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Abstract. Numerous applications, like robot navigation, network verification and discovery, 
geographical routing protocols, and combinatorial optimization, make use of the metric dimension 
and connected metric dimension of graphs. In this work, the connected metric dimension types of 
ladder graphs, namely, ladder, circular, open, and triangular ladder graphs, as well as open 
diagonal and slanting ladder graphs, are studied. 
Keywords: connected metric dimension, ladder graphs, connected resolving set. 

1. Introduction  

In [1, 2], a connected resolving set of graphs was introduced recently. The shortest path 
between any two vertices 𝑢, 𝑣 ∈ 𝑉ሺ𝐺ሻ in a linked graph 𝐺 ൌ ሺ𝑉,𝐸ሻ is represented by 𝑑ሺ𝑢, 𝑣ሻ. An 
ordered vertex set 𝐵 ൌ ሼ𝑥ଵ, 𝑥ଶ, . . . , 𝑥௞ሽ ⊆  𝑉ሺ𝐺ሻ is a metric basis of 𝐺 if 𝐵 has minimum 
cardinality and the following representation: 𝑟ሺ𝑣| 𝐵ሻ ൌ ሺ𝑑ሺ𝑣, 𝑥ଵሻ,𝑑ሺ𝑣, 𝑥ଶሻ, … ,𝑑ሺ𝑣, 𝑥௞ሻሻ, (1)

is unique for each 𝑣 ∈ 𝑉ሺ𝐺ሻ. A metric basis 𝐵 of 𝐺 is connected if the subgraph 𝐵 ഥ  produced by 𝐵 is a nontrivial connected subgraph of 𝐺. The metric dimension and connected metric dimension 
of 𝐺, denoted as 𝑑𝑖𝑚ሺ𝐺ሻ and 𝑐𝑑𝑖𝑚ሺ𝐺ሻ, respectively, have the following definitions: Let |𝐵| be 
the cardinality of 𝐵, then we have: 𝑑𝑖𝑚ሺ𝐺ሻ ൌ 𝑚𝑖𝑛 ሼ|𝐵𝑖|: 𝐵𝑖 ⊆ 2௩, 𝐵𝑖 is a resolving set of 𝐺ሽ, 𝑐𝑑𝑖𝑚ሺ𝐺ሻ ൌ 𝑚𝑖𝑛 ሼ|𝐵𝑖|:𝐵𝑖 ⊆ 2௩, 𝐵𝑖 is a connected resolving set of 𝐺ሽ. 

The connected metric dimension at a vertex 𝑣 ∈ 𝑉ሺ𝐺ሻ, denoted as 𝑐𝑑𝑖𝑚ீሺ𝑣ሻ, is the metric 
basis of 𝐺 that contains 𝑣 and generates a connected subgraph of 𝐺; then: 𝑐𝑑𝑖𝑚ሺ𝐺ሻ ൌ 𝑚𝑖𝑛௩∈௏ ሺୋሻሼ𝑐𝑑𝑖𝑚ீሺ𝑣ሻሽ. (2)

Slater [3, 4] introduced the concept of metric basis as a locating set of 𝐺 and uses the 
cardinality of 𝐵 as a locating number to locate an intruder in a network. Harary and Melter 
independently discovered the ideas of a metric basis as a minimum resolving set of 𝐺 and the 
cardinality of 𝐵 as a metric dimension [5]. A number of graphs’ metric dimensions are found in 
[6–15]. The following are the graphs: corona product [6], regular bipartite [7], chain graphs [8], 
mobius ladder [9], circulant graphs and Cayley hypergraphs [10], heptagonal circular ladder [11], 
generalized Petersen multigraphs [12], power of total graph [13], friendship graph [14], and quartz 
graph [15]. Specifically, the authors in [1] studied the linked metric dimension of the 𝑛 − 1 star 
network 𝐾ଵ, full graph 𝐾௡, cycle graph 𝐶௡, route graph 𝑃௡, and wheel graph 𝑊௡. The findings 
show that the cycle graph 𝐶௡, 𝑛 ≥ 3, and the route graph 𝑃௡, 𝑛 ≥ 2, both have connected metric 
dimensions that are equal to 2, whereas it is for the star graph 𝐾ଵ,௡ିଵ, 𝑛 ≥ 4, is 𝑛 − 1, and for the 
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complete graph 𝐾௡, 𝑛 ≥ 3, is 𝑛 − 1. According to [2], the connected metric dimension of the 
wheel graph 𝑊௡, 𝑛 ≥ 7, is ቔଶ௡ାଶହ ቕ + 1, while it is for the Petersen graph 𝑃 is 4, and if 𝑣 is an end 
vertex of the tree 𝑇, then it is at a vertex of 𝑇; otherwise, it is at a vertex of 𝑇 that is 2. Further 
information might be found in the literature [16-22], and some future notions may be applied to 
some applications like [23, 24]. 

To illustrate the ideas of metric dimension with its connected one, we plot in Fig. 1 the 3𝐶ସ –
snake graph. 

 
Fig. 1. 3𝐶ସ-Snake graph 𝐺 with 𝑑𝑖𝑚ሺ𝐺ሻ = 3 and 𝑐𝑑𝑖𝑚ሺ𝐺ሻ = 5 

The set 𝐵 = ሼ 𝑣ଵ,𝑣ହ, 𝑣଼ሽ is a metric basis of 𝐺, due to the representations for the vertices of 𝐺 
are distinct. Since the representations 𝑟ሺ𝑣ଵ|𝐵ሻ = ሺ0,2,3ሻ, 𝑟ሺ𝑣ଶ|𝐵ሻ = ሺ1,3,4ሻ, 𝑟ሺ𝑣ଷ|𝐵ሻ = ሺ2,2,3ሻ, 𝑟ሺ𝑣ସ|𝐵ሻ = ሺ1,1,2ሻ, 𝑟ሺ𝑣ହ|𝐵ሻ = ሺ2,0,3ሻ, 𝑟ሺ𝑣଺|𝐵ሻ = ሺ3,1,2ሻ, 𝑟ሺ𝑣଻|𝐵ሻ = ሺ2,2,1ሻ, 𝑟ሺ𝑣଼|𝐵ሻ =ሺ3,3,0ሻ, 𝑟ሺ𝑣ଽ|𝐵ሻ = ሺ4,4,1ሻ, 𝑟(𝑣ଵ଴|𝐵) = (3,3,2) for the vertices of 𝐺 are different, the set  𝐵 = {𝑣ଵ,𝑣ହ, 𝑣଼} is a metric basis of 𝐺. Therefore, 𝑑𝑖𝑚(𝐺) = 3, and the subgraph induced by  𝐵ത = (𝐵,𝐸) is disconnected. As a result, 𝐵 and 𝐺 are not connected resolving sets. To be more 
precise, no 3-element subset of 𝐺 is a connected resolving set. Given that the representations 𝑟(𝑣ଵ|𝐵ത) = (0,1,2,2,3), 𝑟(𝑣ଶ|𝐵ത) = (1,2,3,3,4), 𝑟(𝑣ଷ|𝐵ത) =  (2,1,2,2,3),  𝑟(𝑣ସ|𝐵ത) = (1,0,1,1,2), 𝑟(𝑣ହ|𝐵ത) = (2,1,0,2,3), 𝑟(𝑣଺|𝐵ത) = (3,2,1,1,2), 𝑟(𝑣଻|𝐵ത) = (2,1,2,0,1), 𝑟(𝑣଼|𝐵ത) = (3,2,3,1,0), 𝑟(𝑣ଽ|𝐵ത) = (4,3,4,2,1), 𝑟(𝑣ଵ଴|𝐵ത)  = (3,2,3,1,2) are distinct, the set 𝐵ത = {𝑣ଵ, 𝑣ସ,𝑣ହ, 𝑣଻,𝑣଼} is a 
connected resolving set. Therefore, 𝑐𝑑𝑖𝑚(𝐺) = 5. However, we aim in this article to examine the 
connected metric dimension of a class of ladder graphs that includes slanting, open diagonal, 
triangular, open, circular, and open ladder graphs. 

2. Applications of ladder graph 

We present three applications pertaining to ladder graphs in this section. The three uses listed 
above and many more inspire us to study the uniquely elegant labelling for the ladder graph. The 
first application that is filed is in electronics. Resistor ladder networks are a quick and inexpensive 
way to do digital-to-analog conversion (DAC). The binary weighted ladder and the R/2R ladder 
are the two most widely used networks. Both devices can convert digital voltage information to 
analogue, but due to its greater accuracy and simple construction, the R/2R ladder has gained more 
popularity. The second application is electrical technology. The ladder flow graph is made using 
Ohm's equation and the two Kirchhoff equations. After that, the graph is inverted so that only 
forward paths are visible. The reciprocal of the total number of paths that could possibly lead from 
the output to the input node is the transfer function in the case of a simple ladder. If ladders with 
internal generators are dependent or independent, the transfer function can be found using similar 
methods with slight adjustments. Other relations, such as the input impedance and transfer 
admittance, can also be found using the flow graph. The third application is wireless 
communication. Over time, an increasing number of wireless networks have been developed to 
provide wire-free communication between any two devices (computers, phones, etc.). 
Nevertheless, there aren’t enough radio frequencies accessible for wireless communication (just 
11 channels in the 2.4 GHz range are available for all WiFi transmissions in the US). It is essential 
to provide a workable manner to offer safe communications in industries like phones, mobile, 
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security systems, WiFi, and many others [25]. It annoys me when someone else calls while I’m 
on the phone. This irritation is caused by interference from uncontrolled simultaneous 
transmissions [26]. Resonance or interference between two sufficiently adjacent channels can 
cause damage to communication. Interference can be prevented with the proper channel 
assignment. To arrive at a solution, Hale [27-30] conceptualized the problem as a graph (vertex) 
coloring model, which we now refer to as the 𝐿(2,1) coloring. Consider about the different 
transmitters and stations that are out there. In order to minimize interference, a channel must be 
assigned to each transmitter or station. Time-sensitive or error-sensitive communication may 
suffer from the interference phenomenon if transmitters are placed too close to one another either 
physically or through the frequency channels they use. To minimize interference, any two “close” 
transmitters ought to differ as much as possible from one another. 

3. Results 

Note that the two paths 𝑃ଶ and 𝑃௡ are the Cartesian products of a ladder graph 𝐿௡.  
Theorem 3.1. We have 𝑐𝑑𝑖𝑚(𝐿௡) = ௡ଶ, 𝑛 ≥  4. 

 
Fig. 2. Ladder graph 𝐿௡ 

Proof. Herein, we select 𝐵ത  as 𝐵ത = ൜𝑣ଵ, 𝑣ଶ, … , 𝑣೙షమమ ,𝑣೙మൠ. In this regard, we shall study each of 

the vertex representations of 𝑣௜ ∈ 𝑉 (𝐿௡) such that 𝑛 = 2𝑘 + 2 for 𝑛 ≥ 4 with respect to 𝐵ത . In 
other words, we have: 

𝑟(𝑣௜|𝐵ത) =
⎩⎪⎨
⎪⎧(0,1,2, … , , 𝑘), 𝑖 = 1,(𝑖 − 1, 𝑖 − 2, … ,0,1, … ,𝑘 − 𝑖 + 1) , 2 ≤ 𝑖 ≤ 𝑘,(𝑖 − 1, 𝑖 − 2, … ,1,0), 𝑖 = 𝑘 + 1,(1, 2, 3, … ,𝑘 + 1), 𝑖 = 𝑘 + 2,(𝑖 − 𝑘 − 1, 𝑖 − 𝑘 − 2, … ,1,2, … ,𝑛 − 𝑖 + 1), 𝑘 + 3 ≤ 𝑖 ≤ 𝑛 − 1,(𝑘 + 1, 𝑘, 𝑘 − 1, … ,2,1), 𝑖 = 𝑛.

 (3)

The set 𝐵ത =  ൜𝑣ଵ,𝑣ଶ, . . , 𝑣೙షమమ ,𝑣೙మൠ has an induced subgraph that is connected, and as previously 

demonstrated, the vertices in graph 𝐿௡ have unique representations. Despite not always being the 
lowest limit, this implies that 𝐵ത  is a connected resolving set. Therefore, 𝑐𝑑𝑖𝑚(𝐿௡) ≤ ௡ଶ is an upper 
bound. Thus, 𝑐𝑑𝑖𝑚(𝐿௡) ≥ ௡ଶ is demonstrated. Given a connected resolving set  𝐵ത =  ൜𝑣ଵ,𝑣ଶ, … , 𝑣೙షమమ , 𝑣೙మൠ, we assume that |𝐵ത| = ௡ଶ, and 𝐵തଵ is another minimum connected 

resolving set. 
In the case that we choose an ordered set: 𝐵തଵ ⊆ 𝐵ത −  ൛𝑣௜ ,𝑣௝ൟ,      1 ≤  𝑖,      𝑗 ≤  𝑛2 ,      𝑖 ≠ 𝑗, (4)

for which the two vertices 𝑣௜, 𝑣௝ ∈ 𝐿௡ are exist so that: 
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𝑟(𝑣௜|𝐵ത) = 𝑟(𝑣௝|𝐵ത) = ൬𝑛 − 22 ,𝑛 − 22 − 1,𝑛 − 22 − 2, . . . , 1൰. (5)

This is not the case; 𝐵തଵ is not a connected resolving set as assumed. The lowest bound is 
therefore 𝑐𝑑𝑖𝑚 (𝐿௡) ≥ ௡ଶ. 

Corollary 3.2. If the ladder graph (𝐶(𝐿௡), 𝑛 ≥ 4, 𝑛 = 2𝑘 + 2, is circular, then: 

𝑐𝑑𝑖𝑚(𝐶(𝐿௡))  = ൞𝑛 − 𝑘 − 12 , 𝑘 is odd,𝑛 − 𝑘2 , 𝑘 is even. (6)

 
Fig. 3. Circular Ladder graph 𝐶(𝐿௡) 

Theorem 3.3. If the ladder graph 𝑂(𝐿௡), 𝑛 ≥ 8 is open, then 𝑐𝑑𝑖𝑚൫𝑂(𝐿௡)൯ = ௡ଶ. 

 
Fig. 4. Open ladder graph 𝑂(𝐿௡) 

Proof. Consider we have 𝐵ത = ൜𝑣ଵ,𝑣ଶ, … , 𝑣೙షమమ ,𝑣೙మൠ. With respect to 𝐵ത , we take into 

consideration the following representations of vertices 𝑣ଵ ∈ 𝑉൫𝑂 (𝐿௡)൯, 𝑛 ≥ 8, 𝑛 = 2𝑘 + 6. So, 
we have: 

𝑟(𝑣௜|𝐵ത) =
⎩⎪⎨
⎪⎧(0,1,2, … , 𝑘 + 2), 𝑖 = 1,(𝑖 − 1, 𝑖 − 2, … ,0,1, … ,𝑘 − 𝑖 + 2, 𝑘 − 𝑖 + 3) , 2 ≤ 𝑖 ≤ 𝑘 + 2,(𝑖 − 1, 𝑖 − 2, … ,1,0), 𝑖 = 𝑘 + 3,(3, 2, 3, … ,𝑘 + 3), 𝑖 = 𝑘 + 4,(𝑖 − 2𝑘 + 1, 𝑖 − 2𝑘, … ,1,2, … ,𝑛 − 𝑖 + 1), 𝑘 + 5 ≤  𝑖 ≤ 𝑛 − 1,(𝑘 + 2, 𝑘 + 1, 𝑘, 𝑘 − 1, … ,3,2,3), 𝑖 = 𝑛.

 (7)

Although the induced subgraph of 𝐵ത  is clearly connected and the representations of the vertices 
in graph 𝑂(𝐿௡) are different, this does not necessarily imply that 𝐵ത  is a connected resolving set. 
For this reason, 𝑐𝑑𝑖𝑚(𝑂 (𝐿௡)) ≤ ௡ଶ is an upper bound. 

We now demonstrate that 𝑐𝑑𝑖𝑚(𝑂 (𝐿௡)) ≤ ௡ଶ. Given a connected resolving set  𝐵ത =  ൜𝑣ଵ,𝑣ଶ, … , 𝑣೙షమమ , 𝑣೙మൠ with |𝐵ത| = ௡ଶ. Let 𝐵തଵ be an additional minimal connected resolving set. 

Let us choose an ordered set: 
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𝐵തଵ ⊆ 𝐵ത − ൛𝑣௜ , 𝑣௝ൟ,      1 ≤  𝑖,       𝑗 ≤ 𝑛2 ,      𝑖 ≠ 𝑗, (8)

for which there are two vertices 𝑣௜, 𝑣௝ ∈ 𝑂(𝐿௡) such that: 𝑟(𝑣௜|𝐵ത) = 𝑟(𝑣௝|𝐵ത) = ቀ𝑛2 − 1,𝑛2 − 2,𝑛2 − 3, … , 1ቁ.   (9)

It is not the case that 𝐵തଵ is a connected resolving set, as implied. Thus, 𝑐𝑑𝑖𝑚(𝑂 (𝐿௡)) ≥ ௡ଶ is 
the lower bound. Ultimately, 𝑐𝑑𝑖𝑚൫𝑂 (𝐿௡)൯ = ௡ଶ. 

Theorem 3.4. For 𝑛 ≥ 4, 𝑐𝑑𝑖𝑚(𝑇𝐿௡) = ௡ଶ for which 𝐺 is a triangular ladder graph 𝑇𝐿௡. 

 
Fig. 5. Triangular Ladder graph 𝑇𝐿௡ 

Proof. For 𝑛 ≥ 4 such that 𝑛 = 2𝑘 + 2, we take into consideration a connected resolving set 
of (𝑇𝐿௡) as the set 𝐵ത = ൜𝑣ଵ,𝑣ଶ, … , 𝑣೙షమమ ,𝑣೙మൠ. The vertices’ representations 𝑣௜ ∈ 𝑉(𝑇𝐿௡) in 

connection to 𝐵ത  are given as follows: 

𝑟(𝑣௜|𝐵ത) = ⎩⎪⎨
⎪⎧(0,1,2, … , 𝑘), 𝑖 = 1,(𝑖 − 1, 𝑖 − 2, … ,0,1, … ,𝑘 − 𝑖,𝑘 − 𝑖 + 1) , 2 ≤ 𝑖 ≤ 𝑘,(𝑘, 𝑘 − 1, … ,1,0), 𝑖 = 𝑘 + 1,(1, 2, … , 𝑘 , 𝑘 + 1), 𝑖 = 𝑘 + 2,(𝑖 − 𝑛 + 𝑘 , 𝑖 − 𝑛 + 𝑘 − 1, … ,1,1,2, … ,𝑛 − 𝑖 + 1), 𝑘 + 3 ≤ 𝑖 ≤ 𝑛. (10)

The unique vertex representations in graph 𝑇𝐿௡ suggest that 𝐵ത  is a connected resolving set, 
and as can be seen above, the induced subgraph of 𝐵ത  is indeed connected, but this is not always 
the case. Therefore, 𝑐𝑑𝑖𝑚(𝑇𝐿௡) ≤ ௡ଶ is an upper bound. Thus, we demonstrate that  𝑐𝑑𝑖𝑚(𝑇𝐿௡) ≥ ௡ଶ.  

Given a connected resolving set 𝐵ത = ൜𝑣ଵ, 𝑣ଶ, … , 𝑣೙షమమ ,𝑣೙మൠ, |𝐵ത|  = ௡ଶ. Let 𝐵തଵ be an additional 

minimal connected resolving set. When we choose an ordered set: 𝐵തଵ ⊆ 𝐵ത − ൛𝑣௜ , 𝑣௝ൟ,      1 ≤  𝑖,      𝑗 ≤ 𝑛2 ,       𝑖 ≠ 𝑗. (11)

Obviously, we can see that ∃𝑣௜, 𝑣௝ ∈ 𝑇𝐿௡ for which: 

𝑟(𝑣௜|𝐵ത) = 𝑟(𝑣௝|𝐵ത) = ൬𝑛 − 22 ,𝑛 − 22 − 1,𝑛 − 22 − 2, … ,1൰.   (12)

It is not the case that 𝐵തଵ is a connected resolving set, as implied. Hence, the lower bound is 𝑐𝑑𝑖𝑚 (𝑇𝐿௡) ≥ ௡ଶ. Therefore, we have 𝑐𝑑𝑖𝑚 (𝑇𝐿௡) = ௡ଶ. 
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Corollary 3.5. For an open triangular ladder 𝑂(𝑇𝐿௡), we have 𝑐𝑑𝑖𝑚൫𝑂(𝑇𝐿௡)൯ = 3, 𝑛 ≥ 8. 

 
Fig. 6. Open triangular Ladder 𝑂(𝑇𝐿௡) 

Theorem 3.6. If 𝑆𝐿௡ is a Slanting ladder graph, then 𝑐𝑑𝑖𝑚(𝑆𝐿௡) = ௡ଶ, for 𝑛 ≥  6. 

 
Fig. 7. Slanting Ladder 𝑆𝐿௡ 

Proof. By taking into consideration 𝑣௜ ∈ 𝑉(𝑆𝐿௡) with respect to 𝐵ത , we assume that  𝐵ത =  ൜𝑣ଵ,𝑣ଶ, … , 𝑣೙షమమ , 𝑣೙మൠ is a connected resolving set for (𝑆𝐿௡) in which 𝑛 ≥ 6, 𝑛 = 2𝑘 + 4. This 

implies: 

𝑟(𝑣௜|𝐵ത) = ⎩⎪⎨
⎪⎧(0,1,2, … , 𝑘 + 1), 𝑖 = 1,(𝑖 − 1, 𝑖 − 2, … ,0,1, … ,𝑘 − 𝑖 + 2) , 2 ≤ 𝑖 ≤ 𝑘 + 2,(2,3, … , 𝑘 + 3), 𝑖 = 𝑘 + 3,(1, 2, … , 𝑘 + 2), 𝑖 = 𝑘 + 4,(𝑖 − 2𝑘 + 1, 𝑖 − 2𝑘, … ,1,2 … ,𝑛 − 𝑖 + 2), 𝑘 + 5 ≤ 𝑖 ≤ 𝑛. (13)

The unique vertex representations in graph 𝑆𝐿௡ suggest that 𝐵ത  is a connected resolving set, 
and as can be shown above, the induced subgraph of 𝐵ത  is clearly connected, but this is not always 
the case we desire. Because of this, 𝑐𝑑𝑖𝑚(𝑆𝐿௡) ≤ ௡ଶ is an upper bound. Thus, we demonstrate that 𝑐𝑑𝑖𝑚(𝑆𝐿௡) ≥ ௡ଶ.  

Given a connected resolving set 𝐵ത = ൜𝑣ଵ, 𝑣ଶ, . . , 𝑣೙షమమ ,𝑣೙మൠ, with |𝐵ത| = ௡ଶ. Let 𝐵തଵ be an 

additional minimal connected resolving set. In the event that we choose the following ordered set: 𝐵തଵ ⊆ 𝐵ത − ൛𝑣௜ , 𝑣௝ൟ,      1 ≤  𝑖,      𝑗 ≤ 𝑛2 ,      𝑖 ≠ 𝑗, (14)

for which ∃𝑣௜, 𝑣௝ ∈ 𝑆𝐿௡ satisfying: 

𝑟(𝑣௜|𝐵ത) = 𝑟(𝑣௝|𝐵ത) = ൬𝑛 − 22 ,𝑛 − 22 − 1,𝑛 − 22 − 2, … ,1൰.   (15)

It will not be a connected resolving set if, in contrast to the assumption, we choose an ordered 𝐵തଵ. As a consequence, the lower bound is 𝑐𝑑𝑖𝑚(𝑆𝐿௡) ≥ ௡ଶ, and hence 𝑐𝑑𝑖𝑚(𝑆𝐿௡) = ௡ଶ. 
Theorem 3.7. If the graph 𝑂(𝐷𝐿௡) is an open diagonal ladder, then 𝑐𝑑𝑖𝑚(𝑂(𝐷𝐿௡)) = ௡ଶ,  
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𝑛 ≥ 6.  
Proof. Take into consideration the connected resolving set of (𝑂(𝐷𝐿௡)) for which 𝑛 ≥ 6,  𝑛 = 2𝑘 + 6, and the set 𝐵ത = ൜𝑣ଵ, 𝑣ଶ, … , 𝑣೙షమమ ,𝑣೙మൠ. With respect to 𝐵ത , consider 𝑣𝑖 ∈ 𝑉(𝑂(𝐷𝐿௡)) 

as follows: 

𝑟(𝑣௜|𝐵ത) =
⎩⎪⎨
⎪⎧(0,1,2, … , 𝑘 + 2), 𝑖 = 1,(𝑖 − 1, 𝑖 − 2, … ,0,1, … ,2𝑘 − 𝑖 − 2,2𝑘 − 𝑖 − 1) , 2 ≤ 𝑖 ≤ 𝑘 + 2,(𝑖 − 1, 𝑖 − 2, … ,1,0), 𝑖 = 𝑘 + 3,(𝑖 − 2, 𝑖 − 3, … ,1 ,2), 𝑖 = 𝑘 + 4,(𝑛 − 𝑖,𝑛 − 𝑖 − 1, … ,1,1,1 … , 𝑖 − 2𝑘), 𝑘 + 5 ≤ 𝑖 ≤ 𝑛 − 1,(2, 1, 2,3, … , 𝑘 + 2), 𝑖 = 𝑛.

 (16)

In graph 𝑂(𝐷𝐿௡), the vertex representations are unique and the induced subgraph of 𝐵ത  is 
undoubtedly connected, as can be observed above. This suggests that 𝐵ത  is a connected resolving 
set, though it need not be the lowest bound. For this reason, 𝑐𝑑𝑖𝑚(𝑂(𝐷𝐿௡))  ≤ ௡ଶ is an upper 
bound, and thus we demonstrate that 𝑐𝑑𝑖𝑚(𝑂(𝐷𝐿௡)) ≥ ௡ଶ. 

 
Fig. 8. Open diagonal ladder graph 𝑂(𝐷𝐿௡) 

Given a connected resolving set 𝐵ത = ൜𝑣ଵ, 𝑣ଶ, … , 𝑣೙షమమ ,𝑣೙మൠ with |𝐵ത| = ௡ଶ. Let 𝐵തଵ be an extra 

minimal connected resolving set. Assume that we choose the following ordered set: 𝐵തଵ ⊆ 𝐵ത − ൛𝑣௜ , 𝑣௝ൟ,      1 ≤  𝑖,      𝑗 ≤ 𝑛2 ,      𝑖 ≠ 𝑗, (17)

for which ∃𝑣௜, 𝑣௝ ∈ 𝑂(𝐷𝐿௡) satisfying: 

𝑟(𝑣௜|𝐵ത) = 𝑟(𝑣௝|𝐵ത) = ൬𝑛 − 22 ,𝑛 − 22 − 1,𝑛 − 22 − 2, … , 1൰.   (18)

It will not be a connected resolving set if, in contrast to the assumption, we choose an ordered 𝐵തଵ. As a consequence, the lower bound is 𝑐𝑑𝑖𝑚(𝑂(𝐷𝐿௡) ) ≥ ௡ଶ, and hence 𝑐𝑑𝑖𝑚(𝑂(𝐷𝐿௡) ) = ௡ଶ. 

4. Conclusions 

The constant metric dimension of an open triangular ladder 𝑂(𝑇𝐿௡) is 3. There are several 
types of ladder graphs with unbounded metric dimensions as 𝑛 → ∞, circular, open, triangular, 
slanting, and open diagonal. Our approach will be extended to ladder-class graph subdivisions in 
the future. 
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