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Abstract. A quantum mechanical system that mimics the behavior of a classical harmonic 
oscillator in the quantum domain is called a simple harmonic quantum oscillator. The time-
independent Schrödinger equation describes the quantum harmonic oscillator, and its eigenstates 
are quantized energy values that correspond to various energy levels. In this work, we first 
fractionalize the time-independent Schrödinger equation, and then we solve the generated problem 
with the use of the Adomian decomposition approach. It has been shown that fractional quantum 
harmonic oscillators can be handled effectively using the proposed approach, and their behavior 
can then be better understood. The effectiveness of the method is validated by a number of 
numerical comparisons. 
Keywords: harmonic oscillator, Adomian decomposition, Hermite polynomial. 

1. Introduction 

In recent years, fractional calculus – a branch of classical calculus that deals with instructions 
on non-integer integration and differentiation – has become a fascinating area of study. The notion 
of fractional operators, which emerged nearly concurrently with their classical equivalents, has 
garnered considerable attention owing to their multifarious applicability across multiple fields of 
mathematics and science. It has been demonstrated that fractional differential equations are 
effective instruments for understanding and simulating intricate engineering, chemical, and 
physical processes [1-5]. 

The Schrödinger equation is a key tool in the field of quantum mechanics for explaining how 
quantum systems behave. This equation, which was created by Erwin Schrödinger in 1926, uses 
time as an independent variable to describe quantum systems. Time-independent Schrödinger 
equations (TISE) and time-dependent Schrödinger equations (TDSE) are the two categories into 
which Schrödinger wave equations fall [5, 6]. 

Numerous authors have offered both analytical and numerical solutions for TISE and TDSE. 
The Schrödinger issue has been solved using modern analytical techniques such the Elzaki 
decomposition methodology, homotopy perturbation, and Adomian decomposition methods. On 
the other hand, techniques such as the Numerov algorithm for harmonic and linear potentials have 
been used to produce approximative numerical solutions. 

In this work, we study the semi-analytical solution of the Adomian decomposition approach 
for time-independent Schrödinger equations. The ADM provides an accurate solution and is 
well-known for its effectiveness in solving Sturm-Liouville issues, ordinary and partial differential 
equations, nonlinear and stochastic problems, and more. When compared to other approaches, the 
ADM solves the TISE more quickly and accurately while still offering a series solution [7-10]. 

The structure of this article is as follows: In part 2, we establish the notations and present the 
essential concepts, including the fractional operators of the Riemann-Liouville integral and 
derivative, and the Caputo derivative, which will be utilized throughout this essay. Section 3, 
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employs the ADM to solve the Schrödinger equation for the simple fractional harmonic oscillator, 
converting it into a Hermite differential equation. In Section 4, we depict some numerical 
comparisons between the ADM’s solution and the solution reported in some references. Finally, 
Section 5 summarizes the conclusion of this work. 

2. Preliminaries and notion 

In this section, we go over the basic ideas of fractional calculus in detail, which forms the basis 
of our investigation. We also explore the properties of certain operators that are important to our 
work [11-14]. 

Definition 2.1. The Riemann-Liouville fractional integral of 𝑓 of order 𝛾, where 𝑡 > 0,  𝑛 − 1 < 𝛾 ≤ 𝑛, 𝑛 ∈ ℕ, of a function 𝑓ሺ𝑡ሻ is given as follows: 

ℐఊ𝑓ሺ𝑡ሻ = 1Γሺ𝛾ሻන (𝑡 − 𝜏)ఊିଵ𝑓(𝜏)𝑑𝜏௧
଴ . (1)

The following features of the Riemann-Liouville integral are worth noting: ℐ଴𝑓(𝑡) = 𝑓(𝑡), (2)ℐఊ𝑡௠ = Γ(𝑚 + 1)Γ(𝑚 + 𝛾 + 1) 𝑡௠ାఊ,       𝑚 ≥ −1, (3)ℐఊℐℬ𝑓(𝑡) = ℐℬℐఊ𝑓(𝑡),         𝛾,ℬ ≥ 0, (4)ℐఊℐℬ𝑓(𝑡) = ℐఊାℬ𝑓(𝑡),         𝛾,ℬ ≥ 0. (5)

Definition 2.2. Let 𝑛 − 1 < 𝛾 < 𝑛, such that 𝑛 is positive integer and 𝛾 ∈ ℝା, the Riemann 
Liouville derivative of fractional of order 𝛾 is given as follows:  

𝐷ఊ𝑓(𝑡) = 1Γ(𝑛 − 𝛾) 𝑑௡𝑑𝑡௡ න 𝑓(௡)(𝜏)(𝑡 − 𝜏)ఊାଵି௡ 𝑑𝜏.௧
଴  (6)

Definition 2.3. Suppose that 𝛾 > 0, 𝑡 > 𝛾, 𝑡 ∈ 𝑅. The Caputo fractional differential operator 
of order 𝛾, is given as: 

𝐷ఊ𝑓(𝑥) = ⎩⎪⎨
⎪⎧ 1Γ(𝑛 − 𝛾)න 𝑓(௡)(𝜏)(𝑡 − 𝜏)ఊାଵି௡ 𝑑𝜏,             𝑛 − 1 < 𝛾 < 𝑛 ∈ 𝑁,௧

଴𝑑௡𝑑𝑡௡ 𝑓(𝑡),                                                  𝛾 = 𝑛 ∈ 𝑁.                 (7)

Remarks. The Caputo fractional derivative meets the following properties: 
1. The power rule property, i.e.: 

𝐷ఊ𝑡ఌ = ቐ 𝛤(𝜀 + 1)Γ(𝜀 − 𝛾 + 1) 𝑡ఌିఊ = 𝐷ఊ𝑡ఌ , 𝑛 − 1 < 𝛼 < 𝑛,     𝜀 > 𝑛 − 1,     𝜀 ∈ 𝑅,0, 𝑛 − 1 < 𝛼 < 𝑛,     𝜀 ≤ 𝑛 − 1,    𝜀 ∈ 𝑁.  (8)

2. The constant property, i.e.: 𝐷ఊ𝑐 = 0. (9)

3. The interpolation property, i.e.: 



A SIMPLE HARMONIC QUANTUM OSCILLATOR: FRACTIONALIZATION AND SOLUTION.  
IQBAL M. BATIHA, IQBAL H. JEBRIL, ABEER A. AL-NANA, SHAMESEDDIN ALSHORM 

28 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627  

limఊ→௡ 𝐷ఊ𝑓(𝑡) = 𝐷௡𝑓(𝑡). (10)

4. The linearity property, i.e.: 𝐷ఊ൫𝜆𝑓(𝑡) + 𝜓𝑔(𝑡)൯ = 𝜆𝐷ఊ𝑓(𝑡) + 𝐷ఊ𝑔(𝑡)𝜓. (11)

5. The non-commutation property, i.e.: 𝐷ఊ𝐷Ɣ𝑓(𝑡) = 𝐷ఊାƔ𝑓(𝑡) ≠ 𝐷Ɣ𝐷ఊ𝑓(𝑡). (12)

3. Theory 

One typical method for modeling systems with viscoelasticity in damping terms is to 
incorporate fractional derivatives to introduce memory effects in the system. The mathematical 
framework offered by fractional calculus makes it possible to include memory effects and produce 
a more realistic depiction of the behavior of the system. 

The damping term in the differential equation can be written as a fractional derivative of the 
displacement or velocity variable when modeling viscoelasticity damping with fractional 
derivatives. The memory effects in the damping system are captured by this fractional derivative, 
enabling a more accurate depiction of the system’s reaction to outside influences. 

The core of this study is covered in this section, where we introduce our unique method for 
solving the Schrödinger equation for the basic fractional harmonic oscillator. In order to do this, 
we make use of the ADM, a reliable numerical technique that is well-known for its accuracy and 
efficiency in solving differential equations. Our objective is to transform the original Schrödinger 
equation into the Hermite differential equation, which is a more manageable form and has 
fractional order derivatives [15-17]. 

An important model for studying quantum systems with fractional characteristics is the simple 
fractional harmonic oscillator. Our goal is to achieve precise answers by utilizing the ADM, which 
will provide insight into the fascinating occurrences seen in the equation under consideration. The 
ADM is a perfect fit for this study because of its adaptability in handling nonlinearity and the 
complexities of fractional calculus [18-20]. 

In this context, the expression for the time-dependent Schrodinger's equation for a basic 
fractional harmonic oscillator is: −ℎଶ2𝑟 𝑑ଶఈ𝜙(𝑥)𝑑𝑥ଶఈ + 12𝑘𝑥ଶ𝜙(𝑥) = 𝑇𝜙(𝑥),  (13)

where ℎ, 𝑟 are constants, 𝑇 is the energy. It should be observed here that the above model 
corresponds to inertia terms in the second-order mechanistic counterpart model when alpha = 1. 
In tha same regard, we should also note that since we are dealing with a physical problem, we will 
not be considering the positive exponent solution that diverges at. It was noted, meanwhile, that 
Eq. (13) can be changed to the following form: 𝑑ଶఈ𝑈𝑑𝛾ଶ − 2𝛾 𝑑𝑈𝑑𝛾 + 2 ൬ 𝑇ℎ𝜔 − 12൰𝑈 = 0, (14)

where 𝜙(𝛾) = 𝑈(𝛾)𝑒ି(ఊమ ଶ⁄ ). Now define 𝜆 = ቀ௛்ఠ − ଵଶቁ and replace the dummy 𝛾 with 𝑥. This 
reduces Eq. (14) to the form shown below: 𝐷ଶఈ𝑈 − 2𝑥𝐷ఈ𝑈 + 2𝜆𝑈 = 0, (15)
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where 𝑈(0) = 𝑐଴ , 𝐷ఈ𝑈ᇱ(0) = 𝑐ଵ. 
The ADM is used to tackle this problem, by considering the following form: 𝐷ଶఈ𝑈 = 2𝑥𝐷ఈ𝑈 − 2𝜆𝑈. (16)

Operating 𝐽ఈ to both sides of Eq. (16) yields: 𝐷ఈ𝑈 − 𝐷ఈ𝑈ᇱ(0) = 𝐽ఈ(2𝑥𝐷ఈ𝑈) − 2𝜆𝐽ఈ𝑈,   
or: 𝐷ఈ𝑈 = 𝑐ଵ + 2𝐽ఈ(𝑥𝐷ఈ𝑈) − 2𝜆𝐽ఈ𝑈. (17)

Again, by taking 𝐽ఈ to both sides of Eq. (17), we obtain: 𝑈 − 𝑈(0) = 𝐽ఈ𝑐ଵ + 2𝐽ଶఈ(𝑥𝐷ఈ𝑈) − 2𝜆𝐽ଶఈ𝑈. 
The result is as follows: 

𝑈 = 𝑐଴ + 𝑐ଵ 𝑥ఈΓ(𝛼 + 1) + 2𝐽ଶఈ(𝑥𝐷ఈ𝑈) − 2𝜆𝐽ଶఈ𝑈, (18)

where 𝑐଴ and 𝑐ଵ are arbitrary constants. Following the ADM sense leads to the general solution 
for 𝑈, which would be as: 𝑈 = ෍ 𝑈௡ ஶ௡ୀ଴ , (19)

where: 

𝑈଴ = 𝑐଴ + 𝑐ଵ 𝑥ఈΓ(𝛼 + 1),      𝑈௡ାଵ = 2𝐽ଶఈ(𝑥𝐷ఈ𝑈௡ ) − 2𝜆𝐽ଶఈ𝑈௡ ,     𝑛 ≥ 0. (20)

We will show some of the major calculations used above. The following steps show how we 
calculate 𝑈ଵ up to 𝑈ହ. In this regard, we can find: 𝑈ଵ = 2𝐽ଶఈ(𝑥𝐷ఈ𝑈଴ ) − 2𝜆𝐽ଶఈ𝑈଴, 
which means: 

𝑈ଵ = 2𝐽ଶఈ ൭𝑥𝐷ఈ ൬𝑐଴ + 𝑐ଵ 𝑥ఈΓ(𝛼 + 1)൰൱ − 2𝜆𝐽ଶఈ ൬𝑐଴ + 𝑐ଵ 𝑥ఈΓ(𝛼 + 1)൰, 
or: 

𝑈ଵ = ቆ −2𝜆𝑥ଶఈΓ(2𝛼 + 1)ቇ 𝑐଴ + ቆ 2𝑥ଶఈାଵΓ(2𝛼 + 2) − 2𝜆𝑥ଷఈΓ(3𝛼 + 1)ቇ 𝑐ଵ. 
The next term can be written as: 𝑈ଶ =  2𝐽ଶఈ(𝑥𝐷ఈ𝑈ଵ) − 2𝜆𝐽ଶఈ(𝑈ଵ). 
In other words, we have: 
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𝑈ଶ = −2ଶ𝜆𝑐଴  ቆ Γ(𝛼 + 2)𝑥ଷఈାଵΓ(𝛼 + 1)Γ(3𝛼 + 2) − 𝑥ସఈΓ(4𝛼 + 1)ቇ+ 2ଶ𝑐ଵ ቆ Γ(𝛼 + 3)𝑥ଷఈାଶΓ(𝛼 + 2)Γ(3𝛼 + 3) − 𝜆 𝑥ସఈΓ(4𝛼 + 2)ቆ1 + Γ(2𝛼 + 2)Γ(2𝛼 + 1)ቇ + 𝜆ଶ𝑥ହఈΓ(5𝛼 + 1)ቇ. 
Once more, the next term can be written as: 𝑈ଷ =  2𝐽ଶఈ(𝑥𝐷ఈ𝑈ଶ) − 2𝜆𝐽ଶఈ(𝑈ଶ). 
This is equivalent to the following assertion: 

𝑈ଷ = −2ଷ𝑐଴  ቆ 𝜆Γ(𝛼 + 2)Γ(2𝛼 + 3)𝑥ସఈାଶΓ(𝛼 + 1)Γ(2𝛼 + 2)Γ(4𝛼 + 3)+ 𝜆ଶ𝑥ହఈାଵ ቆ Γ(3𝛼 + 2)Γ(3𝛼 + 1)Γ(5𝛼 + 2) + Γ(𝛼 + 2)Γ(𝛼 + 1)Γ(5𝛼 + 2)ቇ − 𝜆ଷ𝑥଺ఈΓ(6𝛼 + 1)ቇ+ 2ଷ𝑐ଵ ቆ Γ(𝛼 + 3)Γ(2𝛼 + 4)𝑥ଷఈାଶΓ(𝛼 + 2)Γ(2𝛼 + 3)Γ(4𝛼 + 4)− 𝜆ଶ𝑥ହఈାଶ ቆ Γ(3𝛼 + 3)Γ(3𝛼 + 2)Γ(5𝛼 + 3)ቆ1 + Γ(2𝛼 + 2)Γ(2𝛼 + 1)ቇ + Γ(𝛼 + 3)Γ(𝛼 + 2)Γ(5𝛼 + 3)ቇ+ 𝜆ଶ𝑥଺ఈାଵΓ(6𝛼 + 2)൭Γ(4𝛼 + 2)Γ(4𝛼 + 1) − ቆ1 + Γ(2𝛼 + 2)Γ(2𝛼 + 1)ቇ൱ − 𝜆ଷ𝑥଻ఈΓ(7𝛼 + 1)ቇ. 
Similarly, we can have: 𝑈ସ =  2𝐽ଶఈ(𝑥𝐷ఈ𝑈ଷ) − 2𝜆𝐽ଶఈ(𝑈ଷ) , 

which consequently gives: 

𝑈ସ = −2ସ𝜆𝑐଴Γ(𝛼 + 2)Γ(2𝛼 + 3)Γ(3𝛼 + 4)𝑥ହఈାଷΓ(𝛼 + 1)Γ(2𝛼 + 2)Γ(3𝛼 + 3)Γ(5𝛼 + 4)+ 2ସ𝑐ଵ Γ(𝛼 + 3)Γ(2𝛼 + 4)Γ(3𝛼 + 5)𝑥ହఈାସΓ(𝛼 + 2)Γ(2𝛼 + 3)Γ(3𝛼 + 4)Γ(5𝛼 + 5)+ 2ସ𝜆ଶ𝑐଴𝑥଺ఈାଶΓ(6𝛼 + 3) ቌ൭Γ(𝛼 + 2)Γ(𝛼 + 1)ቆΓ(4𝛼 + 3)Γ(4𝛼 + 2) + Γ(2𝛼 + 3)Γ(2𝛼 + 2)ቇ൱ + Γ(3𝛼 + 2)Γ(4𝛼 + 3)Γ(3𝛼 + 1)Γ(4𝛼 + 2)ቍ
− 2ସ𝜆𝑐ଵ𝑥଺ఈାଷΓ(6𝛼 + 4) ൭ቆ1 + Γ(2𝛼 + 2)Γ(2𝛼 + 1)ቇΓ(3𝛼 + 3)Γ(4𝛼 + 4)Γ(4𝛼 + 3)Γ(3𝛼 + 2) + Γ(𝛼 + 3)Γ(4𝛼 + 4)Γ(𝛼 + 2)Γ(4𝛼 + 3)+ Γ(𝛼 + 3)Γ(2𝛼 + 4)Γ(2𝛼 + 3)Γ(𝛼 + 2)൱ − 2ସ𝜆ଷ𝑐଴𝑥଻ఈାଵΓ(7𝛼 + 2) ቆΓ(5𝛼 + 2)Γ(5𝛼 + 1) + Γ(3𝛼 + 2)Γ(3𝛼 + 1) + Γ(𝛼 + 2)Γ(𝛼 + 1)ቇ+ 2ସ𝜆ଶ𝑐ଵ𝑥଻ఈାଶΓ(7𝛼 + 3) ൭ቆ1 + Γ(2𝛼 + 2)Γ(2𝛼 + 1)ቇቆΓ(3𝛼 + 3)Γ(3𝛼 + 2) + Γ(5𝛼 + 3)Γ(5𝛼 + 2)ቇ + Γ(𝛼 + 3)Γ(𝛼 + 2)+ Γ(4𝛼 + 2)Γ(5𝛼 + 3)Γ(4𝛼 + 1)Γ(5𝛼 + 2)൱ + 2ସ𝜆ସ𝑐଴𝑥଼ఈΓ(8𝛼 + 1)+ 2ସ𝜆ଷ𝑐ଵ𝑥଼ఈାଵΓ(8𝛼 + 2) ൭ቆ1 + Γ(2𝛼 + 2)Γ(2𝛼 + 1)ቇ + Γ(4𝛼 + 2)Γ(4𝛼 + 1) + Γ(6𝛼 + 2)Γ(6𝛼 + 1)൱ + 2ସ𝜆ସ𝑐ଵ𝑥ଽఈΓ(9𝛼 + 1). 

(21)
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If we continue in this manner, we got the desired solution reported in Eq. (19). To show the 
validity of our solution, we compare the ADM’s solution with the solution reported in [20] in 
Fig. 1 and Fig. 2 by taking 𝛼 = 1 and 𝜆 = {0.5, 1.5}. Obviously, we can observe that the proposed 
solution coincides with the solution we compare, and this confirms the validity of the proposed 
solution.  

 
Fig. 1. ADM’s solution vs. the solution in [20] according to 𝜆 = 0.5 

 
Fig. 2. ADM’s solution vs. the solution in [20] according to 𝜆 = 1.5 

 
Fig. 3. Absolute error between the ADM’s solution and the solution in [20] 

For more description, we plot in Fig. 3 and Fig. 4, the absolute errors gained from the 
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performance comparison. These figures demonstrate the advantage of the suggested method of 
fractionalizing the model in question. However, the limitation of our proposed approach lies in 
the lack of capabilities to obtain a general form of 𝑈௡ that can generate all other components of 
the desired solution, and this will be left to the future for more consideration. 

 
Fig. 4. Absolute error between the ADM’s solution and the solution in [20] when 𝜆 = 0.5 

4. Conclusions 

In this study, a generalized form of the time-independent Schrödinger equation has been 
successfully proposed in its fractional simple harmonic quantum oscillator. The ADM has been 
used to obtain a semi-analytical solution for such an oscillator. This solution has proved its validity 
with an existing solution in [20] when a classical case of the generalized form is taken into 
consideration. 
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