, 
4.94 % and 4.14 %, respectively, and in insulators, the recognition rate of AlexNet, YOLO v3, 
and Faster-RCNN is improved by 5.83 %, 4.67 %, and 4.38 %, respectively. 

 
Fig. 5. Comparison of training accuracy of four algorithms 

Table 8. Comparison of the recognition effect of the contrasting algorithms  
in four kinds of electric equipment 

Algorithm Surge arrester Circuit breakers Transformers Insulators 
AlexNet 90.39 % 91.93 % 90.52 % 90.83 % 

YOLO v3 91.13 % 92.09 % 91.41 % 91.84 % 
Faster-RCNN 92.65 % 93.82 % 92.12 % 92.09 % 

IAlexNet 96.31 % 95.29 % 95.93 % 96.13 % 

Table 9 contains the recognition time comparison results for the four algorithms and four types 
of power equipment, and demonstrates that the IAlexNet algorithm applied in this paper has a 
clear advantage over AlexNet, and for YOLO v3, Faster -RCNN the advantage is even more 
dramatic. That substantiates such an optimization of the original AlexNet structure to improve the 
time complexity, decrease the recognition time.  

Table 9. Comparison of time consumed by contrasting algorithms  
in recognition of four types of power devices 

Algorithm Surge arrester (S) Circuit breakers (S) Transformers (S) Insulators (S) 
AlexNet 13.73 17.82 19.03 18.36 

YOLO v3 13.67 16.79 18.94 18.27 
Faster-RCNN 13.28 16.84 18.96 18.28 

IAlexNet 13.26 16.85 18.94 18.32 

Recall Rate (R) and Precision Rate (P) are the most important methods to measure the model 
recognition, in which Recall Rate (R) and Precision Rate (P) equations are as follows: 

𝑅 = 𝑇௣𝑇௣ + 𝐹௡, (14)𝑃 = 𝑇௣𝑇௣ + 𝐹௣, (15)

where, 𝑇௣ and 𝐹௣ denote the number of positive samples and negative samples being recognized 
correctly, respectively, 𝐹௡ denotes the number of positive samples being misclassified as negative 

100 150 200 250 300 350 400 450 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ac

cu
ra

cy

epoch

 AlexNet
 YOLO v3
 Faster R-CNN
 IAlexNet



RESEARCH ON POWER EQUIPMENT TROUBLESHOOTING BASED ON IMPROVED ALEXNET NEURAL NETWORK.  
FANGHENG XU, SHA LIU, WEN ZHANG 

 JOURNAL OF MEASUREMENTS IN ENGINEERING. MARCH 2024, VOLUME 12, ISSUE 1 175 

samples, and 𝑛 denotes the number of all samples labeled as positive samples. In order to further 
verify the recognition effect of this paper’s algorithm before and after the improvement, the 
algorithm is optimized with or without SPP, with or without Leaky ReLU activation function, and 
with or without WOA in eight different conditions as shown in Table 10. Fig. 6 shows the PR 
results of this paper's algorithm with or without SPP, with or without Leaky ReLU activation 
function, and with or without WOA algorithm optimization for different algorithms in four kinds 
of power devices. From the results of the four devices, although the four algorithms show a 
downward trend, but the PR results of this paper’s algorithm has a more obvious advantage, which 
indicates at the increase of SPP, Leaky ReLU function and that the use of the WOA algorithm for 
the optimization of this paper’s algorithm is effective.  

Table 10. Classification of the main improvements of the algorithm in this paper 
Case SPP Leaky ReLU WOA 
case1 NO NO NO 
case2 NO NO YES 
case3 NO YES YES 
case4 NO YES NO 
case5 YES NO NO 
case6 YES YES NO 
case7 YES NO YES 
case8 YES YES YES 

 

 
a) Surge arrester 

 
b) Circuit breakers 

 
c) Transformers 

 
d) Insulators 

Fig. 6. PR values of four kinds of power devices which are the main improvement elements  
of this paper’s algorithm 

Fig. 7 shows the PR results of the four algorithms feature recognition, that explain that with 
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the gradual increase in the R value, the four algorithms of the P value are in a gradual decline, and 
this paper algorithm R value in the range of [0, 0.6] is more gentle, compared to the other 
algorithms R value being equal to [0, 0.5], that demonstrates a more stable effect. 

 
a) Surge arrester 

 
b) Circuit breakers 

 
c) Transformers 

 
d) Insulators 

Fig. 7. PRs of four power devices for four algorithms 

As per test diagnostic results of the four algorithms shown in Fig. 7, the mixed fault detection 
brings some detection difficulty to the model, compared to Fig. 6 having the categorized faults, 
where the fault identification samples during the detection process are more concentrated due to 
the troubleshooting in one device, and therefore the results can be obtained more accurately. The 
results of fault diagnosis shown in Fig. 7 (performed in the AlexNet model), three number 1 fault 
diagnosis results are wrong, two number 2 fault diagnosis results are wrong, number 3 fault 
diagnosis results are correct, three number 4 fault diagnosis results contain errors, two number 5 
fault diagnosis also contain errors, and the comprehensive fault diagnosis success rate is 80 %. In 
the fault diagnosis using YOLO v3 model, two number 1 fault diagnosis results contain errors, 
two number 2 fault diagnosis results contain errors, number 3 faults all diagnosed correctly, one 
number 4 fault diagnosis contains an error, one number 5 fault diagnosis contains an error, the 
comprehensive fault diagnosis success rate is 88 %. In the Faster R-CNN model for fault 
diagnosis, one number 1 fault diagnosis result contains an error, two number 2 fault diagnosis 
results contain errors, 1 number 3 fault diagnosis, 1 number 4 fault diagnosis and 1 number 5 fault 
diagnosis results contain an error each, so the comprehensive fault diagnosis success rate is 88 %. 
And finally using the model in this paper for fault diagnosis, 1 number 1 fault diagnosis result 
contains an error, 2 number 2 fault diagnosis result contain errors, number 3 fault diagnosis and 
number 4 fault diagnosis results are all correct, 1 number 5 fault diagnosis contains an error, so 
the comprehensive fault diagnosis success rate is 92 %. From the above results, the four algorithms 
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fault detection accuracy has been reduced, but the detection effect of the algorithm in this paper 
still has a certain advantage, and can better find the faults occurring in the power equipment. 

To further illustrate the generality and robustness of the algorithms analyzed in this paper, the 
infrared images of power devices under different scenarios (Rainy day scenario, Hazy scenario, 
Cloudy scenario, and Sunny day scenario) we chosen for recognition. A mutual inductor was 
chosen as the research object, and its detection results from the four algorithms are shown in Fig. 8. 
From the detection results shown in Fig. 8, under four different scenarios, this paper’s algorithm 
still has a good PR value, and has better application results compared to the other three algorithms. 
Especially in the hazy day scenario, the PR values of the other three algorithms are significantly 
lower than those of this paper's algorithm. So the feature acquisition ability of the proposed model 
for images is significantly enhanced, and the performance of the model is improved by the 
optimization of the WOA algorithm. 

 
a) Rainy day scenario 

 
b) Hazy day scenario 

 
c) Cloudy day scenario 

 
d) Sunny day scenario 

Fig. 8. PRs of four algorithms in different scenarios 

5.5. Power equipment fault diagnosis 

This subsection consists of the fault diagnosis of transformers, which are most frequently used 
in power equipment, as the object of study. At present, the faults of this type of equipment 
generally happen due to high-temperature overheating (for the sake of subsequent expression, the 
number is set to 1 and so on), low-temperature overheating (the number is set to 2), high-energy 
discharge (the number is set to 3), low-energy discharge (the number is set to 4), partial discharge 
(the number is set to 5), and normal state (the number is set to 6). Usually when a power 
transformer failure occurs, the device inside the transformer will dissolve hydrogen, methane, 
ethylene, acetylene and other gases, and the release of these gases captured by the infrared 
instrumentation gives the important information to determine the power transformer condition. A 
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collection of 300 sets of power fault data from [32] is applied here. These 300 sets of data are 
distributed into the corresponding six categories of data based on the type of equipment failure. 
Among them, those numbered 1-50 belong to the number 1 faults, those numbered 61-100 belong 
to the number 2 faults, those numbered 101-150 belong to the number 3 faults, those numbered 
151-200 belong to the number 4 faults, those numbered 201-250 belong to the number 5 faults, 
and those numbered 251-300 belong to the normal state of number 6. These data are also divided 
into a training set and a test set where 240 sets of sample data belong to the training set and 60 
sets belong to the test set (the allocation results are shown in Table 11).  

Table 11. Sample training and test sets for six device states 
 1 2 3 4 5 6 

Training sample 40 40 40 40 40 40 
Test sample 10 10 10 10 10 10 

Table 12 shows the test results of the four algorithms in six equipment states, and these results 
explain that the recognition effect of this paper’s algorithm is obvious. For these six states of 
equipment faults, this paper’s algorithm improves the recognition rate by an average of 7 % 
compared to traditional AlexNet, and improves the recognition rate by an average of 4 % 
compared to YOLO v3 and Faster R-CNN, especially in the low-energy discharge faults, the 
algorithm of this paper has achieved 100 % recognition effect. These results demonstrate that the 
PAN-based model can effectively remove the interference influence around the device in image 
recognition. However, the AlexNet model has the advantages of increasing the pooling layer, 
modifying the activation function, using the BN layer instead of the LRN, and optimizing the 
model parameters using the WOA algorithm and other measures to improve the recognition 
performance of the model. 

Table 12. Test results of four algorithms in six device states 
Algorithm Fault Type Number of trainings Number of correct results Accuracy 

AlexNet 

1 40 35 87.5 % 
2 40 36 90 % 
3 40 34 85 % 
4 40 35 87.5 % 
5 40 34 85 % 
6 40 35 87.5 % 

YOLO v3 

1 40 36 90 % 
2 40 37 92.5 % 
3 40 35 87.5 % 
4 40 36 90 % 
5 40 37 92.5 % 
6 40 36 93.3 % 

Faster R-CNN 

1 40 36 86.7 % 
2 40 37 92.5 % 
3 40 36 90 % 
4 40 37 92.5 % 
5 40 36 90 % 
6 40 38 86.7 % 

IAlexNet 

1 40 37 92.5 % 
2 40 38 95 % 
3 40 39 97.5 % 
4 40 40 100 % 
5 40 38 95 % 
6 40 39 97.5 % 

In order to further illustrate the effectiveness of the algorithmic aspects of this paper, this 
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research authors selected 50 mixed test samples of different device faults (where 10 are selected 
for each non-normal state) and tested the four algorithms in comparison. The test results are shown 
in Fig. 9. 

 
a) Alexnet troubleshooting results 

 
b) YOLO v3 troubleshooting results 

 
c) Fast R-CNN troubleshooting results 

 
d) IAlexnet troubleshooting results 

Fig. 9. Fault diagnosis results for four algorithms 

 
a) Paitou substation 

 
b) Lizhu substation 

Fig. 10. Fault diagnosis of two power substations 

In order to further illustrate the identification effect that the model in this paper has, the authors 
take the power equipment of Paitou Substation and Lizhu Substation under the jurisdiction of 
Shaoxing Branch of the State Electric Power Company, the author’s organization, as the practice 
object. Sample data of equipment records from January 2023 to May 2023 are collected. The 
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authors selected a mixed test sample set of 30 transformer faults from each substation and 
compared them using four algorithms, and the results are shown in Fig. 10. 

As per Fig. 10(a), the authors found that in the Pai Tau substation, the IAlexNet model has 4 
errors, the traditional AlexNet model has 6 errors, YOLO v3 and Faster R-CNN have 7 errors, and 
as per Fig. 10(b), the IAlexNet model has 3 faults, the traditional AlexNet model has 5 errors, the 
YOLO v3 model has 6 errors, and the Faster R-CNN has 7 error faults. As per these results, the 
proposed algorithm has good results in the actual equipment detection process, and the detection 
success rate is close to 90 %. 

6. Conclusions 

Aiming at increasing the accuracy rate of the current infrared image fault diagnosis methods 
used for power equipment, the authors proposed an improved AlexNet-based fault diagnosis 
model and compared it with other methods traditionally applied for this purpose: AlexNet, YOLO 
v3 and Faster R-CNN. Furthermore, a PAN model, having the optimized AlexNet structure and 
other parameters, was introduced to obtain more accurate image features. The experimental results 
show that the proposed recognition algorithm has better results in power transformer 
troubleshooting. Nevertheless, the current improved AlexNet structure still has room for further 
optimization and can be a field of future research. 
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