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Abstract. The analysis of stability problems of beams on two-parameter foundations (Bo2PFs) is 
an important part of their design for compressive loads. This work presents novel first principles 
derivation of the governing differential equations of elastic stability (GDES) of thin beams resting 
on two-parameter elastic foundations of the Pasternak, Filonenko-Borodich, Hetenyi or Vlasov 
models. The requirements of translational and rotational equilibrium of all the applied, reactive 
and internal forces on an infinitesimal segment of the Bo2PF and the laws of infinitesimal calculus 
were used to formulate the GDES as a fourth order ordinary differential equation (ODE) in terms 
of the transverse displacement function 𝑢ሺ𝑥ሻ. The GDES is non-homogeneous in the presence of 
applied transverse load 𝑞ሺ𝑥ሻ but homogeneous when 𝑞ሺ𝑥ሻ vanishes. This study presents the 
Fourier series method (FSM) for solving the governing differential equation of stability (GDES) 
for the case of Dirichlet boundary conditions. The FSM has the advantage of amenability to 
differentiation, and integration due to the orthogonality properties of the sinusoidal functions. 
Implementation of the FSM by assuming the unknown function in the GDES as a Fourier series 
of infinite terms and the exploitation of orthogonalization simplifies the problem to an algebraic 
eigenvalue problem which is the characteristic buckling equation. The exact eigenvalues are found 
by algebraic solution of the buckling equation. The exact eigenvalues were used to find the exact 
buckling loads and the exact buckling load coefficients. The critical buckling load was found to 
correspond to the first buckling mode (𝑛 ൌ 1), and is identical with previous solutions in the 
literature. Numerical calculations for the critical buckling load parameters 𝐾௖௥ were presented for 
the Bo2PF problem for values of the dimensionless foundation parameters 𝑘തଵ ൌ 0, 𝑘തଶ ൌ 0;  𝑘തଵ ൌ 100, 𝑘തଶ ൌ 0; 𝑘തଵ ൌ 0, 𝑘തଶ ൌ 1; 𝑘തଵ ൌ 100, 𝑘തଶ ൌ 100; 𝑘തଵ ൌ 0, 𝑘തଶ ൌ 2.5; 𝑘തଵ ൌ 100, 𝑘തଶ ൌ 2.5. 
The present solutions were compared with previous solutions for 𝐾௖௥ in the literature. The 
comparison shows that the present FSM results are identical with previous results obtained using 
various other methods such as Recursive Differentiation Method, Finite Element Method, 
Generalized Integral Transform Method (GITM) and Stodola-Vianello Iteration Method. The 
study has illustrated the effectiveness of the FSM for solving Bo2PFs.  
Keywords: Fourier series method, Euler-Bernoulli beam theory, two-parameter elastic 
foundation, critical buckling load, governing differential equation of stability. 

1. Introduction 

Foundation beams have been modeled using beam on elastic foundation theory that 
incorporates the reaction of the elastic foundation in the governing equation of beam theory to 
produce a governing differential equation for the foundation beam. The effect of the elastic 
foundation has been shown to affect the resulting behaviour of the foundation beam in buckling, 
bending or vibration. 

Euler-Bernoulli beam theory (EBBT) has been commonly used for thin beams where the depth 
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to span ratios are less than 0.05, while Timoshenko beam theory (TBT) and shear deformable 
beam theories of Dahake and Ghugal [1], Levinson [2] and Sayyad and Ghugal [3] have been used 
for thick beams where the depth to span ratios exceed 0.05. EBBT which assumes the 
Euler-Bernoulli Navier hypothesis of orthogonality of plane cross-sections to the longitudinal 
neutral axis before and after deformation disregards shear strains which are crucial in causing 
cross-sectional plane warping in beams. Hence, EBBT is suitable solely for thin beams, but 
produce unacceptable results for thick beams. EBBT equation is the fourth order ordinary 
differential equation in terms of the transverse deflection 𝑢ሺ𝑥ሻ and is given by Eq. (1): 𝐸𝐼𝑢௜௩ሺ𝑥ሻ = 𝑞ሺ𝑥ሻ, (1)

for beam bending under distributed transverse load distribution, 𝑞ሺ𝑥ሻ. 
This work is focused on thin beams and hence used EBBT. 
Elastic foundations have been modeled using discrete parameter and continuously distributed 

parameter models. Continuously distributed parameter models use the theory of elasticity to derive 
the reaction forces on the beams from the soil while discrete parameter models rely on the use of 
one, two or a limited number of parameters to describe the soil reaction pressures on the beam. 
Continuously distributed parameter models are difficult to formulate and use and are sparsely 
used. Discrete parameter foundation models are commonly used due to ease of formulation, 
simplicity in use and simplicity in the nature of the resulting governing equation. 

Commonly used discrete parameter foundation models are (i) Winkler model, which is a 
one-parameter model, [4], [5], [6] (ii) two-parameter models derived by Pasternak, Vlasov, 
Hetenyi and Filonenko-Borodich amongst others [7], [8], [9] and (iii) three-parameter models due 
to Kerr [10], [11] which are rarely used. 

The one-parameter Winkler model, which is illustrated in Figure 1, assumes the supporting 
soil to be a system of vertical, closely spaced, independent, linear elastic Hookean springs whose 
stiffness is directly proportional to the deflection. Hence, in the Winkler model, the soil reaction 
(𝑟ሺ𝑥ሻ) on the beam is directly proportional to the beam deflection (𝑢ሺ𝑥ሻ) at the point, where the 
proportionality constant is the Winkler constant, 𝑘, which is used to characterise the soil [4], [5], 
[6]. Thus, in the Winkler model, the equation for the reaction on the beam is given by Eq. (2): 𝑟ሺ𝑥ሻ = 𝑘𝑢ሺ𝑥ሻ. (2)

The Winkler model fails to account for shear interaction of the springs and produces 
discontinuity issues. 

 
Fig. 1. Beam resting on a Winkler foundation model where the Winkler foundation model  

is a bed of closely speedy independent Hookean springs 

The two-parameter foundation model, which is typically illustrated in Fig. 2, utilizes 
two-parameters to derive the soil reaction, in an effort to overcome the limitations of the Winkler 
model in disregarding the shear interaction of the springs. The two-parameter models thus 
introduce another foundation parameter to account for the shear interaction between the closely 
spaced, linear elastic, vertical Hookean springs [7], [8], [9]. Hence, while the first parameter (𝑘ଵ) 
represents the soil stiffness in the vertical direction, the second parameter (𝑘ଶ) represents the 
coupling/shear interaction effect of the vertical Hookean springs. The reaction (𝑟ሺ𝑥ሻ) for the 
two-parameter models have been previously derived using equilibrium and variational calculus 
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methods as expressed by Eq. (3): 

𝑟ሺ𝑥ሻ = 𝑘ଵ𝑢ሺ𝑥ሻ − 𝑘ଶ 𝑑ଶ𝑢ሺ𝑥ሻ𝑑𝑥ଶ . (3)

 
Fig. 2. Beam resting on a two-parameter foundation model where the two-parameter foundation model  

is graphically illustrated as a bed of closely spaced, linear elastic vertical Hookean springs  
with shear coupling present to model the shear interaction of the springs 

Vlasov and Leontiev [12] adopted a simplified elastic continuum approach for the foundation 
and used the methods of variational calculus and energy minimization technique to derive the two-
parameter Vlasov-Leontiev elastic foundation model. The Vlasov-Leontiev foundation model 
assumed the soil as an elastic layer and defined an arbitrary parameter 𝛾ଵ to characterize the 
vertical distribution of soil deformation. 

Later, Jones and Xenophontos [13] developed an equation for the 𝛾ଵ parameter in terms of the 
displacement characteristics but did not provide any method for evaluating the 𝛾ଵ parameter. In 
another study, Vallabhan and Das [14], [15] determined the parameter 𝛾ଵ in terms of the beam and 
foundation soil characteristics using an iterative method and named the resulting model the 
modified Vlasov foundation. 

Akhazhanov et al. [16] used the theory of elasticity to develop a simplified method for the 
analysis and solutions to beam on two-parameter elastic foundations. They validated their solution 
by comparison with solutions for beam on Winkler and Pasternak foundations and found that their 
solutions were identical with solutions based on Winkler and Pasternak foundation for various 
boundary conditions of the beam. Other contributions on beam on elastic foundations are in 
Akhazhanov et al. [17], [18], [19]; Huang et al. [20]. Akhmediev et al. [21] and Zhang et al. [22]. 

Gulkan and Alemdar [23] developed an analytical solution for the shape functions of a beam 
resting on a two-parameter elastic foundation. Their obtained solution is general and not restrictive 
to values of the foundation parameters. The exact shape function derived in their study is used to 
develop analytical expressions for the elements of the finite element stiffness matrices, nodal 
forces, mass and geometrical stiffness matrices. 

Teodoru and Musat [24] also studied the finite element method of analysis of beam on linear 
variable two-parameter foundations. Olotu et al [25] used the semi-analytical approach called the 
differential transform method (DTM) to determine approximate solutions for the free vibration 
analysis of non-uniform beams resting on variable Winkler foundations. The elastic coefficients 
of the foundations were assumed to vary in the longitudinal dimensions of the beam. The DTM 
was applied to the equations of motion of the vibrating beam on variable Winkler foundation 
problem and the problem reduced to algebra. Computer codes implemented using MAPLE was 
used by Olotu et al. [25] to obtain solutions for clamped-clamped and simply supported 
boundaries, which were found to agree with previous solutions in the literature. Their works 
however did not consider buckling problems of beams on elastic foundation using DTM. 

Aslami and Akimov [26] developed an efficient analytical method for the mathematical 
solution of continuous beams resting on two-parameter elastic foundations. The general form of 
their governing equation is reduced to a system of first order differential equations with constant 
coefficients; Jordan method in algebra is used to find the fundamental solution. 

Beams on elastic foundations (BoEFs) subject to compressive forces can experience buckling 
failures, even when their material strengths have not been attained, when such compressive forces 
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attain a certain critical value called the critical buckling load. It is thus vital for their design to 
have a critical buckling assessment performed in order to determine the critical buckling loads 
that would result in buckling failures. 

Hetenyi [27], Timoshenko and Gere [28] and Wang et al. [29] have developed governing 
differential equations for stability (GDES) of beam on elastic foundation (BoEF) and derived 
analytical solutions for such GDES under various boundary conditions (simply supported, 
clamped-clampled, clamped-simply supported and clamped-free). In recent studies, Taha [30] and 
Taha and Hadima [31] used recursive differentiation method (RDM) for solving the GDES for 
BoEF and obtained analytical solutions for critical buckling loads for non-prismatic BoEF. 

Soltani [32] solved the GDES for BoEF using the numerical approach of finite element 
analysis. Hassan [33] and Aristizabal-Ochoa [34] presented solutions for BoEF under different 
end supports. Anghel and Mares [35] solved the GDES for BoEF by using collocation techniques 
to solve the resulting integral formulation of the GDES. Atay and Coskun [36] used the variational 
iteration method (VIM) to solve the GDES for BoEF for prismatic and non-prismatic beams. 

Ike [4] used the finite sine transformation method (FSTM) for the free vibration analysis of 
prismatic beam on Winkler foundations (BoWF) and obtained exact eigenvalues. Ike [5] used the 
generalized integral transform method (GITM) for free vibration analysis of the BoWF for various 
boundary conditions. Ike [6] presented a point collocation method (PCM) for the approximate 
solutions of the bending problem of BoWF and obtained acceptable results, which compared well 
with previous results in the literature. Ike et al. [37] used Picard’s iteration method for Euler 
buckling problems. 

Ofondu et al. [38] used the Stodola-Vianello iteration method to solve Euler column buckling 
problems with clamped-pinned supports. Ikwueze et al. [39] used least squares weighted residual 
technique for the critical buckling load solutions of Euler columns with fixed-pinned ends. Mama 
et al. [40] used quintic polynomials as shape functions in a finite element analysis for the accurate 
buckling load solutions of BoWFs. 

Ike et al [41] and Ike [42] used the Stodola-Vianello interaction method (SVIM) and 
polynomial shape function to find critical buckling load solutions of BoWF under 
clamped-clamped and simple end supports, respectively. Ike [43] applied the SVIM and exact 
trigonometric shape functions of simply supported beams to find exact critical buckling load 
solutions of BoWF for Dirichlet boundary conditions. Ike [7] implemented SVIM and exact 
trigonometric shape functions of Dirichlet boundary conditions to obtain exact eigenvalues for the 
eigenvalue problem of thin beam on Pasternak foundation. Ike et al. [8] and Ike [9] also 
implemented SVIM for Bo2PF using polynomial basis functions for clamped-clamped and simply 
supported boundaries, respectively. 

Hariz et al. [44] investigated the buckling analysis of Timoshenko beam resting on 
two-parameter elastic foundations. Yue [45] used a refined beam model to study the behaviour of 
beams rested on two-parameter foundations by iterative method. Akgoz et al [46] studied the 
flexural analysis of beams on elastic foundations using the method of discrete singular 
convolution, but did not study buckling analysis. 

Finite element methods were used in the studies of beam on elastic foundation by Alzubaidi et 
al. [47], Wieckowski and Swiatkiewiez [48], and Worku and Habte [49]. Theory of elasticity 
methods were also studied by Gholami and Alizadeh [50], Anyaegbunam [51] and Thanh and 
Linh [52]; but none studied buckling problems. 

This work presents rigorous first principles derivation of the governing differential equations 
of elastic stability (GDES) for thin beams resting on two-parameter elastic foundations (Bo2PFs). 
The elastic foundations are modeled using Pasternak, Filonenko-Borodich, Hetenyi or Vlasov 
models using two-parameters, 𝑘ଵ and 𝑘ଶ while the slender beam is modeled using Euler-Bernoulli 
thin beam theory. 

In this study, the Fourier series method (FSM) is adopted to obtain analytical solutions to 
simply supported thin beam resting on two-parameter foundations of the Pasternak, Hetenyi, 
Vlasov or Filonenko-Borodich type. The FSM is adopted due to its previously acclaimed success 
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in dealing with ordinary differential equations (ODEs) and partial differential equations (PDEs) 
with Dirichlet boundary conditions and due to its effectiveness as a mathematical tool in obtaining 
analytical solutions to boundary value problems (BVPs). 

2. Novelty of the study 

The novelty of the study is the first principles, systematic derivation of the GDES of the Bo2PF 
problem under axial compression load; and the systematic application of the FSM to the solution 
of the GDES for Dirichlet boundary conditions. 

2.1. Governing differential equation of stability (GDES) 

2.1.1. The thin beam on two-parameter foundation 

Fig. 3 shows the thin beam resting on two-parameter elastic foundation which is considered in 
this study. 

 
Fig. 3. Thin beam resting on two-parameter elastic foundation 

Fig. 3 shows that the thin beam has a finite span and is subjected to axial compressive force 𝑃 
and transverse distributed load 𝑞ሺ𝑥ሻ. The beam is simply supported at the ends 𝑥 = 0, 𝑥 = 𝑙 where 𝑙 is the length of the beam. 

2.1.2. Theoretical framework and assumptions 

The assumptions of the formulation are as follows: 
(i) The beam material is linearly elastic, homogeneous and isotropic. 
(ii) The soil is linearly elastic, homogeneous and isotropic. 
(iii) The displacements of the beam are very small relative to the thickness. 
(iv) The axial strains are small as compared to unity. 
(v) The normal strains in the transverse directions are so small and are considered insignificant. 
(vi) The transverse shear stresses are also very small and negligible. 
(vii) The cross-sections are plane and orthogonal to the longitudinal axis of the beam before 

and after flexural deformations. 

2.2. Equations of equilibrium (EoE) for the elastic stability problem of Bo2PF 

The free body diagram of an infinitesimal segment of the thin beam resting on two-parameter 
elastic foundation problem as considered in this paper is shown in Fig. 4. 

In Fig. 4, P denotes the axial internal force at the left cut section; 𝑃 + Δ𝑃 is the axial internal 
force at the right cut section. 𝑀 is the bending moment acting at the left section, 𝑀 + Δ𝑀 is the 
bending moment acting at the right section; 𝑞ሺ𝑥ሻ is the distributed transverse loading intensity, 𝑟ሺ𝑥ሻ is the reaction from the two-parameter foundation on the beam. The deflection of the beam 
within the infinitesimal length ∆𝑥 is denoted by ∆𝑢. The elemental section of the thin beam on 
two-parameter elastic foundation is in equilibrium under the forces and reactions. 
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Fig. 4. Free body diagram of an elemental segment of a thin beam resting  

on a two-parameter elastic foundation under compressive force 

For translational equilibrium in the axial (𝑥) direction: ෍𝐹௜௫ = 0. (4)

If forces in the positive 𝑥 direction are assumed to be positive, the translational equilibrium 
equation becomes: −𝑃 + ሺ𝑃 + Δ𝑃ሻ = 0. (5)

Solving: Δ𝑃 = 0. (6)

Hence, axial force, 𝑃 is constant. 
For translational equilibrium in the vertical direction: ෍𝐹௬ = 0. (7)

If downward forces are positive, then: −𝑄 + ሺ𝑄 + Δ𝑄ሻ + 𝑞ሺ𝑥ሻΔ𝑥 − 𝑟ሺ𝑥ሻΔ𝑥 = 0. (8)

Simplifying: Δ𝑄 + ሺ𝑞ሺ𝑥ሻ − 𝑟ሺ𝑥ሻሻΔ𝑥 = 0. (9)

Dividing by ∆𝑥 gives: Δ𝑄Δ𝑥 + 𝑞ሺ𝑥ሻ − 𝑟ሺ𝑥ሻ = 0. (10)

In the limit as Δ𝑥 → 0: 𝑑𝑄𝑑𝑥 = lim୼௫→଴ Δ𝑄Δ𝑥 = 𝑟ሺ𝑥ሻ − 𝑞ሺ𝑥ሻ. (11)

For rotational equilibrium about the left section, where anticlockwise moments are assumed 
as positive: 
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෍𝑀௜ = 0. (12)

If anticlockwise moments are positive, the rotational equilibrium equation is: 𝑀 + Δ𝑀 −𝑀 − (𝑃 + Δ𝑃)Δ𝑢 − (𝑄 + Δ𝑄)Δ𝑥 − 𝑞(𝑥)Δ𝑥Δ𝑥2 + 𝑟(𝑥)Δ𝑥 Δ𝑥2 = 0. (13)

Simplifying, Eq. (13) gives: 

Δ𝑀 − 𝑃Δ𝑢 − Δ𝑃Δ𝑢 − 𝑄Δ𝑥 − Δ𝑄Δ𝑥 − 𝑞(𝑥) (Δ𝑥)ଶ2 + 𝑟(𝑥) (Δ𝑥)ଶ2 = 0. (14)

Further simplification of Eq. (14) gives, from Eq. (6), the following: 

Δ𝑀 − 𝑃Δ𝑢 − 𝑄Δ𝑥 − Δ𝑄Δ𝑥 − 𝑞(𝑥) (Δ𝑥)ଶ2 + 𝑟(𝑥) (Δ𝑥)ଶ2 = 0, (15)

since Δ𝑃 = 0. 
Dividing Eq. (15) by ∆𝑥 gives: Δ𝑀(𝑥)Δ𝑥 − 𝑃 Δ𝑢(𝑥)Δ𝑥 − 𝑄 − Δ𝑄 − 𝑞(𝑥)Δ𝑥2 + 𝑟(𝑥)Δ𝑥2 = 0. (16)

In the limit as elemental quantities tend to zero, Δ𝑥 → 0, Δ𝑄 → 0 and: 

lim ൬Δ𝑀(𝑥)Δ𝑥 − 𝑃 Δ𝑢Δ𝑥 − 𝑄 − Δ𝑄 − 𝑞(𝑥)Δ𝑥2 + 𝑟(𝑥)Δ𝑥2 ൰ = 0. (17)

Hence: 𝑑𝑀(𝑥)𝑑𝑥 − 𝑃 𝑑𝑢(𝑥)𝑑𝑥 − 𝑄 = 0. (18)

Differentiating Eq. (18) with respect to 𝑥 gives: 𝑑𝑑𝑥 ൬𝑑𝑀𝑑𝑥 − 𝑃 𝑑𝑢𝑑𝑥 − 𝑄൰ = 0. (19)

Hence: 𝑑ଶ𝑀(𝑥)𝑑𝑥ଶ − 𝑃 𝑑ଶ𝑢(𝑥)𝑑𝑥ଶ − 𝑑𝑄𝑑𝑥 = 0. (20)

Substitution of Eq. (11) into Eq. (20) gives: 𝑑ଶ𝑀(𝑥)𝑑𝑥ଶ − 𝑃 𝑑ଶ𝑢(𝑥)𝑑𝑥ଶ = 𝑑𝑄𝑑𝑥 = 𝑟(𝑥) − 𝑞(𝑥). (21)

Hence: 𝑑ଶ𝑀(𝑥)𝑑𝑥ଶ − 𝑃 𝑑ଶ𝑢(𝑥)𝑑𝑥ଶ = 𝑟(𝑥) − 𝑞(𝑥). (22)
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The moment deflection equation of Euler-Bernoulli beam theory is: 

𝑀(𝑥) = −𝐸𝐼𝑢ᇱᇱ(𝑥) = −𝐸𝐼 𝑑ଶ𝑢(𝑥)𝑑𝑥ଶ . (23)

Hence, the equation of equilibrium is: 𝑑ଶ𝑑𝑥ଶ ቆ−𝐸𝐼 𝑑ଶ𝑢(𝑥)𝑑𝑥ଶ ቇ − 𝑃 𝑑ଶ𝑢(𝑥)𝑑𝑥ଶ = 𝑟(𝑥) − 𝑞(𝑥). (24)

The governing equation for the stability of thin prismatic beam on elastic foundations is given 
from equilibrium conditions as: 𝐸𝐼𝑢௜௩(𝑥) + 𝑃𝑢ᇱᇱ(𝑥) = 𝑞(𝑥) − 𝑟(𝑥), (25)

where the primes denote differentiations with respect to the space variable, 𝑥. 
By substitution of the expression for 𝑟(𝑥) as given for two-parameter foundations by Eq. (2), 

the governing equation becomes: 𝐸𝐼𝑢௜௩(𝑥) + 𝑃𝑢ᇱᇱ = 𝑞(𝑥) − ൫𝑘ଵ𝑢(𝑥) − 𝑘ଶ𝑢ᇱᇱ(𝑥)൯. (26)

Hence, simplifying gives: 𝐸𝐼𝑢௜௩ + 𝑃𝑢ᇱᇱ(𝑥) + 𝑘ଵ𝑢(𝑥) − 𝑘ଶ𝑢ᇱᇱ(𝑥) = 𝑞(𝑥). (27)

Hence, the governing equation is written explicitly as: 

𝐸𝐼 𝑑ସ𝑢(𝑥)𝑑𝑥ସ + 𝑃 𝑑ଶ𝑢(𝑥)𝑑𝑥ଶ + 𝑘ଵ𝑢(𝑥) − 𝑘ଶ 𝑑ଶ𝑢𝑑𝑥ଶ = 𝑞(𝑥), (28)

where 𝑥 is the axial coordinate axis, 𝑢(𝑥) is the deflection of the beam in the 𝑧 direction, 𝑘ଵ and 𝑘ଶ are the two-parameters of the two-parameter foundation, 𝐼 is the moment of inertia, 𝐸 is the 
Young’s modulus of elasticity of the beam material, 𝑃 is the compressive load, 𝑞(𝑥) is the 
distribution of transverse load on the beam. 

Dividing by 𝐸𝐼 gives: 𝑑ସ𝑢𝑑𝑥ସ + 𝑃𝐸𝐼 𝑑ଶ𝑢𝑑𝑥ଶ − 𝑘ଶ𝐸𝐼 𝑑ଶ𝑢𝑑𝑥ଶ + 𝑘ଵ𝐸𝐼 𝑢(𝑥) = 𝑞(𝑥)𝐸𝐼 , (29)𝑢௜௩(𝑥) + 𝛼𝑢ᇱᇱ + 𝛽ଶ𝑢ᇱᇱ(𝑥) + 𝛽ଵ𝑢(𝑥) = 𝑞(𝑥)𝐸𝐼 , (30)

where: 

𝛼 = 𝑃𝐸𝐼 ,     𝜆ଶ = 𝑘ଶ𝐸𝐼 ,     𝜆ଵ = 𝑘ଵ𝐸𝐼. (31)

When no transverse loading acts, 𝑞(𝑥) = 0, and Eq. (9) becomes a homogeneous ODE: 𝑢௜௩(𝑥) + (𝛼 − 𝜆ଶ)𝑢′′(𝑥) + 𝜆ଵ𝑢(𝑥) = 0. (32)

3. Methodology 

The Fourier series method assumes that the unknown displacement 𝑢(𝑥) is in the form of a 
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Fourier series given by: 

𝑢(𝑥) = ෍ቀ𝐴௡sin𝑛𝜋𝑥𝑙 + 𝐵௡cos𝑛𝜋𝑥𝑙 ቁஶ
௡ୀଵ , (33)

where 𝐴௡ and 𝐵௡ are the coefficients of the Fourier series. 
The thin beam considered is simply supported at the ends 𝑥 = 0, and 𝑥 = 𝑙.  
The boundary conditions are: 𝑢(𝑥 = 0) = 0, (34a)𝑢(𝑥 = 𝑙) = 0. (34b)

The force boundary conditions are: 𝑀(𝑥 = 0) = 0, 𝑀(𝑥 = 𝑙) = 0. (35)

Hence from the bending moment deflection equation of Euler-Bernoulli theory, the force 
boundary conditions are expressed in terms of the displacement variable as: 𝑢′′(𝑥 = 0) = 0, (36a)𝑢′′(𝑥 = 𝑙) = 0. (36b)

By differentiating 𝑢(𝑥) twice with respect to 𝑥, we have: 

𝑢ᇱᇱ(𝑥) = ෍−ቀ𝑛𝜋𝑙 ቁଶஶ
௡ୀଵ ቀ𝐴௡sin𝑛𝜋𝑥𝑙 + 𝐵௡cos𝑛𝜋𝑥𝑙 ቁ. (37)

Applying the boundary condition Eq. (34a) gives: 

𝑢(𝑥 = 0) = ෍(𝐴௡sin0 + 𝐵௡cos0ஶ
௡ୀଵ ) = ෍𝐵௡ஶ

௡ୀଵ = 0. (38)

Hence: 𝐵௡ = 0. (39)

Applying the boundary condition Eq. (36a) gives: 

𝑢′′(𝑥 = 0) = ෍−ቀ𝑛𝜋𝑙 ቁଶஶ
௡ୀଵ (𝐴௡sin0 + 𝐵௡cos0) = ෍−ஶ

௡ୀଵ ቀ𝑛𝜋𝑙 ቁଶ 𝐵௡ = 0. (40)

Hence: 

𝑢(𝑥) = ෍𝐴௡sin𝑛𝜋𝑥𝑙ஶ
௡ୀଵ . (41)

By differentiation of 𝑢(𝑥), we have: 
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𝑢ᇱᇱ(𝑥) = ෍−ஶ
௡ୀଵ ቀ𝑛𝜋𝑙 ቁଶ 𝐴௡sin𝑛𝜋𝑥𝑙 , 

𝑢௜௩(𝑥) = ෍ቀ𝑛𝜋𝑙 ቁସ 𝐴௡sin𝑛𝜋𝑥𝑙ஶ
௡ୀଵ . (42)

Then, substituting into the governing equation yields: 

෍ቀ𝑛𝜋𝑙 ቁସஶ
௡ୀଵ 𝐴௡sin𝑛𝜋𝑥𝑙 − (𝛼 − 𝜆ଶ) ቀ𝑛𝜋𝑙 ቁଶ 𝐴௡sin𝑛𝜋𝑥𝑙 + 𝜆ଵ𝐴௡sin𝑛𝜋𝑥𝑙 = 0. (43)

Simplifying: 

෍𝐴௡ ൬ቀ𝑛𝜋𝑙 ቁସ + (𝜆ଶ − 𝛼) ቀ𝑛𝜋𝑙 ቁଶ + 𝜆ଵ൰ sin𝑛𝜋𝑥𝑙ஶ
௡ୀଵ = 0. (44)

Orthogonalizing by multiplication by sin ௠గ௫௟  and integrating over the beam domain  (0 ≤ 𝑥 ≤ 𝑙) gives: 

෍න𝐴௡ ൬ቀ𝑛𝜋𝑙 ቁସ + (𝜆ଶ − 𝛼) ቀ𝑛𝜋𝑙 ቁଶ + 𝜆ଵ൰ sin𝑛𝜋𝑥𝑙 sin𝑚𝜋𝑥𝑙 𝑑𝑥 = 0௟
଴

ஶ
௡ୀଵ . (45)

Simplifying, Eq. (45) gives Eq. (46); 

෍𝐴௡ ൬ቀ𝑛𝜋𝑙 ቁସ + (𝜆ଶ − 𝛼) ቀ𝑛𝜋𝑙 ቁଶ + 𝜆ଵ൰න sin𝑛𝜋𝑥𝑙 sin𝑚𝜋𝑥𝑙 𝑑𝑥 = 0௟
଴

ஶ
௡ୀଵ . (46)

Or: 

෍𝐴௡ ൬ቀ𝑛𝜋𝑙 ቁସ + (𝜆ଶ − 𝛼) ቀ𝑛𝜋𝑙 ቁଶ + 𝜆ଵ൰ 𝐼௠௡ = 0ஶ
௡ୀଵ , (47)

where: 

𝐼௠௡ = න sin𝑛𝜋𝑥𝑙 sin𝑚𝜋𝑥𝑙௟
଴  𝑑𝑥. (48)

The sine functions are orthogonal. Hence, when 𝑚 ≠ 𝑛, 𝐼௠௡ would vanish; but would not 
vanish when 𝑚 = 𝑛. The orthogonality conditions are: 

𝐼௠௡ = න sin𝑛𝜋𝑥𝑙 sin𝑚𝜋𝑥𝑙௟
଴ 𝑑𝑥 = 0. (48a)

if 𝑚 ≠ 𝑛 and non-zero if 𝑚 = 𝑛: 
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𝐼௠௡ = න sinଶ 𝑛𝜋𝑥𝑙  ௟
଴ 𝑑𝑥. (48b)

The orthogonality conditions of the sinusoidal functions simplify Eq. (46) and enable the 
determination of the eigensolutions. 

4. Results 

The characteristic buckling equation is given from the conditions for nontrivial solutions to 
Eq. (47) by Eq. (49): 

ቀ𝑛𝜋𝑙 ቁସ + (𝜆ଶ − 𝛼) ቀ𝑛𝜋𝑙 ቁଶ + 𝜆ଵ = 0. (49)

Solving for 𝛼, by first simplifying Eq. (49) gives Eq. (50): 

ቀ𝑛𝜋𝑙 ቁସ + 𝜆ଵ = −(𝜆ଶ − 𝛼) ቀ𝑛𝜋𝑙 ቁଶ. (50)

Further simplification of Eq. (50) gives Eq. (50a): 

ቀ𝑛𝜋𝑙 ቁସ + 𝜆ଵ = (𝛼 − 𝜆ଶ) ቀ𝑛𝜋𝑙 ቁଶ. (50a)

Dividing Eq. (50a) by ቀ௡గ௟ ቁଶ gives Eq. (51): 

𝛼 − 𝜆ଶ = ቀ𝑛𝜋𝑙 ቁସ + 𝜆ଵቀ𝑛𝜋𝑙 ቁଶ . (51)

Simplifying Eq. (51) yields: 

𝛼 − 𝜆ଶ = ൬ 𝑙𝑛𝜋൰ଶ ൬𝜆ଵ + ቀ𝑛𝜋𝑙 ቁସ൰. (52)

Hence: 

𝛼 = 𝜆ଶ + ൬ 𝑙𝑛𝜋൰ଶ ൬𝜆ଵ + ቀ𝑛𝜋𝑙 ቁସ൰. (53)

Or: 

𝛼 = 𝜆ଶ + ቆ 𝜆ଵ𝑙ଶ(𝑛𝜋)ଶ + ቀ𝑛𝜋𝑙 ቁଶቇ. (53a)

Using Eq. (31) in Eq. (53a) gives: 

𝑃 = 𝐸𝐼𝛼 = 𝐸𝐼 ቆ𝜆ଶ + 𝜆ଵ𝑙ଶ(𝑛𝜋)ଶ + ቀ𝑛𝜋𝑙 ቁଶቇ. (54)
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Expressing Eq. (54) in the standard form gives Eq. (55): 

𝑃 = 𝐸𝐼𝑙ଶ ቆ𝜆ଶ + 𝜆ଵ𝑙ଶ(𝑛𝜋)ଶ + ቀ𝑛𝜋𝑙 ቁଶቇ 𝑙ଶ. (55)

Simplifying Eq. (55) gives Eq. (55a): 

𝑃 = 𝐸𝐼𝑙ଶ ቆ𝜆ଶ𝑙ଶ + 𝜆ଵ𝑙ସ(𝑛𝜋)ଶ + (𝑛𝜋)ଶቇ. (55a)

Hence introducing the dimensionless buckling coefficient 𝐾(𝜆ଵ, 𝜆ଶ) gives: 𝑃 = 𝐸𝐼𝑙ଶ 𝐾(𝜆ଵ, 𝜆ଶ), (56)

where: 

𝐾(𝜆ଵ, 𝜆ଶ) = 𝜆ଶ𝑙ଶ + 𝜆ଵ𝑙ସ(𝑛𝜋)ଶ + (𝑛𝜋)ଶ. (57)

The critical buckling load coefficient 𝐾௖௥ is the value of the least 𝐾௖௥, and this occurs at the 
first buckling mode where 𝑛 = 1. Thus: 

𝐾௖௥ = 𝐾(𝜆ଵ, 𝜆ଶ,𝑛 = 1) = 𝜆ଶ𝑙ଶ + 𝜆ଵ𝑙ସ𝜋ଶ + 𝜋ଶ. (58)

Then, the critical buckling load 𝑃௖௥ which is associated with 𝐾௖௥ is found as: 𝑃௖௥ = 𝐸𝐼𝑙ଶ 𝐾௖௥ . (59)

Values of 𝐾௖௥ are calculated for certain nondimensional values of 𝑘തଵ and 𝑘തଶ expressed in 
terms of 𝜆ଵ, 𝜆ଶ and 𝑙 and given in Table 1. 

Table 1. Critical buckling load parameters square root of 𝐾௖௥ for thin beam on two-parameter elastic 
foundation for various values of the elastic foundation parameters 𝑘തଶ = 𝜆ଶ ൬ 𝑙𝜋൰ଶ = 0 𝑘തଵ = 𝜆ଵ𝑙ସ  Taha [30] Anghel and Mares [35] Ike [7] Ike [9] Present 

0 3.1415 3.1413 3.141593 3.143621 3.141593 
100 4.4723 4.4721 4.472329 4.473597 4.472329 𝑘തଶ = 𝜆ଶ ൬ 𝑙𝜋൰ଶ = 1 𝑘തଵ = 𝜆ଵ𝑙ସ  Taha [30] Anghel and Mares [35] Ike [7] Ike [9] Present 
0 4.4428 4.4427 4.44283 4.444317 4.44283 

100 5.4654 5.4653 5.465467 5.466505 5.465467 𝑘തଶ = 𝜆ଶ ൬ 𝑙𝜋൰ଶ = 2.5 12 𝑘തଵ = 𝜆ଵ𝑙ସ  Taha [30] Anghel and Mares [35] Ike [7] Ike [9] Present 
0 5.8774 5.8772 5.877382 5.878466 5.877382 

100 6.6840 6.6838 6.683991 6.68484 6.683991 
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5. Discussion 

This work has presented a first principles systematic derivation of the GDES for Bo2PFs. The 
GDES was derived using equilibrium Newtonian approach, and considered both translational and 
rotational equilibrium of an infinitesimal Bo2PF. The GDES is found as an ODE of fourth order. 

This study has applied the Fourier series method to develop exact buckling solutions for simply 
supported Euler-Bernoulli beam resting on two-parameter elastic foundations of the Pasternak, 
Hetenyi, Vlasov or Filonenko-Borodich type. The GDES is a fourth order ODE which is 
non-homogeneous when transverse load is present, but homogeneous when transverse load 
vanishes, 𝑞(𝑥) = 0.  

By assuming the unknown function 𝑢(𝑥) in the form of a Fourier series of unknown 
coefficients, and applying orthogonality of the Fourier series the GDES is reduced to a 
characteristic buckling equation given by the algebraic Eq. (49). The eigenvalue is found from the 
roots of Eq. (49) as Eq. (53) yielding the buckling load for any buckling mode, 𝑛, as Eq. (54). 

Critical buckling load coefficient 𝐾௖௥ is found to correspond to the first buckling mode  (𝑛 = 1) and given by Eq. (58). Eq. (58) is presented in Table 1 for various values of the elastic 
foundation’s dimensionless two-parameters 𝑘തଵ and 𝑘തଶ, along with previous values of 𝐾௖௥ 
determined by Taha [30], Anghel and Mares [35] and Ike [7], [9]. Table 1 illustrates that present 
FSM results are identical with the results obtained by Ike [7] by SVIM and using exact buckling 
shape functions and Ike [9] using fourth degree polynomial shape foundation in SVIM; Taha [30] 
results found by RDM, and Angel and Mares [35] results by Collocation method. The obtained 
solutions are exact within the framework of the Euler-Bernoulli beam stability equation 
considered because exact buckling shape functions were used and the solutions satisfied the 
domain equations at all solution points. 

6. Conclusions 

This study has presented first principles derivation using Newtonian equilibrium method for 
the elastic stability problem of Bo2PF. 

This work has studied the FSM for solving the GDES for Bo2PFs. In conclusion: 
1) The Fourier series method gives an exact analytical solution to the eigenvalue problem of 

simply supported beam on two-parameter foundations of the Pasternak, Hetenyi, Vlasov or 
Filenenko-Borodich type. 

2) The critical buckling load occurs at the first buckling mode. 
3) The critical buckling load expression is the exact analytical expression because the Fourier 

series contains the exact buckling shape function for the Dirichlet boundary conditions of the 
Bo2PF considered. 

4) The results obtained for the critical buckling load parameters are identical with previous 
solutions that used SVIM, RDM and Collocation. 
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